
SonicMQ®
Application Programming Guide

Aurea SonicMQ® Application Programming Guide 2013

Copyright © 2013 Aurea, Inc. All Rights Reserved. These materials and all Aurea Software, Inc. software products are

copyrighted and all rights are reserved by Aurea, Inc. This document is proprietary and confidential. No part of this

document may be disclosed in any manner to a third party without the prior written consent of Aurea Software, Inc. The

information in these materials is subject to change without notice, and Aurea Software, Inc. assumes no responsibility for

any errors that may appear therein.

Actional®, Actional (and design)®, SOAPscope®, SOAPstation®, Mindreef®, DataXtend®, Savvion®, Savvion (and

design)®, Savvion BusinessManager®, Dynamic Routing Architecture®, Sonic®, Sonic ESB®, Sonic Integration

Workbench®, Sonic Orchestration Server®, SonicMQ®, and SonicXQ® are registered trademarks of Aurea, Inc., in the U.S.

and/or other countries. Actional Agent™, Actional Intermediary™, Actional Management Server™, DataXtend Semantic

Integrator™, Pantero™, Savvion BizLogic™, Savvion BizPulse™, Savvion BizRules™, Savvion BizSolo™, Savvion BPM

Portal™, Savvion BPM Studio™, Savvion BusinessExpert™, Savvion BusinessManager™, Savvion Process Asset

Manager™, ProcessEdge™, Savvion Process Modeler™, Sonic Continuous Availability Architecture™, Sonic Database

Service™, and Sonic Workbench™ are trademarks or service marks of Aurea, Inc., in the U.S. and other countries.

Oracle and Java are registered trademarks of Oracle and/or its affiliates.

All other marks contained herein are for informational purposes only and may be trademarks of their respective owners.

Third Party Acknowledgments: One or more products in the Aurea Sonic 2013 release includes third party components

covered by licenses that require that the following documentation notices be provided:

Aurea Sonic 2013 incorporates Another Tool for Language Recognition v2.7.4. Such technologies are subject to the

following terms and conditions: ANTLR Software License http://www.antlr.org/rights.html We reserve no legal rights to the

ANTLR--it is fully in the public domain. An individual or company may do whatever they wish with source code distributed

with ANTLR or the code generated by ANTLR, including the incorporation of ANTLR, or its output, into commercial

software. We encourage users to develop software with ANTLR. However, we do ask that credit is given to us for developing

ANTLR. By "credit", we mean that if you use ANTLR or incorporate any source code into one of your programs

(commercial product, research project, or otherwise) that you acknowledge this fact somewhere in the documentation,

research report, etc... If you like ANTLR and have developed a nice tool with the output, please mention that you developed

it using ANTLR. In addition, we ask that the headers remain intact in our source code. As long as these guidelines are kept,

we expect to continue enhancing this system and expect to make other tools available as they are completed.

Aurea Sonic 2013 incorporates Apache Ant-Contrib 1.0B3. Such technology is subject to the following terms and

conditions: The Apache Software License, Version 1.1 - Copyright (c) 2001-2003 Ant-Contrib project. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following

conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the

following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions

and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. The end-user

documentation included with the redistribution, if any, must include the following acknowledgement: "This product

includes software developed by the Ant-Contrib project (http://sourceforge.net/projects/ant-contrib)." Alternately, this

acknowledgement may appear in the software itself, if and wherever such third-party acknowledgements normally appear.

4. The name Ant-Contrib must not be used to endorse or promote products derived from this software without prior written

permission. For written permission, please contact ant-contrib-developers@lists.sourceforge.net. 5. Products derived from

this software may not be called "Ant-Contrib" nor may "Ant-Contrib" appear in their names without prior written permission

of the Ant-Contrib project. THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED

WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY

AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE ANT-CONTRIB

PROJECT OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,

EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF

SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR

TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS

SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Aurea Sonic2013 incorporates BasicLogin.java, SimpleCallbackHandler.java, SimplePasswordUser.java,

SampleLoginModule.java, SamplePrincipal.java from Sun Microsystems, Inc. These technologies are subject to the

following terms and conditions: Copyright 2000-2002 Sun Microsystems, Inc. All Rights Reserved. Redistribution and use

in source and binary forms, with or without modification, are permitted provided that the following conditions are met: -

Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. -

Redistribution in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer

in the documentation and/or other materials provided with the distribution. Neither the name of

Sun Microsystems, Inc. or the names of contributors may be used to endorse or promote products derived from this software

without specific prior written permission. This software is provided "AS IS," without a warranty of any kind. ALL

EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED

WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,

ARE HEREBY EXCLUDED. SUN AND ITS LICENSORS SHALL NOT BE LIABLE FOR ANY DAMAGES OR

LIABILITIES SUFFERED BY LICENSEE AS A RESULT OF OR RELATING TO USE, MODIFICATION OR

DISTRIBUTION OF THE SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL SUN OR ITS LICENSORS BE

LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR FOR DIRECT, INDIRECT, SPECIAL,

CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE

THEORY OF LIABILITY, ARISING OUT OF THE USE OF OR INABILITY TO USE SOFTWARE, EVEN IF SUN HAS

BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. You acknowledge that Software is not designed,

licensed or intended for use in the design, construction, operation or maintenance of any nuclear facility.

Aurea Sonic 2013 incorporates Colt cern.colt* packages v1.0.3 (ca1420-20040626). Such technology is subject to the

following terms and conditions: Packages cern.colt , cern.jet*, cern.clhep - Copyright (c) 1999 CERN - European

Organization for Nuclear Research. Permission to use, copy, modify, distribute and sell this software and its documentation

for any purpose is hereby granted without fee, provided that the above copyright notice appear in all copies and that both

that copyright notice and this permission notice appear in supporting documentation. CERN makes no representations about

the suitability of this software for any purpose. It is provided "as is" without expressed or implied warranty.

Aurea Sonic 2013 incorporates Crimson v1.1.3. Such technology is subject to the following terms and conditions: The

Apache Software License, Version 1.1. Copyright (c) 1999-2003 The Apache Software Foundation. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following

conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the

following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and

the following disclaimer in the documentation and/or other materials provided with the distribution. 3. The end-user

documentation included with the redistribution, if any, must include the following acknowledgment: "This product includes

software developed by the * Apache Software Foundation (http://www.apache.org/)." Alternately, this acknowledgment

may appear in the software itself, if and wherever such third-party acknowledgments normally appear. 4. The names

"Xerces" and "Apache Software Foundation" must not be used to endorse or promote products derived from this software

without prior written permission. For written permission, please contact apache@apache.org. 5. Products derived from this

software may not be called "Apache", nor may "Apache" appear in their name, without prior written * permission of the

Apache Software Foundation. THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED

WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY

AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE APACHE

SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,

PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS

INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,

STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF

THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

==

This software consists of voluntary contributions made by many individuals on behalf of the Apache Software Foundation

and was originally based on software copyright (c) 1999, International Business Machines, Inc., http://www.ibm.com. For

more information on the Apache Software Foundation, please see <http://www.apache.org/>.

Aurea Sonic 2013 incorporates DSTC Xs3P version 1.1 from DSTC Pty Ltd. Aurea will, at Licensee's request, provide

copies of the source code for this third party technology, including modifications, if any, made by Aurea. Aurea may charge

reasonable shipping and handling charges for such distribution. Licensee may also obtain the source code through

http://www.aurea.com/3rdparty by following the instructions set forth therein. - DSTC Public License. The contents of this

file are subject to the DSTC Public License Version 1.1 (the 'License') (provided herein); you may not use this file except in

compliance with the License. Software distributed under the License is distributed on an 'AS IS' basis, WITHOUT

WARRANTY OF ANY KIND, either express or implied. See the License for the specific language governing rights and

limitations under the License. The Original Code is xs3p. The Initial Developer of the Original Code is DSTC. Portions

created by DSTC are Copyright (c) 2001, 2002 DSTC Pty Ltd. All Rights Reserved.

Aurea Sonic 2013 incorporates Jing 20030619 and Trang 20030619. Such technology is subject to the following terms and

conditions: Copyright (c) 2002, 2003 Thai Open Source Software Center Ltd. All rights reserved. Redistribution and use in

source and binary forms, with or without modification, are permitted provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer

in the documentation and/or other materials provided with the distribution. Neither the name of the Thai Open Source

Software Center Ltd nor the names of its contributors may be used to endorse or promote products derived from this software

without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND

CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED

TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,

INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT

LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR

BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN

CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY

WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Aurea Sonic 2013 incorporates Model Objects Framework v2.0 from ModelObjects Group. Such technology is subject to

the following terms and conditions: The ModelObjects Group Software License, Version 1.0 - Copyright (c) 2000-2001

ModelObjects Group. All rights reserved. Redistribution and use in source and binary forms, with or without modification,

are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above

copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the

above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials

provided with the distribution. 3. The end-user documentation included with the redistribution, if any, must include the

following acknowledgement: "This product includes software developed by the ModelObjects Group

(http://www.modelobjects.com)." Alternatively, this acknowledgement may appear in the software itself, if and wherever

such third-party acknowledgements normally appear. 4. The name "ModelObjects" must not be used to endorse or promote

products derived from this software without prior written permission. For written permission, please contact

djacobs@modelobjects.com. 5. Products derived from this software may not be called "ModelObjects", nor may

ModelObjects" appear in thier name, without prior written permission of the ModelObjects Group. THIS SOFTWARE IS

PROVIDED "AS IS" AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,

THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

DISCLAIMED. IN NO EVENT SHALL THE MODEL OBJECTS GROUP OR ITS CONTRIBUTORS BE LIABLE FOR

ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES

(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,

DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF

LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR

OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE

POSSIBILITY OF SUCH DAMAGE.

Aurea Sonic 2013 incorporates Mozilla Rhino v1.5R3. The contents of this file are subject to the Netscape Public License

Version 1.1 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the

License at http://www.mozilla.org/NPL/ and a copy is provided below. Software distributed under the License is distributed

on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License for the specific

language governing rights and limitations under the License. The Original Code is Mozilla Communicator client code,

released March 31, 1998. The Initial Developer of the Original Code is Netscape Communications Corporation. Portions

created by Netscape are Copyright (C) 1998-1999 Netscape Communications Corporation. All Rights Reserved. Aurea

will, at Licensee's request, provide copies of the source code for this third party technology, including modifications, if any,

made by Aurea. Aurea may charge reasonable shipping and handling charges for such distribution. Licensee may also obtain

the source code through http://www.aurea.com/3rdparty by following the instructions set forth therein.

Aurea Sonic 2013 incorporates NET Security Library v1.0. Such technologies are subject to the following terms and

conditions: Copyright (c) 2002-2003, The KPD-Team All rights reserved. http://www.mentalis.org/ Redistribution and use

in source and binary forms, with or without modification, are permitted provided that the following conditions are met: -

Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. -

Neither the name of the KPD-Team, nor the names of its contributors may be used to endorse or promote products derived

from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT

HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT

NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE

LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY

THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE

OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE

POSSIBILITY OF SUCH DAMAGE. Copyright (c) 2002-2003, The KPD-Team.

Aurea Sonic 2013 incorporates OpenSAML Java Distribution v1.0.1. Such technology is subject to the following terms and

conditions: The OpenSAML License, Version 1. Copyright (c) 2002 - University Corporation for Advanced Internet

Development, Inc. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are

permitted provided that the following conditions are met: Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer. Redistributions in binary form must reproduce the above

copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided

with the distribution, if any, must include the following acknowledgment: "This product includes software developed by the

University Corporation for Advanced Internet Development http://www.ucaid.edu Internet2 Project. Alternately, this

acknowledgement may appear in the software itself, if and wherever such third-party acknowledgments normally appear.

Neither the name of OpenSAML nor the names of its contributors, nor Internet2, nor the University Corporation for

Advanced Internet Development, Inc., nor UCAID may be used to endorse or promote products derived from this software

without specific prior written permission. For written permission, please contact opensaml@opensaml.org. Products

derived from this software may not be called OpenSAML, Internet2, UCAID, or the University Corporation for Advanced

Internet Development, nor may OpenSAML appear in their name, without prior written permission of the University

Corporation for Advanced Internet Development. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS

AND CONTRIBUTORS "AS IS" AND WITH ALL FAULTS. ANY EXPRESS OR IMPLIED WARRANTIES,

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A

PARTICULAR PURPOSE, AND NON-INFRINGEMENT ARE DISCLAIMED AND THE ENTIRE RISK OF

SATISFACTORY QUALITY, PERFORMANCE, ACCURACY, AND EFFORT IS WITH LICENSEE. IN NO EVENT

SHALL THE COPYRIGHT OWNER, CONTRIBUTORS OR THE UNIVERSITY CORPORATION FOR ADVANCED

INTERNET DEVELOPMENT, INC. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,

EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF

SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR

TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS

SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Aurea Sonic 2013 incorporates OpenSSL toolkit v0.9.8i. Such technologies are subject to the following terms and

conditions: LICENSE ISSUES ============== The OpenSSL toolkit stays under a dual license, i.e. both the conditions

of the OpenSSL License and the original SSLeay license apply to the toolkit. See below for the actual license texts. Actually

both licenses are BSD-style Open Source licenses. In case of any license issues related to OpenSSL please contact openssl-

core@openssl.org.

OpenSSL License ---------------

==

Copyright (c) 1998-2008 The OpenSSL Project. All rights reserved. Redistribution and use in source and binary forms, with

or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following

disclaimer in the documentation and/or other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software must display the following acknowledgment: "This

product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit. (http://www.openssl.org/)"

4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to endorse or promote products derived from

this software without prior written permission. For written permission, please contact openssl-core@openssl.org.

5. Products derived from this software may not be called "OpenSSL" nor may "OpenSSL" appear in their names without

prior written permission of the OpenSSL Project.

6. Redistributions of any form whatsoever must retain the following acknowledgment: "This product includes software

developed by the OpenSSL Project for use in the OpenSSL Toolkit (http://www.openssl.org/)" THIS SOFTWARE IS

PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES,

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR ITS

CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND

ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING

NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF

ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

==

This product includes cryptographic software written by Eric Young (eay@cryptsoft.com). This product includes software

written by Tim Hudson (tjh@cryptsoft.com).

Original SSLeay License ----------------------- Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) All rights

reserved. This package is an SSL implementation written by Eric Young (eay@cryptsoft.com). The implementation was

written so as to conform with Netscapes SSL. This library is free for commercial and non-commercial use as long as the

following conditions are aheared to. The following conditions apply to all code found in this distribution, be it the RC4,

RSA, lhash, DES, etc., code; not just the SSL code. The SSL documentation included with this distribution is covered by

the same copyright terms except that the holder is Tim Hudson (tjh@cryptsoft.com). Copyright remains Eric Young's, and

as such any Copyright notices in the code are not to be removed. If this package is used in a product, Eric Young should be

given attribution as the author of the parts of the library used. This can be in the form of a textual message at program startup

or in documentation (online or textual) provided with the package. Redistribution and use in source and binary forms, with

or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the copyright notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following

disclaimer in the documentation and/or other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software must display the following acknowledgement: "This

product includes cryptographic software written by Eric Young (eay@cryptsoft.com)" The word 'cryptographic' can be left

out if the rouines from the library being used are not cryptographic related :-).

4. If you include any Windows specific code (or a derivative thereof) from the apps directory (application code) you must

include an acknowledgement: "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" THIS

SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE

LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY

THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE

OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE

POSSIBILITY OF SUCH DAMAGE. The licence and distribution terms for any publically available version or derivative

of this code cannot be changed. i.e. this code cannot simply be copied and put under another distribution licence [including

the GNU Public Licence.]

Aurea Sonic 2013 incorporates Saxon XSLT and XQuery Processor v8.9.0.4 from Saxonica Limited

(http://www.saxonica.com/) which is available from SourceForge (http://sourceforge.net/projects/saxon/). Aurea will, at

Licensee's request, provide copies of the source code for this third party technology, including modifications, if any, made

by Aurea. Aurea may charge reasonable shipping and handling charges for such distribution. Licensee may also obtain the

source code through http://www.aurea.com/3rdparty by following the instructions set forth therein. - Mozilla Public License

Version 1.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the

License at http://www.mozilla.org/MPL and it is provided below. Software distributed under the License is distributed on

an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License for the specific

language governing rights and limitations under the License. The Original Code of Saxon comprises all those components

which are not explicitly attributed to other parties. The Initial Developer of the Original Code is Michael Kay. Until February

2001 Michael Kay was an employee of International Computers Limited (now part of Fujitsu Limited), and original code

developed during that time was released under this license by permission from International Computers Limited. From

February 2001 until February 2004 Michael Kay was an employee of Software AG, and code developed during that time was

released under this license by permission from Software AG, acting as a "Contributor". Subsequent code has been developed

by Saxonica Limited, of which Michael Kay is a Director, again acting as a "Contributor". A small number of modules, or

enhancements to modules, have been developed by other individuals (either written specially for Saxon, or incorporated into

Saxon having initially been released as part of another open source product). Such contributions are acknowledged

individually in comments attached to the relevant code modules. All Rights Reserved.

Aurea Sonic 2013 incorporates Xalan Java XSLT Parser v2.4.1 from the Apache Foundation. Such technology is subject to

the following terms and conditions: The Apache Software License, Version 1.1 - Copyright (c) 1999 The Apache Software

Foundation. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are

permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above

copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided

with the distribution. 3. The end-user documentation included with the redistribution, if any, must include the following

acknowledgment: "This product includes software developed by the Apache Software Foundation

(http://www.apache.org/)." Alternately, this acknowledgment may appear in the software itself, if and wherever such third-

party acknowledgments normally appear. 4. The names "Xalan" and "Apache Software Foundation" must not be used to

endorse or promote products derived from this software without prior written permission. For written permission, please

contact apache@apache.org. 5. Products derived from this software may not be called "Apache", nor may "Apache" appear

in their name, without prior written permission of the Apache Software Foundation. THIS SOFTWARE IS PROVIDED

``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE

LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY

THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE

OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE

POSSIBILITY OF SUCH DAMAGE.

===

This software consists of voluntary contributions made by many individuals on behalf of the Apache Software Foundation

and was originally based on software copyright (c) 1999, Lotus Development Corporation., http://www.lotus.com. For more

information on the Apache Software Foundation, please see <http://www.apache.org/>.

Aurea Sonic 2013 incorporates Xerces v2.6.2 from the Apache Foundation. Such technology is subject to the following

terms and conditions: The Apache Software License, Version 1.1 - Copyright (c) 1999-2004 The Apache Software

Foundation. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are

permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above

copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided

with the distribution. 3. The end-user documentation included with the redistribution, if any, must include the following

acknowledgment: "This product includes software developed by the Apache Software Foundation

(http://www.apache.org/)." Alternately, this acknowledgment may appear in the software itself, if and wherever such third-

party acknowledgments normally appear. 4. The names "Xerces" and "Apache Software Foundation" must not be used to

endorse or promote products derived from this software without prior written permission. For written permission, please

contact apache@apache.org. 5. Products derived from this software may not be called "Apache", nor may "Apache" appear

in their name, without prior written permission of the Apache Software Foundation. THIS SOFTWARE IS PROVIDED

``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE

LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY

THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE

OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE

POSSIBILITY OF SUCH DAMAGE.

===

This software consists of voluntary contributions made by many individuals on behalf of the Apache Software Foundation

and was originally based on software copyright (c) 1999, International Business Machines, Inc., http://www.ibm.com. For

more information on the Apache Software Foundation, please see <http://www.apache.org/>.

Aurea Sonic 2013 incorporates Progress DataDirect Connect for JDBC v5.1 and Progress DataDirect Connect XE for JDBC

v5.1 which incorporates HyperSQL database v1.8.0.10 from The HSQL Development Group. Such technology is subject

to the following terms and conditions: Copyright (c) 2001-2005, The HSQL Development Group All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following

conditions are met: Redistributions of source code must retain the above copyright notice, this list of conditions and the

following disclaimer. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and

the following disclaimer in the documentation and/or other materials provided with the distribution. Neither the name of the

HSQL Development Group nor the names of its contributors may be used to endorse or promote products derived from this

software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS

AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL HSQL DEVELOPMENT GROUP, HSQLDB.ORG, OR

CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND

ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING

NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF

ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Aurea Sonic 2013 incorporates Woodstox v3.2.8 and 4.1.2 which incorporates Stax2 API v3.1.1. Such technology is subject

to the terms and conditions of the following licenses: Copyright (c) 2004-2010, Woodstox Project

(http://woodstox.codehaus.org/) All rights reserved. Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the

above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce

the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials

provided with the distribution. 3. Neither the name of the Woodstox XML Processor nor the names of its contributors may

be used to endorse or promote products derived from this software without specific prior written permission. THIS

SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS

OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL

THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,

PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS

INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,

STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF

THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Aurea Sonic 2013 incorporates JAXB v2.1.13. Such technology is subject to the following terms and conditions: Jing

Copying Conditions Copyright (c) 2001-2003 Thai Open Source Software Center Ltd. All rights reserved. Redistribution

and use in source and binary forms, with or without modification, are permitted provided that the following conditions are

met: Redistributions of source code must retain the above copyright notice, this list of conditions and the following

disclaimer. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the

following disclaimer in the documentation and/or other materials provided with the distribution. Neither the name of the

Thai Open Source Software Center Ltd nor the names of its contributors may be used to endorse or promote products derived

from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT

HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT

NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY

DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,

BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR

PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,

WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

SUCH DAMAGE.

Aurea Sonic 2013 incorporates ASM 3.3.1 from Inria France Telecom. Such technology is subject to the following terms

and conditions: Copyright (c) 2000-2011 INRIA, France Telecom. All rights reserved. Redistribution and use in source

and binary forms, with or without modification, are permitted provided that the following conditions are met: 1.

Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following

disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright

holders nor the names of its contributors may be used to endorse or promote products derived from this software without

specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND

CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED

TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY

DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,

BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR

PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,

WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

SUCH DAMAGE.

Contents
Preface . 23
About This Guide . 23
Typographical Conventions . 25
Aurea Sonic Documentation . 26

SonicMQ Documentation . 26
Other Documentation in the SonicMQ Product Family . 27

Worldwide Technical Support . 28

1. Overview . 29
Java Message Service . 30

JMS: Key Component of the Java Platform for the Enterprise . 30
JMS Version 1.1 Specification . 31
Java Development Environment . 31

Programming Concepts . 31
Clients Connect to the SonicMQ Broker . 31
SonicMQ Is a JMS Provider . 32
SonicMQ Messaging Models . 33
JMS Version 1.1 Unification of Messaging Models . 33
SonicMQ Object Model . 34

ConnectionFactory . 35
Connection . 35
Session . 35
MessageConsumer and MessageProducer . 35
Destination . 36
Message . 36

Quality of Service and Protection . 36
Clients . 41

Java Client . 41
JMS Test Client . 41
HTTP Direct Protocol Handlers . 42
Java Applet . 42
.NET Client . 42
C/C++ Clients . 42
COM Client . 42
Aurea Software, Inc. Confidential 11 Copyright © 2013 Aurea, Inc.

Contents
SonicMQ API . 43

2. Using the JMS Test Client. 45
Testing Point-to-point Messaging . 45

Starting the SonicMQ Container and Broker . 46
Opening the JMS Test Client . 46
Establishing Connection to the SonicMQ Broker . 47
Establishing a Queue Session . 47
Creating Queue Senders and Queue Receivers . 48
Sending and Receiving Messages . 50
Browsing Messages on a Queue . 52

Testing Publish and Subscribe Messaging . 53
Establishing a Topic Session . 54
Creating Publishers and Subscribers to Topics . 55
Publishing Messages . 59
Receiving Messages on Subscribed Topics . 62

3. Examining the SonicMQ JMS Samples . 65
About SonicMQ Samples . 66

Other Samples Available . 68
Extending the Samples . 69

How Security Impacts Client Activities . 69
Running the SonicMQ Samples . 70

Starting the SonicMQ Container and Management Console . 70
Opening Client Console Windows . 73
Using the Sample Scripts . 73

Using the SonicMQ Samples in a Sonic Workbench Installlation 73
Using the SonicMQ Samples with a non-default Broker . 74

Chat and Talk Samples . 74
Chat Application (Pub/Sub) . 74
Talk Application (PTP) . 75
Reviewing the Chat and Talk Samples . 76

MultiTopicChat Sample . 76
Setting Up MultiTopic Sessions . 76
Demonstrating MultiTopic Publish and Subscribe . 77

Samples of Additional Message Types . 78
Map Messages (PTP) . 78
XML Messages . 79

XMLDOMTalk (PTP) . 81
XMLSAXTalk (PTP) . 81
XMLDOMChat (Pub/Sub) . 82
XMLSAXChat (Pub/Sub) . 83

Decomposing Multipart Messages . 83
Reviewing the Additional Message Type Samples . 85

Sample of Channels for Large Message Transfers . 85
Reviewing the Large Message Transfer Sample . 87

Message Traffic Monitor Samples . 87
QueueMonitor Application (PTP) . 88
MessageMonitor Application (Pub/Sub) . 90

Transaction Samples . 92
TransactedTalk Application (PTP) . 92
TransactedChat Application (Pub/Sub) . 93
Reviewing the Transaction Samples . 94

Reliable, Persistent, and Durable Messaging Samples . 95
Reliable Connections . 96
Aurea Software, Inc. Confidential 12 Copyright © 2013 Aurea, Inc.

Contents
ReliableTalk Application (PTP) . 97
ReliableChat Application (Pub/Sub) . 98

Persistent Storage Application (PTP) . 99
DurableChat Application (Pub/Sub) . 106
Continuous Producer Demonstrating Client Persistence . 109

Local Store Sample (PTP) . 110
Local Store Sample (Pub/Sub) . 111

Reviewing Reliable, Persistent, and Durable Messaging . 112
Request and Reply Samples . 112

Request and Reply (PTP) . 113
Request and Reply (Pub/Sub) . 114
Reviewing the Request and Reply Samples . 115

Selection, Group, and Wild Card Samples . 115
Message Selection: SelectorTalk and SelectorChat . 115

SelectorTalk Application (PTP) . 116
SelectorChat Application (Pub/Sub) . 116

MessageGroupTalk (PTP) . 117
HierarchicalChat Application (Pub/Sub) . 121
Reviewing the Selection, Group, and Wild Card Samples . 122

Test Loop Sample . 122
QueueRoundTrip Application (PTP) . 123

Enhancing the Basic Samples . 123
Use Common Topics Across Clients . 124
Trying Different RoundTrip Settings . 124
Modifying the MapMessage to Use Other Data Types . 125
Modifying the XMLMessage Sample to Show More Data . 127

4. SonicMQ Connections. 131
Overview of SonicMQ Connections . 132
Protocols . 133

TCP . 133
SSL . 134

Using SSL on the Client . 134
Authentication . 134
Setting Cipher Suites . 137

HTTP . 138
HTTPS . 138
sonicrn:/// . 138

JVM Command Options . 139
HTTP Tunneling through an Authenticating Proxy . 139

Specifying Credentials . 139
NTLM Authentication . 139

HTTP Forward Proxy . 140
HTTPS Forward Proxy . 140

HTTPS Tunneling Through an Authenticating Forward Proxy 141
SSL/HTTPS . 142
Nagle Algorithm . 142
HTTP Map Host to IP . 142

Connection Factories and Connections . 142
Connection Factories . 143

URL . 144
ConnectID . 145
Username and Password . 145
ClientID . 145
Load Balancing . 146
Aurea Software, Inc. Confidential 13 Copyright © 2013 Aurea, Inc.

Contents
Alternate Connection Lists . 146
Obtaining the Connected Broker URL or Node Name . 147
Setting Server-based Message Selection . 147
Setting a Socket Connect Timeout . 148
Setting QoP Cache Size . 148
Setting the Maximum DeliveryCount . 149
Setting to Minimize Subscriber Traffic . 149
Enabling Message Compression . 151

Connecting to SonicMQ Directly . 152
Connecting to SonicMQ Using Administered Objects . 152

Advantages of Using JMS Administered Objects . 153
Lookup and Use of Administered Objects . 154
Lookup Using the Sonic JNDI SPI . 154
Using the LDAP JNDI SPI . 158

Connecting to SonicMQ Using Serialized Factories . 158
Setting Up Serialized Objects . 159
Using Serialized Objects . 160

Connections . 160
Creating a Connection . 160
Creating and Monitoring a Connection . 161
Handling Exceptions on the Connection . 162

Client Persistence . 163
Using Client Persistence . 164
Rejection Listener . 166
Coding Limitations . 166

Asynchronous Message Delivery . 167
Delivery Mode Behavior . 167
Reliability of Produced Messages . 168

Synchronous Message Reliability . 169
Asynchronous Message Reliability . 169

Ordering of Asynchronously Produced Messages . 169
Delivery Doubt Window . 169
Close Behavior . 170

Close Timeout . 170
RejectionListener Semantics . 171

Fault-Tolerant Connections . 172
How Fault-Tolerant Connections are Initially Established . 173
ConnectionFactory Methods for Fault-Tolerance . 174

Enabling Fault-Tolerant Connections . 175
Client Transaction Buffers . 175
Specifying Connection Timeouts . 176

Connection Methods for Fault-Tolerance . 178
Handling Connection State Changes . 179
Getting the URL of the Current Broker . 180

Reconnect Errors . 181
Load Balancing Considerations . 182
Acknowledge and Forward Considerations . 182
Forward and Reverse Proxies . 182
Client Persistence and Fault-Tolerant Connections . 182
JMS Operation Reliability and Fault-Tolerant Connections . 184
Reconnect Conflict . 185

JMS Connection Reconnect Conflict . 185
Durable Subscriber Reconnect Conflict . 186

Message Reliability . 186
NON_PERSISTENT_REPLICATED Delivery Mode . 187
Aurea Software, Inc. Confidential 14 Copyright © 2013 Aurea, Inc.

Contents
Failures That Cause Message Loss or Duplication . 189
Setting the Default Delivery Mode for a Message Producer 189
Redelivery of NON_PERSISTENT_REPLICATED Messages 190
Nondurable Subscribers of NON_PERSISTENT_REPLICATED Messages 190
Broker Storage of NON_PERSISTENT_REPLICATED Messages 192
Effect of Broker Restart on NON_PERSISTENT_REPLICATED Messages 193
NON_PERSISTENT_REPLICATED Messages in Transactions 193
Using NON_PERSISTENT_REPLICATED in acknowledgeAndForward 194
Using NON_PERSISTENT_REPLICATED Delivery Mode on Non-Fault Tolerant

Connections . 195
Modifying the Chat Example for Fault-Tolerance . 195

Running the Modified Chat Example . 199
Starting, Stopping, and Closing Connections . 201

Starting a Connection . 201
Stopping a Connection . 201
Closing a Connection . 201

Using Multiple Connections . 202
Communication Layer . 202

5. SonicMQ Client Sessions . 205
Overview of Client Sessions . 205

Naming Sessions . 206
Acknowledgement Mode . 207

Recover . 208
Limiting Redelivery from Queues . 208

Explicit Acknowledgement . 210
Transacted Sessions . 210

Broker-managed Timeouts on Transacted Sessions . 211
Distributed Transactions . 211
Duplicate Message Detection . 212

Session Objects . 212
Creating a Destination . 213

Destination Objects . 213
Destination Name Syntax . 214
Effects of Access Control . 215
Temporary Queues . 216
Using a Lookup for Destinations . 217

Creating a MessageProducer . 217
Creating a MessageConsumer . 217
Creating a Message . 218
Closing a Session . 219

Flow Control . 220
Using Client Persistence and Wait Time When Flow Controlled 221

Flow Control Management Notifications . 221
Monitoring Intervals . 221
Notification Interface . 223

Disabling Flow Control . 223
Flow to Disk . 223
Using Sessions and Consumers . 225

Multiple Sessions on a Connection . 225
Creating Session Objects and the Listeners . 225
Starting the Connection . 226

JMS Messaging Domains . 226
Integration with Application Servers . 227

Connection Consumer . 227
Aurea Software, Inc. Confidential 15 Copyright © 2013 Aurea, Inc.

Contents
Server Session . 229
Message Driven Beans . 229
Shared Subscriptions . 230

XA Resources . 230

6. Messages . 231
About Messages . 231
Message Type . 232

Creating a Message . 233
Working with XML Messages . 234

JAXP Support . 234
JAXP Interfaces . 234
DOM Support . 236
SAX Support . 236

Working With Messages That Have Multiple Parts . 238
Composition of a MultipartMessage . 238

MultipartMessage Type . 238
Parts of a MultipartMessage . 243
MessagePart Subclass . 244
Header of the MultipartMessage or a Part . 244

Using Multipart Messages to Wrap Problem Messages . 245
Wrapping a Problem SonicMQ Message Within a Message 246
Receiving a Wrapped Problem Message . 246

Interacting with Business-to-Business Multipart Types . 247
Message Structure . 248
Message Header Fields . 249

Setting Header Values When Sending/Publishing . 252
Message Properties . 253

Provider-defined Properties (JMS_SonicMQ) . 253
Per Message Encryption . 254

JMS-defined Properties (JMSX) . 255
User-defined Properties . 256

Determining the Pending Queue for Messages . 257
Setting Message Properties . 257
Property Methods . 258

Checking Whether a Property Exists . 258
Clearing Message Properties . 258
Setting the Property Type . 258
Getting Property Names . 259
Getting Property Values . 259

Message Body . 260
Setting the Message Body . 260
Getting the Message Body . 260

7. Message Producers and Consumers. 261
About Message Producers and Message Consumers . 262
Message Ordering and Reliability . 262
Destinations . 263
Steps in Message Production . 264

Create a Session . 264
Create the Producer on the Session . 265
Create the Message Type and Set Its Body . 265
Set Message Header Fields . 265
Set the Message Properties . 266
Elect Per Message Encryption . 266
Aurea Software, Inc. Confidential 16 Copyright © 2013 Aurea, Inc.

Contents
Produce the Message . 266
Message Management by the Broker . 267
Message Receivers, Listeners, and Selectors . 269

Message Receiver . 269
Receive . 269
Receive with Timeout . 269
Receive No Wait . 270

Message Listeners . 270
Message Selection . 271

Server-based or Client-based Topic Message Selectors . 271
Scope of Message Selectors . 271
Message Selector Syntax . 272
Comparing Exact and Inexact Values . 275

Steps in Listening, Receiving, and Consuming Messages . 276
Implement the Message Listener . 276
Create the Destination and Consumer, Then Listen . 276
Handle a Received Message . 277

Get Message Properties . 278
Consume the Message . 278
Acknowledge the Message . 278

Reply-to Mechanisms . 279
Temporary Destinations Managed by a Requestor Helper Class 279

Requestor Application . 279
Replier Application . 280
Design for Handling Requests . 280
Writing a Topic Requestor . 280

Producers and Consumers in JMS Messaging Domains . 281

8. Point-to-point Messaging . 283
About Point-to-point Messaging . 284
Message Ordering and Reliability in PTP . 285

Message Ordering . 285
Message Delivery . 286

Using Multiple MessageConsumers . 286
Message Queue Listener . 286
MessageConsumer . 287

Receive . 287
Receive with Timeout . 287
Receive No Wait . 288

Using Message Grouping . 288
Illustration of Message Grouping . 289
Broker Settings for Message Grouping . 290

Initial Message Dispatch . 290
Group Idle Timeout . 290

Message Producers for Message Grouping . 290
Creating and Sending to a Message Group . 291
Requesting the Broker to Unassign a Message Group . 291

Message Consumers for Message Grouping . 292
Setting Prefetch Count and Threshold . 292
Browsing a Queue . 293
Handling Undelivered Messages . 295

Setting Important Messages to be Saved if They Expire . 296
Setting Small Messages to Generate Administrative Notice . 296

Life Cycle of a Guaranteed Message . 297
Setting the Message to Be Preserved . 297
Aurea Software, Inc. Confidential 17 Copyright © 2013 Aurea, Inc.

Contents
Setting the Message to Generate an Administrative Event . 298
Sending the Message . 298
Letting the Message Get Delivered or Expire . 298
Post-processing Expired Messages . 298

Processing Enqueued Expired Messages . 298
Sending Administrative Notification . 299

Getting Messages Out of the Dead Message Queue . 299
Detecting Duplicate Messages . 300
Forwarding Messages Reliably . 301
Dynamic Routing with PTP Messaging . 302

Administrative Requirements . 303
Application Programming Requirements . 303
Message Delivery with Dynamic Routing . 304

Clusterwide Access to Queues . 304
Sending to Clusterwide Queues . 305
Receiving from Clusterwide Queues . 305
Browsing Clusterwide Queues . 305
Message Selectors with Clusterwide Queues . 306
Clustered Queue Availability When Broker is Unavailable . 306

9. Publish and Subscribe Messaging. 307
About Publish and Subscribe Messaging . 307
Message Ordering and Reliability in Pub/Sub . 309

General Services . 309
Message Ordering . 310
Reliability . 310

Topic . 310
MessageProducer (Publisher) . 311

Creating the MessageProducer . 311
Creating the Message . 312
Sending Messages to a Topic . 312

MessageConsumer (Subscriber) . 313
Durable Subscriptions . 313

Clusterwide Access to Durable Subscriptions . 315
Message Order with Clusterwide Durable Subscriptions . 315
Availability of Clusterwide Durable Subscription After Reconnecting 316

Dynamic Routing with Pub/Sub Messaging . 317
Administrative Requirements . 318
Application Programming Requirements . 318
Message Delivery with Remote Publishing . 319

Shared Subscriptions . 319
Features of Using Shared Subscriptions in Your Applications . 321
Usage Scenarios for Shared Subscriptions . 322

Fault Resilience . 322
Highly-Variable Processing Times . 323
Pure Load-balancing . 324

Defining Shared Subscription Topic Subscribers . 324
Message Delivery to a Broker with Shared Subscriptions . 326

Single Broker Behavior with Shared Subscriptions . 326
Cluster Behavior with Shared Subscriptions . 328
Shared Subscriptions and Flow Control . 330

JMS Interactions with Shared Subscriptions . 330
Shared Subscriptions with Remote Publishing and Subscribing 333

MultiTopics . 336
Format of a MultiTopic String . 337
Aurea Software, Inc. Confidential 18 Copyright © 2013 Aurea, Inc.

Contents
MultiTopic String Format . 337
Examples of MultiTopic Strings . 337

Creating MultiTopics . 337
Using a Session Object to Create a MultiTopic . 338
Using a DestinationFactory Object to Create a MultiTopic . 338

Adding Component Topics to a MultiTopic . 338
Publishing and Subscribing to MultiTopics . 339

Splitting MultiTopic Delivery . 339
Remote Publishing . 340
Global Subscriptions . 340
MultiTopics and Access Control Lists (ACLs) . 341

MultiTopic Considerations . 341
JMSReplyTo . 341
QoP and Per Message Encryption . 341
Durable Subscriptions . 342
Shared Subscriptions . 342
HTTP Direct . 343
Basic and SOAP . 343
Flow Control . 343

10. Guaranteeing Messages . 345
Introduction . 345
Duplicate Message Detection Overview . 346

SonicMQ Extensions to Prevent Duplicate Messages . 346
Support for Detecting Duplicate Messages . 347

Dead Message Queue Overview . 347
What Is an Undeliverable Message? . 348
Using the Dead Message Queue . 348

Guaranteeing Delivery . 349
Enabling Dead Message Queue Features . 349

Monitoring Dead Message Queues . 349
Default DMQ Properties . 350
JMS_SonicMQ Message Properties Used for DMQ . 351
Setting the Message Property to Preserve If Undelivered . 352

Handling Undelivered Messages . 353
Sample Scenarios in Handling Dead Messages . 354

Preserving Expired Messages and Throwing an Admin Notice 354
Using High Priority and Throwing an Admin Notice . 354

What To Do When the Dead Message Queue Fills Up . 355
Undelivered Messages Due to Expired TTL . 355

Specifying a Destination for Undelivered Messages . 356
How to Specify an Undelivered Destination . 356

JMS_SonicMQ_destinationUndelivered Message Property 357
Changes to JMS Headers . 359
Message Properties for Undelivered Destinations . 359
Undelivered Messages and Message Expiration . 360

Failure to Forward Undelivered Messages to the Undelivered Destination 360
Publish Permission Check . 361
Undelivered Message Notifications . 361
Undelivered Destinations for DRA Messages . 362

Undelivered Destinations Without a Node Name . 362
Undelivered Destinations With a Node Name . 362
Required Routing Definitions . 363

Undelivered Message Reason Codes . 363
Aurea Software, Inc. Confidential 19 Copyright © 2013 Aurea, Inc.

Contents
11. Recoverable File Channels . 369
About Recoverable File Channels for Large Messages . 369

Forwarding the Header Message . 370
Global Queues . 371

Dynamic Routing Architecture . 371
Semantics of File Fragmentation, Transfer, and Recovery . 371

Classes and Interfaces for Large Message Transfers . 373
ChannelListener . 377
Channel Status . 378

General Procedure for Large Message Transfers . 380
Creating a Recoverable File Channel . 381
Recovering an Interrupted Transfer . 382

Patterns for Recovery . 383
Duplicate Detection for File Transfers . 385
Security on File Transfers . 386
Using Multiple File Channels . 387
Exception Handling for File Channels . 387
Log Files . 388

Tips and Techniques for Using File Channels . 389

12. SonicStream API . 391
About the SonicStream API . 391
Common SonicStreamFactory Semantics . 393

Constructors . 393
Methods . 393

StreamTopic . 393
ApplicationName . 393
NotificationTopic . 393

SonicStream Interface . 394
Stream Publisher Semantics . 394

SonicStreamFactory . 395
SegmentSize . 395
DeliveryMode . 395

SonicOutputStreamController Interface . 396
StreamStatus Interface . 396

Stream Subscriber Semantics . 397
SonicStreamFactory . 397

setDeliveryMode . 397
setReadAheadWindowSize . 397
setSegment Timeout . 398

SonicInputStreamController Interface . 398
Stream Handlers . 398
Notifications . 398

Managing Flow Control . 399
Handling Errors . 400
Samples of SonicStreams . 400

SonicStreams Sample . 401
SonicStreams Sample With Retry . 403

Console Information in an Uninterrupted Transfer . 404
Experimenting with Interruptions . 406
Console Information in an Transfer Where the Receiver is Interrupted 406
Console Information in an Transfer Where the Sender is Interrupted 407
Console Information in an Transfer Where the Broker is Interrupted 409
Aurea Software, Inc. Confidential 20 Copyright © 2013 Aurea, Inc.

Contents
13. Hierarchical Name Spaces . 411
About Hierarchical Name Spaces . 411

Advantages of Hierarchical Name Spaces . 412
Publishing a Message to a Topic . 413

Topic Notation that Enables Topic Hierarchies . 413
Reserved Characters When Publishing . 413
Topic Structure, Syntax, and Semantics . 414
Topic Syntax and Semantics . 414

Broker Management of Topic Hierarchies . 414
Subscribing to Nodes in the Topic Hierarchy . 415

Template Characters . 415
Using Template Characters in Symmetric Hierarchies . 416
Using Template Characters in Asymmetric Topic Hierarchies 417
Template Character for Subscribing to All Topics . 418
Template Character for All Topics Under a Topic Hierarchy 418
Template Character for All Topics Above a Topic Hierarchy 419
Multiple Template Characters in an Expression . 419

Examples of a Topic Name Space . 420
Publishing Messages to a Hierarchical Topic . 420
Subscribing to Sets of Hierarchical Topics . 421

14. Distributed Transactions Using XA ResourcSes . 423
About Distributed Transactions . 423

General Properties of a Transaction . 424
Transaction Types . 424

Local Transaction . 424
Global Transaction . 424

Components of Distributed Transactions . 424
Using XA Resources . 425

Interfaces for Distributed Transactions . 427
javax.transaction.xa Interfaces . 427
JMS XA SPI Interface . 428

XAConnectionFactory . 428
XAConnection . 428
XASession . 429

In-doubt Global Transactions . 429
SonicMQ Can Complete In-doubt Transaction Branches . 430
Access Control Group for Transaction Administrators . 430
Transaction Recovery . 430

Example 1: TMNOFLAGS . 431
Example 2: TMSTARTRSCAN Then TMNOFLAGS . 431
Example 3: TMSTARTRSCAN Already Called . 431
Example 4: Orphaned Branches . 431

Distributed Transactions Models . 432
SonicMQ Integrated with an Application Server . 432

Sample Code: Global Transaction When Integrated With Application Server 432
SonicMQ Directly Used with a Transaction Manager . 433

Sample Code: Global Transaction Using Transaction Manager 434
SonicMQ Performing DTP Without a Transaction Manager . 435

Sample Code: Global Transaction Without Transaction Manager 436
Running the Distributed Transaction Sample . 438

A. Using the Sonic JNDI SPI . 443
Overview of the JNDI SPI . 443
Sonic JNDI SPI Samples . 447
Aurea Software, Inc. Confidential 21 Copyright © 2013 Aurea, Inc.

Contents
Java JNDI SPI Sample . 447
JavaScript JNDI API Samples . 449

B. Using Client Tracing Logs . 451
Overview of SonicMQ JMS API Tracing . 451
Enabling JMS Tracing . 452
Trace Levels . 452

Setting the Trace Level in Applications . 453
Exploring Tracing in the SonicMQ Sample Applications . 453

Using Tracing in the Sample Application Chat . 453
No Tracing (and Tracing Level 0) . 454
Exception Tracing . 454
Entry Tracing . 455
Instance, Argument and Exit Tracing . 455

Index . 459
Aurea Software, Inc. Confidential 22 Copyright © 2013 Aurea, Inc.

Preface

About This Guide
SonicMQ is a fast, flexible, and scalable messaging environment that makes it easy to
develop, configure, deploy, manage, and integrate distributed enterprise applications.

SonicMQ is a complete implementation of the Java Message Service specification Version
1.1, an API for accessing enterprise messaging systems from Java programs.

This book provides the information a Java software developer needs to use the application
program interfaces to create SonicMQ client applications.

The sample software provided in source form on the SonicMQ media is the basis for the
discussions of features and concepts.

The SonicMQ features discussed in this programming guide are as follows:

• Chapter 1, Overview on page 29 discusses the environment and Java constructs that
can be used in messaging applications. The basic concepts in this chapter set the
groundwork for understanding how to build efficient applications. The service and
protection features in SonicMQ are presented in a tabular form with references to
other chapters and other books for implementation details.

• Chapter 2, Using the JMS Test Client on page 45 describes how to use the JMS Test
Client to examine both Publish and Subscribe and Point-to-point messaging.
Aurea Software, Inc. Confidential 23 Copyright © 2013 Aurea, Inc.

Preface
• Chapter 3, Examining the SonicMQ JMS Samples on page 65 takes an in-depth tour
through the console-based code samples introduced in the Getting Started with Aurea
SonicMQ manual, focusing on the programming functions and features used.

• Chapter 4, SonicMQ Connections on page 131 explores protocols, connection
factories, connections. The identifiers and parameters of connections are presented.
The techniques for direct creation of factories are contrasted to the ways that
administered objects can be used in serialized Java objects and LDAP lookup through
JNDI on the built-in or external LDAP stores.

• Chapter 5, SonicMQ Client Sessions on page 205 explores sessions. The concepts
and implementation of the transacted session and transactions are also presented.
This chapter also discusses the flow control, client persistence, and integration with
application servers.

• Chapter 6, Messages on page 231 examines the detailed composition of a message
to learn what is required to construct a message, how the data populates the
message, and how to manipulate messages. Also describes the XML message and
Multipart message.

• Chapter 7, Message Producers and Consumers on page 261 describes the scope of
the session objects that produce messages and the session objects that listen,
receive, and consume messages.

• Chapter 8, Point-to-point Messaging on page 283 explains the use of server-managed
queues and discusses the similarities and differences between the Point-to-point
Publish and Subscribe messaging models.

• Chapter 9, Publish and Subscribe Messaging on page 307 explains the characteristics
unique to the broadcast type of messaging, Publish and Subscribe. Durable
subscriptions, request-reply mechanisms, message selector semantics, and message
listeners as well as advanced features such as remote publishing, shared
subscriptions, and multi-topics are presented in depth.

• Chapter 10, Guaranteeing Messages on page 345 describes duplicate message
prevention and guaranteed message delivery. The first part of this chapter explains
how you can detect duplicate messages and prevent messages from being delivered
more than once. The second part of the chapter provides information about how you
can use the SonicMQ Dead Message Queue (DMQ) features to guarantee that
messages will not be discarded until a client has processed them.

• Chapter 11, Recoverable File Channels on page 369 describes the Point-to-point
feature that provides fully recoverable transfers of files between peers through
SonicMQ brokers and common global queues.

• Chapter 12, SonicStream API on page 391 describes this API lets you send streams
of data to interested applications, using SonicMQ as the transport mechanism.

• Chapter 13, Hierarchical Name Spaces on page 411 explains SonicMQ’s topic
hierarchies and how they can be used to streamline access to data.

• Chapter 14, Distributed Transactions Using XA ResourcSes on page 423 explains
distributed transaction processing, and presents several distributed transaction
models and describes how to run the distributed transaction sample.
Aurea Software, Inc. Confidential 24 Copyright © 2013 Aurea, Inc.

Preface
Typographical Conventions
This section describes the text-formatting conventions used in this guide and a
description of notes, warnings, and important messages. This guide uses the following
typographical conventions:

• Bold typeface in this font indicates keyboard key names (such as Tab or Enter) and
the names of windows, menu commands, buttons, and other Sonic user-interface
elements. For example, “From the File menu, choose Open.”

• Bold typeface in this font emphasizes new terms when they are introduced.

• Monospace typeface indicates text that might appear on a computer screen other
than the names of Sonic user-interface elements, including:

• Code examples and code text that the user must enter

• System output such as responses and error messages

• Filenames, pathnames, and software component names, such as method
names

• Bold monospace typeface emphasizes text that would otherwise appear in
monospace typeface to emphasize some computer input or output in context.

• Monospace typeface in italics or Bold monospace typeface in italics
(depending on context) indicates variables or placeholders for values you supply or
that might vary from one case to another.

This manual uses the following syntax notation conventions:

• Brackets ([]) in syntax statements indicate parameters that are optional.

• Braces ({ }) indicate that one (and only one) of the enclosed items is required. A
vertical bar (|) separates the alternative selections.

• Ellipses (...) indicate that you can choose one or more of the preceding items.

This guide highlights special kinds of information by shading the information area, and
indicating the type of alert in the left margin.

Note: A Note flag indicates information that complements the main text flow. Such
information is especially helpful for understanding the concept or procedure
being discussed.

Important: An Important flag indicates information that must be acted upon within the
given context to successfully complete the procedure or task.

Warning: A Warning flag indicates information that can cause loss of data or other
damage if ignored.
Aurea Software, Inc. Confidential 25 Copyright © 2013 Aurea, Inc.

Preface
Aurea Sonic Documentation
Sonic installations always have a welcome page that provides links to Sonic
documentation, release notes, communities, and support. See the release’s Product
Update Bulletin book to see what’s new and what’s changed since prior releases.

The Sonic documentation set includes the following books and API references.

SonicMQ Documentation

SonicMQ installations provide the following documentation:

• Aurea Sonic Installation and Upgrade Guide — The essential guide for installing,
upgrading, and updating SonicMQ on distributed systems, using the graphical,
console or silent installers, and scripted responses. Describes on-site tasks such as
defining additional components that use the resources of an installation, defining a
backup broker, creating activation daemons and encrypting local files. Also describes
the use of characters and provides local troubleshooting tips.

• Getting Started with Aurea SonicMQ — Provides an introduction to the scope and
concepts of SonicMQ messaging. Describes the features and benefits of SonicMQ
messaging in terms of its adherence to the JavaSoft JMS specification and its rich
extensions. Provides step by step instructions for sample programs that demonstrate
JMS behaviors and usage scenarios. Concludes with a glossary of terms used
throughout the SonicMQ documentation set.

• Aurea SonicMQ Configuration and Management Guide — Describes the configuration
toolset for objects in a domain. Also shows how to use the JNDI store for administered
objects, how integration with Progerss Actional is implemented, and how to use JSR
160 compliant consoles. Shows how to manage and monitor deployed components
including metrics and notifications.

• Aurea SonicMQ Deployment Guide — Describes how to architect components in
broker clusters, the Sonic Continuous Availability Architecture™ and Dynamic Routing
Architecture®. Shows how to use the protocols and security options that make your
deployment a resilient, efficient, controlled structure. Covers all the facets of HTTP
Direct, a Sonic technique that enables SonicMQ brokers to send and receive pure
HTTP messages.

• Aurea SonicMQ Administrative Programming Guide — Shows how to create
applications that perform management, configuration, runtime and authentication
functions.

• Aurea SonicMQ Application Programming Guide— Takes you through the Java
sample applications to describe the design patterns they offer for your applications.
Details each facet of the client functionality: connections, sessions, transactions,
producers and consumers, destinations, messaging models, message types and
message elements. Complete information is included on hierarchical namespaces,
recoverable file channels and distributed transactions.

• Aurea SonicMQ Performance Tuning Guide — Illustrates the buffers and caches that
control message flow and capacities to help you understand how combinations of
parameters can improve both throughput and service levels. Shows how to tune TCP
under Windows and Linux for the Sonic Continuous Availability Architecture™.
Aurea Software, Inc. Confidential 26 Copyright © 2013 Aurea, Inc.

Preface
• SonicMQ API Reference — Online JavaDoc compilation of the exposed SonicMQ
Java messaging client APIs.

• Management Application API Reference — Online JavaDoc compilation of the
exposed SonicMQ management configuration and runtime APIs.

• Metrics and Notifications API Reference — Online JavaDoc of the exposed SonicMQ
management monitoring APIs.

• Aurea Sonic Event Monitor User’s Guide — Packaged with the SonicMQ installer, this
guide describes the aurea Sonic logging framework to track, record or redirect metrics
and notifications that monitor and manage applications.

Other Documentation in the SonicMQ Product
Family

The Aurea Sonic download site provides access to additional client and JCA adapter
products and documentation:

• Aurea SonicMQ .NET Client Guide — Packaged with the SonicMQ .NET client
download, this guide takes you through the C# sample applications and describes the
design patterns they offer for your applications. Details each facet of the client
functionality: connections, sessions, transactions, producers and consumers,
destinations, messaging models, message types and message elements. Includes
complete information on hierarchical namespaces and distributed transactions. The
package also includes online API reference for the Sonic .NET client libraries, and
samples for C++ and VB.NET.

• Aurea SonicMQ C Client Guide — Packaged with the SonicMQ C/C++/COM client
download, this guide presents the C sample applications and shows how to enhance
the samples, focusing on connections, sessions, messages, producers and
consumers in both the point-to-point and publish/subscribe messaging models.
Provides tips and techniques for C programmers and gives detailed information about
using XA resources for distributed transactions. The package also includes online API
reference for the SonicMQ C client.

• Aurea SonicMQ C++ Client Guide — Packaged with the SonicMQ C/C++/COM client
download, this guide presents the C++ sample applications and shows how to
enhance the samples, focusing on connections, sessions, messages, producers and
consumers in both the point-to-point and publish/subscribe messaging models.
Provides tips and techniques for C++ programmers and gives detailed information
about using XA resources for distributed transactions. The package also includes
online API reference for the SonicMQ C++ client.

• Aurea SonicMQ COM Client Guide — Packaged with the SonicMQ C/C++/COM client
download for Windows, this guide presents the COM sample applications under ASP,
and Visual C++. Shows how to enhance the samples, focusing on connections,
sessions, messages, producers and consumers in both the point-to-point and
publish/subscribe messaging models. Provides tips and techniques for COM
programmers. The package also includes online API reference for the SonicMQ COM
client.
Aurea Software, Inc. Confidential 27 Copyright © 2013 Aurea, Inc.

Preface
• Aurea SonicMQ 2013 Resource Adapter for JCA User’s Guide for WebSphere —
Packaged with this JCA adapter in a separate download, this guide describes the
Sonic Resource Adapter for JCA and using it with a WebSphere application server.

• Aurea SonicMQ 2013 Resource Adapter for JCA User’s Guide for Weblogic —
Packaged with this JCA adapter in a separate download, this guide describes the
Sonic Resource Adapter for JCA and using it with a Weblogic application server.

• Aurea SonicMQ 2013 Resource Adapter for JCA User’s Guide for JBoss — Packaged
with this JCA adapter in a separate download, this guide describes the Sonic
Resource Adapter for JCA and using it with a JBoss application server.

Worldwide Technical Support
aurea Software’s support staff can provide assistance from the resources on their Web site
at www.aurea.com/sonic. There you can access technical support for licensed aurea
Sonic products to help you resolve technical problems that you encounter when installing
or using Aurea Sonic products

When contacting Technical Support, please provide the following information:

• The release version number and serial number of SonicMQ that you are using. This
information is listed on the license addendum. It is also at the top of the SonicMQ
Broker console window and might appear as follows:

SonicMQ Continuous Availability Edition [Serial Number nnnnnnn]

Release nnn Build Number nnn Protocol nnn

• The release version number and serial number of Sonic ESB that you are using. This
information is listed on the license addendum. It is also near the top of the console
window for a Sonic ESB Container. For example:

Sonic ESB Continuous Availability Edition [Serial Number:
nnnnnnn]

Release nnn Build Number nnn

• The platform on which you are running Aurea Sonic products, and any other relevant
environment information.

• The Java Virtual Machine (JVM) your installation uses.

• Your name and, if applicable, your company name.

• E-mail address, telephone, and fax numbers for contacting you.
Aurea Software, Inc. Confidential 28 Copyright © 2013 Aurea, Inc.

http://www.aurea.com/sonic

1
Overview

SonicMQ is aurea Software Corporation’s implementation of Sun’s Java Message Service
(JMS) specification that expedites development and deployment of an efficient, secure, and
scalable messaging system for business-to-business, networked, and internal integrated
applications. SonicMQ makes it possible for organizations to efficiently (and reliably)
communicate between disparate business systems over the Internet and meet their
time-to-market requirements by delivering the following features:

• Internet-resilient business messaging

• High performance messaging infrastructure

• Reliable transmission of messages regardless of network, hardware, or application
failure

• Messaging topologies that support complex deployments distributed across
geographic and system boundaries:

• Dynamic Routing Architecture (DRA) to publish and subscribe to remote nodes

• Clusterwide access to global queues and durable subscriptions

• Load-balanced subscriptions

• Centralized management environment that allows all components of the SonicMQ
messaging infrastructure to be quickly and easily administered and monitored from a
central location:

• SonicMQ’s JMX-based administration environment works across routing nodes

• Manage and administer collections of brokers as a group

• Fault tolerance is managed through local persisted configuration cache

• A JNDI store is provided for administered objects
Aurea Software, Inc. Confidential 29 Copyright © 2013 Aurea, Inc.

Chapter 1: Overview
• SonicMQ provides secure data transmission and controlled access with:

• Pluggable cipher suites for Quality of Protection (QoP)

• Pluggable client authentication

• Option to use LDAP as the repository of user names and passwords

• Flexibility in configuring the messaging infrastructure:

• Clients can be moved around the network without requiring any changes to the
messaging application

• Support for XML message types in addition to the JMS types

• Option to establish persistence on the client message producer

• Peer-to-peer file transfers over recoverable file channels

• Ease-of-use features make SonicMQ an environment that can be easily learned and
deployed

Java Message Service
The Java Message Service (JMS) Version 1.0.2b specification describes portable, efficient
standards for a powerful, extensible messaging service. The JMS specification pointedly
leaves some functionality—such as load balancing, fault tolerance, error notification,
administration, security, wire protocol, and message repository—to the provider of the
messaging server. SonicMQ implements this functionality and provides a level of
abstraction to developers, who can concentrate on creating business logic.

JMS: Key Component of the Java Platform for
the Enterprise

Sun Microsystems announced a plan in early 1997 to deliver nine Java APIs that would
enable a vendor-neutral computing infrastructure capable of integrating Java with virtually
every significant enterprise computing service.

JMS would provide asynchronous communications to avoid the problems synchronous
communications—such as RMI and CORBA—were experiencing in the uncontrollable
Internet environment. Javasoft provided a reference implementation in late 1998, noting
that implementers of the JMS specification would need to match the security, reliability,
fault-tolerance, and manageability of existing mainframe messaging services before
enterprise acceptance would be considered. At the 1.3 release of the Java 2 Enterprise

Edition platform, the JMS API is an integral part of the platform. JMS is a strategic
technology for J2EE. JMS will work in concert with other technologies to provide reliable,
asynchronous communication between components in a distributed computing
environment. The JMS specification notes that it does not address load balancing, fault
tolerance, error notification, administration, security, and repositories.
Aurea Software, Inc. Confidential 30 Copyright © 2013 Aurea, Inc.

Programming Concepts
JMS Version 1.1 Specification

In April, 2002, Sun introduced Version 1.1 of the JMS specification. The main enhancement
in this specification is the refactoring of interfaces to support “domain unification.” In JMS
1.02b, there was a strong distinction between the Point-to-Point and Pub/Sub messaging
models (referred to as messaging domains in the JMS 1.1 specification), each requiring
its own set of interfaces. One consequence of this separation was that a single transaction
could not include both Point-to-Point and Pub/Sub messages. In JMS Version 1.1, this
constraint has been removed, and it is now possible to include messages from both models
in a single transaction.

The JMS 1.1 specification describes a common set of interfaces that can be used for both
messaging models. Because of this, applications written to the JMS 1.1 API can safely
ignore interfaces that were previously required. The reduced number of interfaces
simplifies application code. It can also eliminate redundant code.

JMS Version 1.1 is fully backwards compatible with JMS Version 1.02b. Client code that
conforms to the JMS 1.02b specification also conforms to the JMS 1.1 specification.

Java Development Environment

SonicMQ is delivered with a Java run-time environment (JRE) consisting of a Java Virtual
Machine (JVM) that is sufficient to support the Java-based installer and the demonstration
of SonicMQ samples running against an embedded persistent storage mechanism.

Important: The installable JVM might not be appropriate on every platform. See the
SonicMQ Release Notes in the docs folder of your SonicMQ installation to get
detailed information about the JVM that is appropriate for your platform,
operating system, persistent storage mechanism, and toolset

Programming Concepts
The design of SonicMQ provides full implementation of the Java Message Service (JMS)
specification with additional features that comprise a solution that is resilient enough for
Internet E-commerce in major enterprises.

Messaging involves the loose coupling of applications. This is accomplished by maintaining
an intelligent broker structure. A client can establish one or more connections to a broker.

Clients Connect to the SonicMQ Broker

In Figure 1, SonicMQ’s hub-and-spoke architecture considers every entity in the
messaging service topology to be a client except the broker—the entity to which every
client connects and through which all clients exchange messages.
Aurea Software, Inc. Confidential 31 Copyright © 2013 Aurea, Inc.

Chapter 1: Overview
The SonicMQ communication layer abstracts developers from the plumbing of the
underlying network, freeing them to concentrate on constructing business logic in Java
applications.

Figure 1: Broker Is a Hub for SonicMQ Client Applications

The broker can join with other brokers to form clusters. Clusters and stand-alone brokers
are nearly equivalent when looked at as routing nodes.

SonicMQ Is a JMS Provider

The components that are needed to implement and manage a JMS application are supplied
by the JMS provider. This includes, as shown in Figure 2, the JMS Client API and the
SonicMQ Client Run Time accessed from within the client application, the communications
layer between the client and the broker architecture—repositories (message, security, and
configuration), and administrative tools for managing clusters, security, administered
objects, and the brokers.

BrokerClient
Application

F

Client
Application

C

Client
Application

A

Client
Application

B

Client
Application

E

Client
Application

D

Aurea Software, Inc. Confidential 32 Copyright © 2013 Aurea, Inc.

Programming Concepts
Figure 2: Client Application Using the SonicMQ JMS Provider

SonicMQ Messaging Models

There are two messaging models in SonicMQ:

• Point-to-point (PTP) — In this model, the producer of a message sends a message
to a specified static queue at a broker. While many prospective recipients could be
listening to or even browsing the queue, when a receiver elects to accept a queued
message, the message is considered delivered. No other recipient will thereafter be
able to access that message. PTP is a one-to-one form of communication.

• Publish and Subscribe (Pub/Sub) — In this model, the producer of a message
sends the message to a specified topic at the broker. Pub/Sub is referred to as
one-to-many or broadcast because there could be zero to many subscribers for a
given topic who will each receive the one message that was sent.

JMS Version 1.1 Unification of Messaging
Models

Prior to JMS Version 1.1, the Point-to-Point and Pub/Sub messaging models were kept
separate, and each model required its own set of interfaces. Although the model-specific
interfaces extended a common base set of interfaces, it was impossible to use the common
interfaces to implement functionality that was specific to either model. The common
interfaces and their model-specific extensions are shown in Table 1.

Client Application

JMS Client API

SonicMQ Client
Run Time

C
O
N
N
E
C
T
I
O
N

Broker

S
E
S
S
I
O
N

JMS Provider

Table 1: Common and Model-Specific Interfaces

Common Point-to-Point Pub/Sub

Connection QueueConnection TopicConnection

ConnectionFyactory QueueConnectionFactory TopicConnectionFactory

Destination Queue Topic

MessageConsumer QueueReceiver TopicSubscriber

MessageProducer QueueSender TopicPublisher

Session QueueSession TopicSession
Aurea Software, Inc. Confidential 33 Copyright © 2013 Aurea, Inc.

Chapter 1: Overview
In JMS Version 1.1, the common interfaces were enhanced, allowing application
programmers to use the common interfaces to directly implement model-specific
functionality, rather than using the model-specific interfaces. These enhancements provide
two important benefits:

• A single transaction can now include Point-to-Point and Pub/Sub messages.

• The JMS programming model is simplified. Application programmers can now focus
on the common interfaces, without being forced to use two model-specific interfaces.
Also, if a single application requires both Point-to-Point and Pub/Sub functionality, the
application programmer is no longer forced to create redundant code.

Although the JMS 1.1 common interfaces effectively replace many of the model-specific
interfaces, the model-specific interfaces continue to be fully supported. This makes the
JMS 1.1 API fully backwards compatible. Any JMS application written before JMS 1.1
will continue to work as expected.

Despite the fact that the model-specific interfaces continue to be supported, the JMS 1.1
specification states that some interfaces might be deprecated in the future. Consequently,
if you are developing new JMS client applications, it is recommended that, wherever
possible, you use the common interfaces in place of the older model-specific interfaces.

SonicMQ Object Model

Figure 3 shows the SonicMQ object model.

Figure 3: SonicMQ Object Model

ConnectionFactory

Connection

Session

MessageProducer MessageConsumer

Message

Creates

Creates

Creates

CreatesCreates

Destination
(Queue or Topic)

Sends Messages To Receives Messages From

Destination
(Queue or Topic)
Aurea Software, Inc. Confidential 34 Copyright © 2013 Aurea, Inc.

Programming Concepts
ConnectionFactory

A ConnectionFactory is an object whose job is to create one or more Connection objects,
each of which establishes a connection to a SonicMQ broker (or cluster). A
ConnectionFactory can be implemented as an administered object.

Connection

A Connection is a conduit for communication between your client application and a
SonicMQ broker (or cluster). Each Connection is a single point for all communications
between the client application and the broker.

Session

A Connection can create one or more Session objects. A Session object is a
single-threaded context for producing and consuming messages. A Session object can
create Message objects, MessageProducer objects (which send outbound messages), and
MessageConsumer objects (which receive inbound messages). Each MessageProducer and
MessageConsumer object operates in the context of the Session that created it.

Transactions are scoped to Session objects. Starting in JMS 1.1, a transaction can include
both Point-to-Point and Pub/Sub messages.

MessageConsumer and MessageProducer

A Session creates MessageProducer and MessageConsumer objects. The main responsibility
of a MessageProducer object is to send messages from your client application to
destinations on the broker. The main responsibility of a MessageConsumer object is to
receive messages from a destination on the broker, either synchronously (via the
receive() method) or asynchronously (via a MessageListener object).

The general terms consumer and producer are used to refer, respectively, to entities that
receive and send messages. Figure 4 illustrates the roles of producers and consumers.

Figure 4: Message Producers and Message Consumers

CONSUMER subscribes, receives

PRODUCER publishes, sends

Messages Broker

C
O
N
N
E
C
T
I
O
N

S
E
S
S
I
O
N

Aurea Software, Inc. Confidential 35 Copyright © 2013 Aurea, Inc.

Chapter 1: Overview
The client application is the producer when:

• Sending a message to a queue (PTP)

• Publishing a message to a topic (Pub/Sub)

The client application is the consumer when:

• Receiving messages from a queue (PTP)

• Subscribing to a topic (Pub/Sub) where messages are published

A single Session object can create both MessageProducer and MessageConsumer objects.

To learn about the broker architecture and functionality, see the Aurea SonicMQ
Deployment Guide.

Destination

A Destination object represents a named location to which messages can be sent. A
Destination must be either a Topic or a Queue (both of which extend the Destination
interface). A Destination can be implemented as an administered object.

When you write an application using the JMS 1.1 common interfaces, you can use the
same interfaces for both messaging models, but you cannot create a “common”
Destination object. You create either a Topic or a Queue, which you can then upcast to a
Destination, if needed.

Message

A Message object holds your business data. For more information about messages, see
Chapter 6, Messages on page 231

Quality of Service and Protection
Some messages are simple and transitory, and they are broadcast to prospective
recipients who might or might not be paying attention. These messages might contain
information that is timely and important but not particularly confidential. An example is stock
quotes. The data is public information that is considered valuable when it is disseminated
promptly and verifiable when significant risk might be associated with the information it
carries. Here, performance takes precedence.

Messages that represent the other extreme, where the anticipated services and protection
are paramount, include bank wire transfers where encryption, security, and logging
processes are an integral part of mutually assured confidence in the message.
Communication that is certifiable, auditable, consistent, and fully credentialed provides the
quality of service and the quality of protection that is expected. Performance is important,
but not as an alternative to quality.

All the SonicMQ message services and protection are available to both the PTP and
Pub/Sub messaging models.
Aurea Software, Inc. Confidential 36 Copyright © 2013 Aurea, Inc.

Quality of Service and Protection
The services and protection that are described in this guide—together with some of the
services controlled by the broker’s administrator—can be found in Table 2.

Table 2: Services and Protection Available in SonicMQ Messaging

Service Technique Process Reference

ENCRYPTED

Content is encrypted.

Independent
encryption
mechanisms.

Body is appended after it
has been encrypted,
providing assurance that
a message is protected
even if the connection is
insecure.

Private encryption
methods can be applied
before the message is
presented to the
messaging-enabled
application.

SECURE TRANSPORT

Protocol is secure.

Connection
protocol
parameter.

Parameter is set when
creating connection.

See Chapter 4,
SonicMQ Connections
on page 131 for
information about
choosing protocols.

AUTHENTIC
PRODUCER

Producer is accepted by
the broker’s
authentication domain.

Security enforced
through
authentication of
user name and
password at time
of connection.

If the installation enabled
security, the
administrator sets up
users and passwords in
the broker’s
authentication domain.

See the Aurea SonicMQ
Deployment Guide for
information about
authentication and
authorization of
producers (PTP senders
and Pub/Sub publishers)
and Access Control Lists
(ACLs).

AUTHORIZED
PRODUCER

Producer has
permission to produce
and is authorized to
produce to specified
destination.

Security enforced
through Access
Control Lists
(ACLs).

If the installation enabled
security, the
administrator sets up
permissions in the
broker’s authorization
policy to produce to
specific hierarchies of
destinations and
routings.

ACKNOWLEDGED
PRODUCER

Broker acknowledges
receipt of messages
from producer.

Synchronous block
released after
receipt at broker.

Automatic when sending
a message unless
specifically designated
as in
NON_PERSISTENT_A
SYNC
acknowledgement mode
Aurea Software, Inc. Confidential 37 Copyright © 2013 Aurea, Inc.

Chapter 1: Overview
INTEGRITY

When a destination has
a QoP setting that
indicates integrity, a
message producer
creates a digest that the
broker confirms. The
broker recreates the
message digest for the
message consumer who
then confirms it.

The message
content is hashed
and the digest of
the result
accompanies the
message.

Administrative Quality of
Protection (QoP) setting
on destination is
integrity.

Also implicitly set when a
sender chooses
per-message
encryption.

See the Aurea SonicMQ
Configuration and
Management Guide and
the Aurea SonicMQ
Deployment Guide for
information about
administrator settings for
integrity and privacy.
Note also information
about how the installed
cipher suites for QoP
encryption can be
customized.

The privacy setting can
be explicitly requested
by a message producer
to a security-enabled
broker. See Per
Message Encryption on
page 254.

PRIVACY

When a destination has
a QoP setting that
indicates privacy, a
message producer
encrypts a message
then creates its digest.
The broker confirms the
digest and decrypts the
message. The broker
reencrypts the message
and then recreates the
message digest for the
message consumer.

The message is
encrypted with the
cipher suite
preferred by the
broker and then
the message
content is hashed
and the digest of
the result
accompanies the
encrypted
message

Administrative Quality of
Protection (QoP) setting
on destination is privacy
or message producer
explicitly requests
privacy.

Setting privacy includes
the services of integrity.

PERSISTENT

Message persists in
broker storage.

Delivery mode
uses the
PERSISTENT
option.

Set option in publish or
send command. The
broker never allows
messages to be lost in
the event of a network or
system failure.
Nonpersistent
messages are volatile in
the event of a broker
failure.

REDELIVERY

Consumer might receive
unacknowledged
message again.

Broker sets
JMSRedelivered
field to true when
service is
interrupted while
waiting for a
consumer
acknowledgement.

Must be checked and
acted on by the
consumer. For the
message producer, this
header field has no
meaning and is left
unassigned by the
sending method.

See Recover on
page 208.

Table 2: Services and Protection Available in SonicMQ Messaging

Service Technique Process Reference
Aurea Software, Inc. Confidential 38 Copyright © 2013 Aurea, Inc.

Quality of Service and Protection
DURABLE INTEREST

Pub/Sub consumers,
Subscribers, can
establish a durable
interest in a topic with a
broker.

An application
uses the session
method create-
DurableSubscriber
with the
parameters topic,
subscriptionName,
messageSelector,
and a noLocal
option.

Broker retains messages
for durable subscriber,
using the userName,
and clientID of the
connection plus the
subscriptionName to
index the subscription.

Note that
NON_PERSISTENT
messages are still at risk
in the event of broker
failure. Note also that
messages expire
normally even if durable
subscriptions are
unfulfilled.

See Reliable, Persistent,
and Durable Messaging
Samples on page 95.
See also Durable
Subscriptions on
page 313.

PRIORITY

Messages sent with
higher priority can be
expedited.

Producer sets the
message header
value JMSPriority
to an int value 0
through 9 where 4
is the default.

Broker checks message
priority and handles
appropriately. Priority
values of 5 through 9 are
expedited.

See Message
Management by the
Broker on page 267.

EXPIRATION

Messages are available
until the expiration time.

Based on GMT.

Producer sets
time-to-live value,
then includes the
value at moment of
publish/send.

Broker receives
message with
JMSExpiration date-time
set to the
JMSTimestamp
date-time plus the
time-to-live value.

See Create the Message
Type and Set Its Body on
page 265.

See also Message
Management by the
Broker on page 267.

REQUEST
MECHANISM

Producer can request a
reply from the
consumer.

Message header
field JMSReplyTo
has a string value
that indicates the
topic where a reply
is expected. The
JMSCorrelationID
can indicate a
reference string
whose uniqueness
is managed by the
producer.

Carried through to
consumer, but the
consumer application
must be coded to look at
the JMSReplyTo field
and then act.

Producer could be
synchronously blocked
waiting for reply
message at temporary
topic.

TopicRequestor object
creates a temporary
topic for the reply.

See Request and Reply
Samples on page 112.

See also Session
Objects on page 212
and Reply-to
Mechanisms on
page 279.

Table 2: Services and Protection Available in SonicMQ Messaging

Service Technique Process Reference
Aurea Software, Inc. Confidential 39 Copyright © 2013 Aurea, Inc.

Chapter 1: Overview
AUTHENTIC
CONSUMER

Consumer is accepted
by the broker’s
authentication domain.

Security enforced
through
authentication of
username and
password at time
of connection.

If the installation enabled
security, the
administrator sets up
users and passwords in
the broker’s
authentication domain.

See the Aurea SonicMQ
Deployment Guide for
more about
authentication and
authorization of
consumers (PTP
receivers and Pub/Sub
subscribers) and Access
Control Lists (ACLs).

AUTHORIZED
CONSUMER

Consumer is authorized
to consume from a
specified destination.

Security enforced
through ACLs.

If the installation enabled
security, the
administrator sets up
permissions in the
broker’s authorization
policy to consume from
specific hierarchies of
destinations.

ACKNOWLEDGED
CONSUMPTION

Consumer
acknowledges receipt to
broker.

Acknowledgement
type for the
session was set
when the session
was created.

Functions automatically
to perform the specified
type of
acknowledgement for all
messages consumed in
that session.

See Acknowledgement
Mode on page 207.

Client acknowledges
receipt of received
messages when session
parameter is
CLIENT_ACKNOWLED
GE or
SINGLE_MESSAGE_A
CKNOWLEDGE then
when client calls
acknowledge().

Explicit call by
consumer.

Manual.

Table 2: Services and Protection Available in SonicMQ Messaging

Service Technique Process Reference
Aurea Software, Inc. Confidential 40 Copyright © 2013 Aurea, Inc.

Clients
Clients
The techniques and interfaces described in this book describe the methods and design
patterns for running SonicMQ in a console session. There are several client types that all
provide JMS client functionality.

Java Client

SonicMQ clients are a set of Java archives that provide libraries of functionality that enable
applets, proxy servers, servlet engines, and JavaBeans.

JMS Test Client

The SonicMQ JMS Test Client provides a graphical interface to demonstrate PTP and
Pub/Sub messaging. You can use the JMS Test Client to send messages to queues and
topics and to view the message properties and headers. See Using the JMS Test Client on
page 45 for more information.

REPLY MECHANISM

Consumer replies to the
producer’s request for
reply.

Consumer reacts
to a JMSReplyTo
request by
producing a
message to the
topic name in the
JMSReplyTo field.

Programmatic
procedure where the
consumer publishes a
reply. The content of the
reply is not specified.
Typically the
JMSCorrelationID would
be replicated.

See Request and Reply
Samples on page 112.
See also Session
Objects on page 212
and Reply-to
Mechanisms on
page 279.

DEAD MESSAGE
QUEUE

Sender/publisher can
set properties to either
or both re-enqueue
undelivered messages
and send an
administrative notice.

Set the properties
that tell the broker
to provide special
handling when the
message is
declared dead.

Programmatic
procedure where the
sender chooses to set
the property
JMS_SonicMQ
_preserveUndelivered to
true to store the dead
message until handled
and to set the property
JMS_SonicMQ_
notifyUndelivered to true
to send a notification to
the broker’s
administrator.

See Message Properties
on page 253. See also
the Dynamic Routing
information in the Aurea
SonicMQ Deployment
Guide.

Table 2: Services and Protection Available in SonicMQ Messaging

Service Technique Process Reference
Aurea Software, Inc. Confidential 41 Copyright © 2013 Aurea, Inc.

Chapter 1: Overview
HTTP Direct Protocol Handlers

HTTP Direct is a broker-based set of properties and factories that enables seamless
interfacing between the JMS message and HTTP document paradigms. Pure HTTP
documents arriving inbound on SonicMQ broker ports are transformed into JMS messages
for message production to the port's assigned destination. Outbound JMS messages to
specified SonicMQ routing nodes are transformed to HTTP documents and then sent to the
designated HTTP Web Server. HTTP Direct also has features to handle SOAP encoding
and to read JMS properties from specified HTTP fields. See the Aurea SonicMQ
Deployment Guide for more information and for samples of HTTP Direct.

Java Applet

SonicMQ can work in a Java applet running in a browser context to invoke classes that
implement JMS functionality.

.NET Client

The SonicMQ .NET Client lets you write applications in a variety of Microsoft programming
languages including C# .NET and Visual Basic .NET. The C# API enables interoperability
between .NET applications and Java applications, thereby leveraging and extending the
range of SonicMQ brokers. The C# Client includes features for fault tolerant connections,
and transactional support. It is a native .NET component with fully-managed .NET code so
that it works under the Microsoft CLR.

C/C++ Clients

SonicMQ can act as a pure C++ or pure ANSI C application on your system yet interface
with a SonicMQ broker with the same behaviors as a pure JMS client. This provides legacy
systems with integration and Web connection opportunities within the familiar operating
characteristics of C and C++.

COM Client

SonicMQ provides a COM wrapper to the C++ client so that it can enable pure COM
application on your system that interface with a SonicMQ broker with the same behaviors
as a true JMS client. Examples are provided that demonstrate use of the COM client in
Active Server Pages, Visual C++, Visual Basic, and VBScript applications.
Aurea Software, Inc. Confidential 42 Copyright © 2013 Aurea, Inc.

SonicMQ API
SonicMQ API
The SonicMQ API provides Java and SonicMQ packages containing interfaces and
methods you can use in your SonicMQ programming. The SonicMQ API documentation is
located in your SonicMQ installation directory at
MQ2013_install_root\docs\sonicmq_api. The SonicMQ API contains the following
interfaces:

• Java Extension Package:

• javax.jms

• SonicMQ Packages:

• progress.message.jclient — Contains interfaces and classes used with
SonicMQ

• progress.message.jclient.channel — Contains the RecoverableFileChannel
interface

• progress.message.xa — Contains interfaces and classes used with XA
Transactions

• com.sonicsw.stream — Contains the SonicStream interface
Aurea Software, Inc. Confidential 43 Copyright © 2013 Aurea, Inc.

Chapter 1: Overview
Aurea Software, Inc. Confidential 44 Copyright © 2013 Aurea, Inc.

2
Using the JMS Test Client

When you develop a messaging application, you want to be sure your messages have the
correct content and are delivered as expected to the correct destinations. The SonicMQ
JMS Test Client is a useful graphical tool that helps you do this. With this tool, you can
create message producers (QueueSenders and Publishers) and message consumers
(QueueReceivers and Subscribers); you can also create messages, send the messages to
selected queues and topics, and visually inspect the messages after they are delivered.
Many of the samples described in this book require you to use the JMS Test Client.

This chapter includes the following sections that describe how to use the JMS Test Client
with the PTP and Pub/Sub messaging models:

• Testing Point-to-point Messaging on page 45

• Testing Publish and Subscribe Messaging on page 53

Testing Point-to-point Messaging
Establishing a test PTP session with the JMS Test Client involves the tasks described in
these sections:

• Starting the SonicMQ Container and Broker on page 46

• Establishing a Queue Session on page 47

• Creating Queue Senders and Queue Receivers on page 48

• Sending and Receiving Messages on page 50

• Browsing Messages on a Queue on page 52
Aurea Software, Inc. Confidential 45 Copyright © 2013 Aurea, Inc.

Chapter 2: Using the JMS Test Client
Starting the SonicMQ Container and Broker

Be sure the SonicMQ container and broker are running before executing any of the JMS
Test Client samples. The following procedures explain how to start the SonicMQ container
and broker on Windows, Linux, and UNIX platforms.

Note: If this is the first time you are running SonicMQ, you should not have to set up and
initialize the storage or adjust the broker’s settings. See the Aurea Sonic
Installation and Upgrade Guide for more information.

To start the broker and container from the Windows Start menu:

Select Start > Programs > aurea > Sonic 2013> Start DomainManager.

To start the broker process from a Linux or UNIX console window:

1. In a new console window set to
install_dir/Containers/Domain1.DomainManager, type
launchcontainer.sh and press ENTER.

Important: You can minimize the console window. Closing it, however, stops the Domain
Manager.

Opening the JMS Test Client

The following procedure shows how to open the JMS Test Client.

To start the JMS Test Client from the Windows Start menu:

• Select Start > Programs > aurea > Sonic 2013> Tools > JMS Test Client

To start the JMS Test Client from a Linux or UNIX console window:

• In a new console window set to the SonicMQ install directory, enter
bin/testClient.sh.

Alternatively, open the Sonic Management Console, and select Tools > JMS Test Client.

(See Starting the SonicMQ Container and Management Console on page 70 for
information about starting the Management Console.)

The JMS Test Client windows opens.
Aurea Software, Inc. Confidential 46 Copyright © 2013 Aurea, Inc.

Testing Point-to-point Messaging
Establishing Connection to the SonicMQ
Broker

To connect the JMS Test Client to the broker:

1. In the Broker Host field, enter the information for your connection.

For example, localhost:2506.

2. In the Connect ID field, enter a unique name for your connection.

This example uses the Connect ID Test.

3. Click Connect to establish the connection, as shown in the following figure.

Establishing a Queue Session

The following procedure describes how to create a queue session in the JMS Test Client.

To create a queue session with the JMS Test Client:

1. In the left panel of the JMS Test Client window, click the node for your message broker
connection.

2. Type a unique string in the Name field and press ENTER.

This example uses the name TestSession.
Aurea Software, Inc. Confidential 47 Copyright © 2013 Aurea, Inc.

Chapter 2: Using the JMS Test Client
3. Select Queue from the Type drop-down list then click CREATE.

The session appears in the left panel with Senders, Receivers, and Browsers nodes
as shown in Figure 5.

Figure 5: Queue Session

Creating Queue Senders and Queue Receivers

The following procedure describes how to create queue senders and receivers in the JMS
Test Client. You can only create senders and receivers to established queues. See the
Aurea SonicMQ Configuration and Management Guide for information about creating and
managing queues.

To create queue senders and receivers:

1. Select the Senders node in the left panel.

The right panel displays established senders that have been started from this session
(if any) and allows you to create new senders.

2. To create a new sender, enter the name of the queue you want to send to in the Queue
field and select Create.

A node for the new sender appears under the Senders node and the name of the
queue appears in the Established Senders list.
Aurea Software, Inc. Confidential 48 Copyright © 2013 Aurea, Inc.

Testing Point-to-point Messaging
Figure 6 creates a sender to the queue SampleQ1.

Figure 6: Create a Sender to SampleQ1

Note: You can only create a sender to an existing queue. See the Aurea
SonicMQ Configuration and Management Guide for information about
viewing existing queues and creating new queues.

3. Select the Receivers node in the left panel.

The right panel displays the receivers that have been established in this session (if
any) and allows you to create new receivers.

4. To create a new receiver:

• In the Queue field, enter the name of the queue you from which want to receive
messages.

• This example creates a receiver to SampleQ1.

• Optionally, you can use the Message Selector field to set up a query against
header fields and properties to filter the available messages. See Message
Selection on page 271 for information about using message selectors.

• This example does not use a message selector.

• Click CREATE.
Aurea Software, Inc. Confidential 49 Copyright © 2013 Aurea, Inc.

Chapter 2: Using the JMS Test Client
A node for the new receiver appears under the Receivers node and the name of the
queue appears in the Established Receivers list, as shown in Figure 7.

Figure 7: Create a Receiver for SampleQ1

Note: You can only create a receiver to an existing Queue. See the Aurea
SonicMQ Configuration and Management Guide for information about
viewing existing queues and creating new queues.

5. To create additional receivers, select Clear and then repeat steps 6 through 9 of this
procedure.

With senders and receivers established, you can send and receive messages.

Sending and Receiving Messages

The following procedures describe how to send and receive messages on the queues for
which you created senders and receivers in the preceding sections.

Note: Before continuing with this section, make sure you have completed the procedures
in Creating Queue Senders and Queue Receivers on page 48.

To send messages:

1. Select a Sender in the left panel of the JMS Test Client window.

The right panel displays three tabs: Header, Properties, and Body. You can examine
the default values under these tabs. In this example, you do not need to change any
default settings or specify any message properties or body content.

2. Select Send to send the message.

The next procedure shows you how to view the message just sent to SampleQ1 on the
receiver you created for that queue.
Aurea Software, Inc. Confidential 50 Copyright © 2013 Aurea, Inc.

Testing Point-to-point Messaging
To view received messages:

1. Under the Receivers node in the left panel, select the receiver for the queue to which
you sent your message (in this example, SampleQ1).

The right panel displays the messages sent to this receiver. In this example, one
message is displayed in the Received Messages area.

2. Select the message displayed in the Received Messages area.

The Header, Properties, and Body tabs in the lower right panel contain information for
the received message, as shown in Figure 8.

Figure 8: Received Messages

3. To delete one or more messages without acknowledging them, select the messages
and click Delete.

4. To explicitly acknowledge one or more messages, select the messages and click
Acknowledge.

An acknowledgement is sent back to the broker if the session was established in
Client Acknowledged mode. (Messages can also be automatically acknowledged,
depending on how the session was established.)

Note: By default, the number of viewable messages held in the Received Messages table
is 50.
Aurea Software, Inc. Confidential 51 Copyright © 2013 Aurea, Inc.

Chapter 2: Using the JMS Test Client
Browsing Messages on a Queue

The following procedure describes how to browse messages on a queue.

To browse messages on the queue

1. Select the Browsers node in the left panel of the JMS Test Client window.

The right panel displays the queues available for browsing in the Established
Browsers area. You can also create a browser for an existing queue.

This example includes the existing browser for SampleQ1 (if you completed the
preceding examples in Creating Queue Senders and Queue Receivers on page 48).

2. To create a new queue browser:

• In the Queue field, enter the name of the queue where you want to browse
messages.

• This example creates a browser for SampleQ2.

• Optionally, you can use the Message Selector field to set up a query against
header fields and properties to filter the available messages. See Message
Selection on page 271 for information about using message selectors.

• This example does not use a message selector.

• Click CREATE.

A node for the new queue browser appears under the Browsers node in the left panel,
and the queue for the new browser appears in the Established Browsers list, as
shown in Figure 9.

Figure 9: Queue Browser Creation
Aurea Software, Inc. Confidential 52 Copyright © 2013 Aurea, Inc.

Testing Publish and Subscribe Messaging
3. Select the queue browser for the queue you want to view, and select the appropriate
position-selector (black arrow heads) to position the browser cursor to the messages
you want to see, as shown in Figure 10.

Figure 10: Queue Browser

Note: To start browsing messages, you must first choose the left-most position-selector.
You can restart the browse by choosing the same selector when the browser
cursor is at any position in the queue. The two right-most position-selectors are
active only when there are more messages on the queue than the specified buffer
size. The move-forward position-selector shows the next buffer-size number of
messages in the queue. The move-to-end position-selector shows the last
buffer-size number of messages in the queue.

Testing Publish and Subscribe Messaging
You can use the JMS Test Client to simulate parts of your application and to demonstrate
the behavior of various broker modes by establishing a test Publish and Subscribe session.
To publish (or send) messages, a connection must be started. The connection starts
automatically when there are adequate resources:

• Broker

• Connection to the broker

• Session on the connection

• Message mechanism (publisher, subscriber, listener, receiver, sender)
Aurea Software, Inc. Confidential 53 Copyright © 2013 Aurea, Inc.

Chapter 2: Using the JMS Test Client
As you add, modify, or delete any resources, the connection automatically stops to allow
the update and then restarts to allow publishing or sending of messages. Establishing a
Pub/Sub session involves the tasks described in the following sections:

• Establishing a Topic Session on page 54

• Creating Publishers and Subscribers to Topics on page 55

• Publishing Messages on page 59

• Receiving Messages on Subscribed Topics on page 62

Establishing a Topic Session

The following procedure describes how to create a topic session.

To establish a topic session:

1. Open the JMS Test Client.

See Opening the JMS Test Client on page 46 for instructions.

2. In the left panel of the JMS Test Client window, click the node for your message broker
connection.

3. Type any unique string in the Name field and press ENTER.

This example uses the session name TestSession.

4. Select Topic from the Type drop-down list.

5. Check Transacted if you require a transacted session.

This example does not require a transacted session.
Aurea Software, Inc. Confidential 54 Copyright © 2013 Aurea, Inc.

Testing Publish and Subscribe Messaging
6. In the Acknowledgement Mode group, the Auto Acknowledged radio button is
selected by default. You can change the mode to either Client Acknowledged or Dups
OK Acknowledge (see Acknowledgement Mode on page 207 for information about the
different acknowledgement modes).

This example uses the Auto Acknowledged mode.

7. Click Create.

The session appears in the left panel with Publishers and Subscribers nodes, as
shown in Figure 11.

Figure 11: Topic Session

Creating Publishers and Subscribers to Topics

The following procedure describes how to create publishers and subscribers to a topic
using the JMS Test Client. You should complete the procedure in Establishing a Topic
Session on page 54 before continuing with this section.
Aurea Software, Inc. Confidential 55 Copyright © 2013 Aurea, Inc.

Chapter 2: Using the JMS Test Client
To create a publisher:

1. Select the Publishers node in the left panel.

The right panel displays established publishers for this topic session (if any), and
allows you to create and manage publishers, as shown in Figure 12.

Figure 12: Publishers

The test client supports basic topics, hierarchical topics, node qualified topics, and
MultiTopics as defined in the Topic Builder shown in Figure 13.

Figure 13: Building MultiTopic Publishers

See MultiTopics on page 336 for information about the syntax and behaviors of
MultiTopic publishers and subscribers.
Aurea Software, Inc. Confidential 56 Copyright © 2013 Aurea, Inc.

Testing Publish and Subscribe Messaging
2. To create a new publisher, enter the name of the topic where messages are to be
published in the Topic field and click Create.

A node for the new publisher appears under the Publishers node and the name of the
connection.

This example creates a publisher to the topic SampleT1, as shown in Figure 14

Figure 14: Create a Publisher to SampleT1

To create a subscriber:

1. Select the Subscribers node in the left panel.

The right panel displays the Established Subscribers (if any) and allows you to create
new subscribers.

2. In the Topic field, enter the name of the topic to which you want to subscribe.

This example creates a subscriber to the topic SampleT1.

3. Optionally, you can use the Message Selector field to enter query values based on
JMS header fields and properties to filter out unwanted messages. (For information on
the syntax of this string, see Chapter 6, Messages on page 231)

4. Optionally, you can create a durable subscription by checking Durable and entering a
name in the Name field.
Aurea Software, Inc. Confidential 57 Copyright © 2013 Aurea, Inc.

Chapter 2: Using the JMS Test Client
5. Optionally, you can check No Local Delivery, and the subscriber will not receive
messages from publishers on the same connection.

6. Click CREATE.

The new subscriber appears under the Subscribers node in the left panel, and the
topic appears in the list of Established Subscribers in the right panel, as shown in
Figure 15.

Figure 15: Create a Subscriber to SampleT1

See Chapter 13, Hierarchical Name Spaces on page 411 for information about naming
conventions.

With publishers and subscribers established, you can publish and subscribe to messages.
Aurea Software, Inc. Confidential 58 Copyright © 2013 Aurea, Inc.

Testing Publish and Subscribe Messaging
Publishing Messages

The following procedure describes how to publish messages.

Note: Before continuing with this section, make sure you have completed the procedures
in Creating Publishers and Subscribers to Topics on page 55.

To publish messages:

1. Select a publisher in the left panel of the JMS Test Client window.

The right panel displays three tabs: Header, Properties, and Body. You can examine
the default values under these tabs.

2. The Header tab, shown in Figure 16, displays the header properties.

Figure 16: Message Header
Aurea Software, Inc. Confidential 59 Copyright © 2013 Aurea, Inc.

Chapter 2: Using the JMS Test Client
• You can edit only the following items in the header list:

• JMSCorrelationID

• JMSReplyTo

• JMSType

• In the Summary section, you can specify:

• Message Type — Message, Text Message, or XML Message

• Delivery Mode — DISCARDABLE, NON_PERSISTENT,
NON_PERSISTENT_REPLICATED, PERSISTENT

• Priority — Integer values 0 (the highest) through 9 (the lowest)

• Time To Live — In milliseconds, with 0 indicating no expiration

3. Select the Properties tab to define property values, as shown in Figure 17, including
the following SonicMQ-specific properties:

• JMS_SonicMQ_preserveUndelivered

• JMS_SonicMQ_notifyUndelivered

Figure 17: Message Properties
Aurea Software, Inc. Confidential 60 Copyright © 2013 Aurea, Inc.

Testing Publish and Subscribe Messaging
4. Select the Body tab to compose the body of the message, as shown in Figure 18.

Figure 18: Message Body

5. Select Send to send your message.

For information on message attributes, parameters, and properties, see Chapter 6,
Messages on page 231
Aurea Software, Inc. Confidential 61 Copyright © 2013 Aurea, Inc.

Chapter 2: Using the JMS Test Client
Receiving Messages on Subscribed Topics

The following procedure describes how to receive messages on a topic.

Note: Before continuing with this section, make sure you have completed the procedures
in Creating Publishers and Subscribers to Topics on page 55 and Publishing
Messages on page 59.

To receive messages on a topic:

1. Under the Subscribers node in the left panel, select the subscriber for the topic under
which you published your message (in this example, SampleT1).

The right panel displays the messages on this subscriber. In this example, one
message is displayed in the Subscribed Messages area.

2. Select the message displayed in the Subscribed Messages area. The Header,
Properties, and Body tabs in the lower right panel contain information for the
subscribed message, as shown in Figure 19.

Figure 19: Subscribed Message

Note: By default, the number of viewable messages held in the Subscribed
Messages table is 50.
Aurea Software, Inc. Confidential 62 Copyright © 2013 Aurea, Inc.

Testing Publish and Subscribe Messaging
3. To delete one or more messages without explicitly acknowledging them, select the
messages and select Delete.

4. To acknowledge one or more messages, select the messages and select
Acknowledge.

An acknowledgment is sent back to the broker if the session was established in Client
Acknowledged mode.

Messages can also be automatically acknowledged, depending on how the session
was established.
Aurea Software, Inc. Confidential 63 Copyright © 2013 Aurea, Inc.

Chapter 2: Using the JMS Test Client
Aurea Software, Inc. Confidential 64 Copyright © 2013 Aurea, Inc.

3
Examining the SonicMQ JMS
Samples

This chapter explains how to run the sample applications included with SonicMQ. These
samples illustrate some of the messaging functionality of SonicMQ. This chapter includes
the following sections:

• About SonicMQ Samples on page 66

• Running the SonicMQ Samples on page 70

• Chat and Talk Samples on page 74

• MultiTopicChat Sample on page 76

• Samples of Additional Message Types on page 78

• Sample of Channels for Large Message Transfers on page 85

• Message Traffic Monitor Samples on page 87

• Transaction Samples on page 92

• Reliable, Persistent, and Durable Messaging Samples on page 95

• Request and Reply Samples on page 112

• Selection, Group, and Wild Card Samples on page 115

• Test Loop Sample on page 122

• Enhancing the Basic Samples on page 123
Aurea Software, Inc. Confidential 65 Copyright © 2013 Aurea, Inc.

Chapter 3: Examining the SonicMQ JMS Samples
About SonicMQ Samples
The samples provided with SonicMQ are introduced in the Getting Started with Aurea
SonicMQ manual. In this chapter, the functionality of the samples is explored in more detail
to illustrate some of the features of SonicMQ.

When you run the samples, the standard input and standard output displayed in the console
can represent data flows to and from a range of applications and Internet-enabled devices
such as:

• Application software for accounting, auditing, reservations, online ordering, credit
verification, medical records, and supply chains

• Information appliances such as beepers, cell phones, wireless devices, fax
machines, and Personal Digital Assistants (PDAs)

• Real-time devices with embedded controls such as monitor cameras, medical
delivery systems, climate control systems, and machinery

• Distributed knowledge bases such as collaborative designs, service histories,
medical histories, and workflow monitors

Note: The samples in this chapter assume that you are using the default SonicMQ setup,
which does not enable security. Exercises are provided at the end of the chapter
that detail how to reconfigure the persistent storage mechanism for security and
how to enter the user names and passwords into the broker’s authentrication
domain that security will demand. Without security, user names in the samples are
arbitrary strings.

Important: Table 4 lists the characters that are not allowed in SonicMQ names.

The SonicMQ samples demonstrate the following basic features of SonicMQ:

• Chat and Talk Samples — The basic messaging functions are demonstrated by
producing and consuming messages using both messaging models (PTP and
Pub/Sub):

• Talk (PTP), Chat (Pub/Sub)

• MultiTopic Chat — This sample demonstrates how you can use MultiTopics to
publish messages to multiple topics in a single operation and subscribe to multiple
topics in a single subscription:

• MultiTopicChat (Pub/Sub)

• Transaction Samples — Transactions are shown in both domains in application
windows to show how the producers and consumers of the transacted messages see
the messages flow:

• TransactedTalk (PTP), TransactedChat (Pub/Sub)
Aurea Software, Inc. Confidential 66 Copyright © 2013 Aurea, Inc.

About SonicMQ Samples
• Additional Message Types — To simplify input, the preceding examples are Text
messages. The following samples display other common message types in the
messaging domains:

• MapMessages — MapTalk (PTP)

• XMLMessages — Alternative parsers are used in both domains:

• DOM2 — XMLDOMTalk (PTP), XMLDOMChat (Pub/Sub)

• SAX — XMLSAXTalk (PTP), XMLSAXChat (Pub/Sub)

• Using Channels for Large Messages — FileSender, FileReceiver (PTP)

• Decomposing MultiPart Messages — Multipart (PTP)

• Message Traffic Monitors — These samples provide views of message traffic in
ways that are characteristic of their messaging domain:

• Messages on the Queue — QueueMonitor (PTP)

• Messages to Subscribers — MessageMonitor (Pub/Sub)

• Reliable, Persistent, and Durable Messaging — These samples demonstrate
techniques that can enhance the Quality of Service. Reliable connections show how
to keep connections active in both domains. Persistent storage shows how the
broker’s PTP safety net, the Dead Message Queue, can trap undelivered messages.
Durable subscription shows how a Pub/Sub subscriber can have messages held for
them.

The samples in this category are:

• Reliable Connection — ReliableTalk (PTP), ReliableChat (Pub/Sub)

• Persistent Storage — DeadMessages (PTP)

• Durable Subscription — DurableChat (Pub/Sub)

• Persistence on the Client:

• ContinuousSender, MessageReceiver (PTP)

• ContinuousPublisher, MessageSubscriber (Pub/Sub)

• Request and Reply — These transacted examples show the mechanisms for the
producer requesting a reply and the consumer fulfilling that request:

• Originator’s Request — Requestor (PTP, Pub/Sub)

• Receiver’s Response — Replier (PTP, Pub/Sub)
Aurea Software, Inc. Confidential 67 Copyright © 2013 Aurea, Inc.

Chapter 3: Examining the SonicMQ JMS Samples
• Selection, Grouping, and Wild Cards — The message selector samples use SQL
syntax to let the receiver qualify the messages that are visible to an application while
the HierarchicalChat sample uses template characters to subscribe to a set of topics
that is qualified when messages are published. Message grouping provides the queue
sender and the queue settings to direct assignment of receivers by group identifiers:

• Message Selection — SelectorTalk (PTP), SelectorChat (Pub/Sub)

• Message Grouping — MessageGroupTalk (PTP)

• Wild Cards — HierarchicalChat (Pub/Sub)

• Test Loop — This sample shows how quickly messages can be sent and received in
a test loop:

• Queue Test Loop — QueueRoundTrip (PTP)

Other Samples Available

There are other SonicMQ samples available. As each requires a special setup to explore
them, these samples are described in other chapters of this book, or in other SonicMQ
documents:

• Distributed Transactions — The XA resources in SonicMQ provide the functionality
to explore global transactions in a standalone sample. To see how to run these
samples, see Chapter 14, Distributed Transactions Using XA ResourcSes on page
423

• Dynamic Routing Queues — When routing queues are established across brokers,
messages are dynamic. The GlobalTalk (PTP) sample demonstrates dynamic routing
queues in an appropriate setup. See the chapter “Multiple Nodes and Dynamic
Routing” in the Aurea SonicMQ Deployment Guide for information about this sample.

• SonicStreams API — Using a special-purpose API, streams of indeterminate length
can be transferred through a SonicMQ broker to multiple subscribers.

• HTTP Direct — These samples demonstrate ways to translate HTTP and HTTPS
documents to JMS messages (inbound) and JMS messages to HTTP documents
(outbound). The samples in this category are:

• Basic Inbound

• Basic Outbound

• Basic Polling Receive

• HTTP Direct for SOAP

• HTTP Direct for JMS

• HTTPS Authentication Samples

See the Aurea SonicMQ Deployment Guide for information about the HTTP Direct
samples.

• JNDI SPI — Samples are provided to describe programming using the Sonic service
provider implementation (SPI) for the Java Naming and Directory Interface (JNDI) See
Appendix A, on page 443 for information.
Aurea Software, Inc. Confidential 68 Copyright © 2013 Aurea, Inc.

About SonicMQ Samples
• Management Runtime and Configuration APIs — Samples are provided to
demonstrate the use of the SonicMQ Runtime and Configuration APIs. See the Aurea
SonicMQ Administrative Programming Guide for information.

• Replicated (High Availability) Brokers — See the Aurea SonicMQ Deployment
Guide for an example of how you can set up brokers as a primary/backup pair. When
the brokers are running and replicating, you can stop the active broker, causing the
standby broker to fail over. You can run the fault tolerant example—see Modifying the
Chat Example for Fault-Tolerance on page 195—to see the client application
seamlessly continue its session on the broker that becomes active.

• Secure Socket Layer (SSL) — SSL samples show how to reconfigure the broker for
SSL security, how to run client-side applications that connect through SSL, and how
to use certificates. See Part II of the Aurea SonicMQ Deployment Guide for complete
SSL implementations you can explore; these implementations use the JSSE security
software and credential samples installed with SonicMQ.

• Security Enabled Dynamic Routing — See the Aurea SonicMQ Deployment Guide
for an example of how you can set up multiple brokers and security to realize secure
dynamic routing across nodes.

Extending the Samples

After reviewing the sample applications, you can explore some variations:

• Change the source files — You can edit the source files, compile the changed file,
and then run the applications again to observe the effect. Some ideas are presented
as the following exercises:

• Using a common destination for two different samples

• Observing how different messaging behaviors affect round-trip times

• Modifying the MapMessage to use other data types

• Modifying the XMLMessage to show more data

How Security Impacts Client Activities

Security provides the high quality of protection and access by applications that is expected
in enterprise applications. The section Quality of Service and Protection on page 36
provides an overview of the features and functions of security. But unless the broker
chooses to enable security and the broker’s persistent storage mechanism is initialized for
security, security is not enabled.
Aurea Software, Inc. Confidential 69 Copyright © 2013 Aurea, Inc.

Chapter 3: Examining the SonicMQ JMS Samples
The samples in this chapter do not use security so that you can begin exploring the
messaging features without first having to set up security objects for:

• User authentication — When security is activated, only defined usernames are
allowed to connect to the broker.

• User authorizations — The administrator can control a user’s ability to perform
actions such as subscribing to a topic and reading from queues.

See the Aurea SonicMQ Deployment Guide for information about what you need to do to
implement a SonicMQ sample in a secure environment.

Running the SonicMQ Samples
The following sections explain the tasks required to start SonicMQ to work with the sample
applications:

• Starting the SonicMQ Container and Management Console on page 70

• Opening Client Console Windows on page 73

• Using the Sample Scripts on page 73

Starting the SonicMQ Container and
Management Console

Be sure the SonicMQ container is running before executing any of the SonicMQ client
samples. The following procedures explain how to start the SonicMQ Domain Manager’s
container and the Sonic Management Console. For more detailed information on working
with the Management Console, see the Aurea SonicMQ Configuration and Management
Guide.

Note: If this is the first time you are running SonicMQ, you should not have to adjust the
broker’s settings. See the Aurea Sonic Installation and Upgrade Guide for more
information.
Aurea Software, Inc. Confidential 70 Copyright © 2013 Aurea, Inc.

Running the SonicMQ Samples
To start the broker process from the Windows Start menu:

1. Select Start > Programs > Aurea > Sonic 2013 > Start DomainManager.

SonicMQ starts the container that hosts the broker and then starts the broker.

2. Select Start > Programs > Aurea > Sonic 2013 > Sonic Management Console.

SonicMQ opens the Create Connection dialog box, as shown in Figure 20.

Figure 20: Create Connection

3. If you did not enable security when you installed, you can accept the defaults in the
General tab in the Create Connection dialog box.

If you enabled security when you installed SonicMQ, enter your password.

See the Aurea SonicMQ Configuration and Management Guide for information about
setting parameters under the Advanced tab. For these samples, you do not have to
set any advanced parameters.

4. Click OK.

A Connecting... dialog box and the status bar indicate that the Sonic Management
Console is connecting to the broker.

The Sonic Management Console opens to the Configure view, as shown in Figure 21.
Aurea Software, Inc. Confidential 71 Copyright © 2013 Aurea, Inc.

Chapter 3: Examining the SonicMQ JMS Samples
Figure 21: Sonic Management Console Window

See the Aurea SonicMQ Configuration and Management Guide for information about
configuration and management using the Management Console.

To start the SonicMQ container and broker from a Linux or UNIX console window:

• In a new console window set to
install_dir/Containers/Domain1.DomainManager, type
launchcontainer.sh and press ENTER.

The broker starts. The console window is dedicated to the process and, when running,
displays:

SonicMQ Broker started, now accepting tcp connections on port
2506...

Important: You can minimize the console window. Closing the window, however, stops
the broker.

The samples default to localhost:2506—a broker using port 2506 on the same system,
localhost. If you use a different host or port, you need to specify the host:port parameter
when you start each sample. For example:

..\..\SonicMQ Chat -u User1-b hostname:2345

To open the Sonic Management Console from a Linux or UNIX console window:

• In a new console window set to the SonicMQ install directory, type bin/startmc.sh
and press ENTER. The Sonic Management Console opens.
Aurea Software, Inc. Confidential 72 Copyright © 2013 Aurea, Inc.

Running the SonicMQ Samples
Opening Client Console Windows

Each application instance is intended to run in its own console window with the current path
in the selected sample directory. There are conventions that you must follow depending on
the platform:

• Windows — The scripts defer to Windows conventions.

• Linux and UNIX platforms — Instead of using .bat files, use the .sh file at the same
location. Substitute forward slash (/) wherever back slash (\) is used as a path
delimiter. Any sourcing is handled in the shell scripts.

Note: Consider all text to be case-sensitive. While there might be some platforms and
names where case is not distinguished, it is good practice to always use case
consistently.

Using the Sample Scripts

A universal script handler is installed at the Samples directory level. This script,
SonicMQ.bat (.sh under Linux and UNIX), does the following:

• Points to the Java executable used by SonicMQ

• Sets the CLASSPATH for the SonicMQ .jar files as required

• Invokes the executable, its parameters, and a list of variables

The script is suitable for the basic samples provided, but you might have to adjust it if you
use long parameter lists. Standard invocation of the script from a sample folder is two levels
down.

Important: When you modify the original sample files, you can use the techniques
described above to set up a universal compiler script. Replicate and modify
SonicMQ.bat (.sh under Linux and UNIX) to something like
SonicMQ_javac.bat (.sh under Linux and UNIX) and then confirm that
javac.exe (or the path to your preferred compiler) is in the script.

Using the SonicMQ Samples in a Sonic Workbench
Installlation

The default setting for security on the management broker in a Sonic Workbench install is
to enable security. That means that usernames in the samples intended to provide
information to keep track of multiple application instances must be valid users. As the only
default user is Administrator (with the password Administrator), you must either define
the other users, or use the default user Administrator and the password (-p) parameter
and the user’s password on every command line. For example:

..\..\SonicMQ Chat -u Administrator -p Administrator
Aurea Software, Inc. Confidential 73 Copyright © 2013 Aurea, Inc.

Chapter 3: Examining the SonicMQ JMS Samples
Using the SonicMQ Samples with a non-default
Broker

If you want to use a broker on a remote system or different port for the samples, you have
to specify it in the command line. The samples default to localhost:2506—a broker using
port 2506 on the local system. If you use a different host or port, specify the broker
parameter (-b) when you start each sample. For example:

..\..\SonicMQ Chat -u Market_Maker -b Eagle:2345

In summary, if you were on a Linux system where a Sonic Workbench is installed, and you
want to connect to another system’s messaging broker, you might enter:

../../SonicMQ.sh Chat -u Administrator -p Administrator -b
Eagle:2345

Chat and Talk Samples
The fundamental differences between Pub/Sub and PTP messaging are demonstrated in
the Chat and Talk samples.

Chat Application (Pub/Sub)

In the Chat application, whenever anyone sends a text message to a given topic, all active
applications running Chat receive that message as subscribers to that topic. This is the
most basic form of publish and subscribe activity.

To start Chat sessions:

1. Open a console window to the TopicPubSub\Chat folder, then enter:

..\..\SonicMQ Chat -u Chatter1

This command starts a Chat session for the user Chatter1.

2. Open another console window to the TopicPubSub\Chat folder, then enter:

..\..\SonicMQ Chat -u Chatter2

This command starts a Chat session for the user Chatter2.

To Chat:

1. In one of the Chat windows, type any text and then press ENTER. The text is displayed
in both Chat windows, preceded by the name of the user that initiated that text.

2. In the other Chat window, type text and then press ENTER. The text is displayed in both
Chat windows preceded by that username.
Aurea Software, Inc. Confidential 74 Copyright © 2013 Aurea, Inc.

Chat and Talk Samples
The Chat sample shows inter-application asynchronous communications. If subscribers
miss some of the messages, they just pick up the latest messages whenever they
reconnect to the broker. Nothing is retained and nothing is guaranteed to be delivered, so
throughput is fast.

Talk Application (PTP)

In the Talk application, whenever a text message is sent to a given queue, all active Talk
applications are waiting to receive messages on that queue, taking turns as the sole
receiver of the message at the front of the queue.

To start Talk sessions:

The first Talk session receives on the first queue and sends to the second queue while the
other Talk session does the opposite.

1. Open a console window to the QueuePTP\Talk folder, then enter:

..\..\SonicMQ Talk -u Talker1 -qr SampleQ1 -qs SampleQ2

This command starts a Chat session for the user Talker1.

2. Open another console window to the QueuePTP\Talk folder, then enter:

..\..\SonicMQ Talk -u Talker2 -qr SampleQ2 -qs SampleQ1

This command starts a Chat session for the user Talker2.

To Talk:

1. In the Talker2 window, type any text and then press ENTER.

The text is displayed in only the Talker1 window, preceded by the name of the user
who sent the message.

2. In the Talker1 window, type text and then press ENTER.

The text is displayed in only the Talker2 window, preceded by the username of the
sender.
Aurea Software, Inc. Confidential 75 Copyright © 2013 Aurea, Inc.

Chapter 3: Examining the SonicMQ JMS Samples
Reviewing the Chat and Talk Samples

You can continue exploring these samples by opening several windows:

• Chat — If you run several Chat windows, every window will display the message,
including the publisher. You can modify the source code to suppress delivery of a Chat
message to its publisher. That Pub/Sub broadcast characteristic can be stopped with
a noLocal parameter on the createSubscriber method. In this case, every subscriber
receives everyone else’s messages but not their own.

• Talk — If you run several Talk windows, you will still see only one receiver for any
message. Under Talk (PTP), there is only one receiver. Start two more Talker
windows (Talker3 and Talker4) then use the Talker1 window to send 1 through 9,
each as a message. For example, enter the following:

1 Enter, 2 Enter, ..., 9 Enter

Notice how the receivers take turns receiving the messages.

MultiTopicChat Sample
This sample demonstrates how an application can publish to multiple topics in a single
operation using a MultiTopic. It also demonstrates how an application can subscribe to
many topics in a single operation by using MultiTopic.

Setting Up MultiTopic Sessions

Before you can run the MultiTopicChat sample, you must start sessions as described
below.

To start MultiTopic sessions for publishing:

1. Open a console window to the TopicPubSub\MultiTopicChat folder, then enter:

..\..\SonicMQ MultiTopicChat -u SALES

This command starts a MultiTopic session for the user SALES. This user subscribes
to the jms.samples.chat.SALES topic.

2. Open a console window to the TopicPubSub\MultiTopicChat folder, then enter:

..\..\SonicMQ MultiTopicChat -u MARKETING

This command starts a MultiTopic session for the user MARKETING. This user
subscribes to the jms.samples.chat.MARKETING topic.

3. Open a console window to the TopicPubSub\MultiTopicChat folder, then enter:

..\..\SonicMQ MultiTopicChat -u SUPPORT

This command starts a MultiTopic session for the user SUPPORT. This user subscribes
to the jms.samples.chat.SUPPORT topic.
Aurea Software, Inc. Confidential 76 Copyright © 2013 Aurea, Inc.

MultiTopicChat Sample
To start a MultiTopic session for subscribing:

Open a console window to the TopicPubSub\MultiTopicChat folder, then enter:

..\..\SonicMQ MultiTopicChat -u AUDIT -l MARKETING,SUPPORT

This command starts a MultiTopic session for the user AUDIT. This user subscribes
to the MARKETING and SUPPORT topics.

Note: Using wildcards in the subscriber’s list parameter — You can use the template
characters pound (#) and asterisk (*) for subscriptions, for example, -l #.

When using the list parameter (-l) with an asterisk, your shell might require you to
enclose the asterisk in quotes: -l "*".

Demonstrating MultiTopic Publish and
Subscribe

This section describes how to use the MultiTopic sessions for publishing and subscribing.

To demonstrate MultiTopic publishing:

1. Choose a publishing session (SALES, MARKETING, or SUPPORT) and enter some
text (for example, Hello) on the command line, then press ENTER.

2. In the session you chose in step 1, enter a comma-separated list of the user names to
which you want to send the message. For example, from the SALES session, enter:

MARKETING,SUPPORT

This causes the SALES session to publish the message to a MultiTopic consisting of
the jms.samples.chat.MARKETING and jms.samples.chat.SUPPORT topics. The
MARKETING and SUPPORT sessions receive the message on the topic subscribed.

To demonstrate MultiTopic subscribing:

1. In the SUPPORT session:

a. Enter some text on the command line, then press ENTER.

b. Enter the name of the user to send the message:

SALES

Notice that the AUDIT session does not receive the message.

c. Enter some text on the command line, then press ENTER.

d. Enter:

SUPPORT,MARKETING,SALES

Notice that the AUDIT session receives one copy of the message.
Aurea Software, Inc. Confidential 77 Copyright © 2013 Aurea, Inc.

Chapter 3: Examining the SonicMQ JMS Samples
To demonstrate split delivery of MultiTopic messages:

1. In the AUDIT session window, press CTRL+C to stop the application.

2. Add the -s parameter to the command, and then restart the AUDIT session:

..\..\SonicMQ MultiTopicChat -u AUDIT -l MARKETING,SUPPORT -s

This command starts a split delivery MultiTopic session for the user AUDIT.

3. Enter some text on the command line, then press ENTER.

4. Enter:

SUPPORT,MARKETING

Notice that the AUDIT session receives two copies of the message, one for each topic
in the MultiTopic list.

Samples of Additional Message Types
Most of the SonicMQ samples use the TextMessage type because they accept user input
in the console windows. Additional message type samples demonstrate how Map messages
and XML messages are handled.

Map Messages (PTP)

The Map message type transfers a collection of assigned names and their respective
values. The names and values are assigned by set() methods for the Java primitive data
type of the value. The MapMessage name-value pairs are sent in the message body. For
example:

mapMessage.setInt("FiscalYearEnd", 10)
mapMessage.setString("Distribution", "global")
mapMessage.setBoolean("LineOfCredit", true)

You can extract the data from the received message in any order. Use a get() method to
cast a data value into an acceptable data type. For example:

mapMessage.getShort("FiscalYearEnd")
mapMessage.getString("Distribution")
mapMessage.getString("LineOfCredit")
Aurea Software, Inc. Confidential 78 Copyright © 2013 Aurea, Inc.

Samples of Additional Message Types
To start MapTalk sessions:

This example starts two MapTalk sessions, one for an accounting group and one for an
auditing group. The first MapTalk session receives on the first queue and sends to the
second queue, while the other session does the opposite.

1. Open a console window to the QueuePTP\MapTalk folder, then enter:

..\..\SonicMQ MapTalk -u QAccounting -qr SampleQ1 -qs SampleQ2

This command starts a MapTalk session for the user QAccounting.

2. Open another console window to the QueuePTP\MapTalk folder then enter:

..\..\SonicMQ MapTalk -u QAuditing -qr SampleQ2 -qs SampleQ1

This command starts a MapTalk session for the user QAuditing.

To send and receive MapMessages:

1. In the QAccounting window, type text then press ENTER.

The message sender packages two items: the username as the String sender and the text
input as the String content, as shown in the following source code of the sample
MapTalk.java:

javax.jms.MapMessage msg = sendSession.createMapMessage();
msg.setString("sender", username);
msg.setString("content", s);

The message receiver casts the message as a MapMessage. If that casting is unsuccessful,
MapTalk reports that an invalid message arrived. The MapMessage is decomposed and
displayed as shown in the following source code of the sample MapTalk.java:

String sender = mapMessage.getString("sender");
String content = mapMessage.getString("content");
System.out.println(sender + ": " + content);

XML Messages

XML data definitions with tagged text are useful for communicating structured sets of
defined data records or transacted message sets over the Internet. The XML parser
included with SonicMQ, the Apache Xerces XML Parser, interprets the data using
Document Object Model (DOM) Element nodes. The message receiver window echoes its
translation of the XML-tagged code derived from your text entry. For example, if you (as the
sender Catalog_Update) enter Item One, the XML-tagged code is packaged as shown in
XMLDOMChat.java: XML-Tagged Code on page 80, an excerpt of the sample file
XMLDOMChat.java.
Aurea Software, Inc. Confidential 79 Copyright © 2013 Aurea, Inc.

Chapter 3: Examining the SonicMQ JMS Samples
XMLDOMChat.java: XML-Tagged Code
{

progress.message.jclient.XMLMessage xMsg =
((progress.message.jclient.Session) pubSession).createXMLMessage();
StringBuffer msg = new StringBuffer();
msg.append ("<?xml version=\"1.0\"?>\n");
msg.append ("<message>\n");
msg.append (" <sender>" + username + "</sender>\n");
msg.append (" <content>" + content +s + "</content>\n");
msg.append ("</message>\n");
xMsg.setText(msg.toString());
publisher.send(xMsg);

}

The tagged message text is well-formed XML, as shown:

<?xml version="1.0"?>
<message>
<sender>sender</sender>
<content>message_content</content>
</message>

In the DOM samples, when the message is received, the embedded DOM2 XML parser is
invoked. The message is interpreted to display the DOM nodes, as shown:

[XML from 'DOMSend'] Hello
ELEMENT: message
 |--NEWLINE
 +--ELEMENT: sender
 |--TEXT_NODE: DOMSend
 |--NEWLINE
 +--ELEMENT: content
 |--TEXT_NODE: Hello
 |--NEWLINEXML DOM2 Messages (PTP)

In the SAX samples, when the message is received, the embedded SAX XML parser is
invoked. The message is interpreted to display the message in XML format, as shown:

<?xml version="1.0"?>
<message>
 <sender>SAXSend</sender>
 <content>Bonjour</content>
</message>
Aurea Software, Inc. Confidential 80 Copyright © 2013 Aurea, Inc.

Samples of Additional Message Types
XMLDOMTalk (PTP)

In this example, the first XMLDOMTalk session sends on the first queue and receives to the
second queue while the other session does the opposite.

To start PTP XMLDOMTalk sessions:

1. Open a console window to the QueuePTP\XMLDOMTalk folder, then enter:

..\..\SonicMQ XMLDOMTalk -u DOMSend -qr SampleQ2 -qs SampleQ1

This command starts a XMLDOMTalk session for the user DOMSend.

2. Open another console window to the QueuePTP\XMLDOMTalk folder, then enter:

..\..\SonicMQ XMLDOMTalk -u DOMRecv -qr SampleQ1 -qs SampleQ2

This command starts a XMLDOMTalk session for the user DOMRecv.

To send and receive PTP DOM2 XMLMessages:

1. In the DOMSend window, type text such as Hello and then press ENTER.

The message appears in the DOMRecv window formatted in DOM2 nodes, as shown:

[XML from 'DOMSend'] Hello
ELEMENT: message
 |--NEWLINE
 +--ELEMENT: sender
 |--TEXT_NODE: DOMSend
 |--NEWLINE
 +--ELEMENT: content
 |--TEXT_NODE: Hello
 |--NEWLINE

XMLSAXTalk (PTP)

In this example, the first XMLSAXTalk session sends on the first queue and receives to the
second queue while the other session does the opposite.

To start PTP XMLSAXTalk sessions:

1. Open a console window to the QueuePTP\XMLSAXTalk folder, then enter:

..\..\SonicMQ XMLSAXTalk -u SAXSend -qr SampleQ2 -qs SampleQ1

This command starts a XMLSAXTalk session for the user SAXSend.

2. Open another console window to the QueuePTP\XMLSAXTalk folder, then enter:

..\..\SonicMQ XMLSAXTalk -u SAXRecv -qr SampleQ1 -qs SampleQ2

This command starts a XMLSAXTalk session for the user SAXRecv.
Aurea Software, Inc. Confidential 81 Copyright © 2013 Aurea, Inc.

Chapter 3: Examining the SonicMQ JMS Samples
To send and receive PTP SAX XMLMessages:

1. In the SAXSend window, type text such as Bonjour and then press ENTER.

The message appears in the SAXRecv window in XML format, as shown:

<?xml version="1.0"?>

<message>

 <sender>SAXSend</sender>

 <content>Bonjour</content>

</message>

XMLDOMChat (Pub/Sub)

In this example, the XMLDOMChat sessions publish and subscribe on the topic
jms.samples.chat.

To start PTP XMLDOMChat sessions:

1. Open a console window to the TopicPubSub\XMLDOMChat folder, then enter:

..\..\SonicMQ XMLDOMChat -u DOMPub

This command starts a XMLDOMChat session for the user DOMPub.

2. Open another console window to the TopicPubSub\XMLDOMChat folder, then enter:

..\..\SonicMQ XMLDOMChat -u DOMSub

This command starts a XMLDOMChat session for the user DOMSub.

To send and receive Pub/Sub DOM XMLMessages:

1. In the DOMPub window, type text such as Bonjour and then press ENTER.

The message appears in the DOMSub window formatted in DOM2 nodes, as shown:

[XML from 'DOMPub'] Bonjour

ELEMENT: message

 |--NEWLINE

 +--ELEMENT: sender

 |--TEXT_NODE: DOMPub

 |--NEWLINE

 +--ELEMENT: content

 |--TEXT_NODE: Bonjour

 |--NEWLINE
Aurea Software, Inc. Confidential 82 Copyright © 2013 Aurea, Inc.

Samples of Additional Message Types
XMLSAXChat (Pub/Sub)

In this example, the XMLSAXChat sessions publish and subscribe on the topic
jms.samples.chat.

To start PTP XMLSAXChat sessions:

1. Open a console window to the TopicPubSub\XMLSAXChat folder, then enter:

..\..\SonicMQ XMLSAXChat -u SAXPub

This command starts a XMLSAXChat session for the user SAXPub.

2. Open another console window to the TopicPubSub\XMLSAXChat folder, then enter:

..\..\SonicMQ XMLSAXChat -u SAXSub

This command starts a XMLSAXChat session for the user SAXSub.

To send and receive Pub/Sub SAX XMLMessages:

• In the SAXPub window, type text such as Hello and then press ENTER.

The message appears in the SAXSub window formatted in SAX format, as shown:

<?xml version="1.0"?>

<message>

 <sender>SAXPub</sender>

 <content>Hello</content>

</message>

Decomposing Multipart Messages

Multipart messages are familiar files in mail applications—pictures, documents, text, and
executable files all packaged as attachments to a mail message. Multipart messages are
also used in Business-to-business applications that use of the Simplified Object Access
Protocol (SOAP) 1.1 with Attachments.

This sample composes a four-part message using JMS message types and data handlers.
The sample assigns each component to a message part then sends the message with its
list of parts. The receiver reverses the process to isolate each message part.
Aurea Software, Inc. Confidential 83 Copyright © 2013 Aurea, Inc.

Chapter 3: Examining the SonicMQ JMS Samples
To run the Multipart message sample:

Open a console window to the QueuePTP\MultipartMessage\XMLSAXChat
folder, then enter:

..\..\SonicMQ Multipart -u aUser

This command starts a Multipart session for the user aUser.

The sample demonstrates creating and assembling the parts of a message into a
single multipart message, as shown in the following output to the console window:

sending part1..a TextMessage

sending part2..some bytes

sending part3..a simple text string

sending part4..a Readme file

The multipart message is sent as an instance of MultipartMessage. The receiver of the
message discovers that the message is multipart, how many parts it contains, and goes
through a process of disassembling the parts, as shown in the following output to the
console window:

received MutipartMessage....
******* Beginning of MultipartMessage ******
Extend_type property = x-sonicmq-multipart
partCount of this MultipartMessage = 4
--------Beginning of part 1

Part.contentType = application/x-sonicmq-textmessage
Part.contentId = CONTENTID1
content in TextMessage... this is a JMS TextMessage
--------end of part 1
--------Beginning of part 2

Part.contentType = myBytes
Part.contentId = CONTENTID2
...size : 38
...content :
This string is sending as a byte array
--------end of part 2
--------Beginning of part 2

Part.contentType = myBytes
Part.contentId = CONTENTID2
...size : 38
...content :
This string is sending as a byte array
--------end of part 2
--------Beginning of part 3

Part.contentType = text/plain
Part.contentId = CONTENTID3
...size : 37
...content :
a simple text string to put in part 3
--------end of part 3
Aurea Software, Inc. Confidential 84 Copyright © 2013 Aurea, Inc.

Sample of Channels for Large Message Transfers
When a part is complete, the receiving application can act on that part. The message parts
should be handled in a transactional way so that the messages parts can be rolled back if
the process fails before it completes all its parts.

Reviewing the Additional Message Type
Samples

The samples demonstrated in this section show:

• The message type characteristics are identical in PTP and Pub/Sub.

• These messages are limited to capturing a single chunk of text in the console window.

• These messages use the instanceof operator to identify and cast the message into
an XMLMessage or a MapMessage.

You can modify the source code of these samples to:

• Create a table of XML data that forms an XMLMessage.

• Set some map values to Java primitives in the MapMessage and then get the map
values, coercing them into acceptable data types.

See the exercises in Enhancing the Basic Samples on page 123 that describe these
changes. See also Message Type on page 232.

Sample of Channels for Large Message Transfers

Note: This sample requires a SonicMQ installation includes the ClientPlus libraries for
the SonicMQ client.

SonicMQ with the ClientPlus option provides large message support by allowing a JMS
message to be associated with an instance of a recoverable channel. The file that will be
transferred will move through the recoverable channel dedicated to the sender. Internally,
the file is sent in fragments. Fragment loss or duplication due to failure is handled internally.

To transfer a large message:

1. Identify a file that you want to transfer and note its absolute path.

For example, you can transfer the .pdf file for this book, located at:
MQ2013_install_root\docs\program.pdf

2. Identify or create a folder where a transferred file will be placed.

For example, c:\Inbound.
Aurea Software, Inc. Confidential 85 Copyright © 2013 Aurea, Inc.

Chapter 3: Examining the SonicMQ JMS Samples
3. Open a console window to the ClientPlus\LargeMessageSupport folder then
enter the following command as a single line:

..\..\SonicMQ FileReceiver -u aReceiver -p passwordRecv -qr
SampleQ1

-d c:\Inbound

A folder is created with the name aReceiver in the
ClientPlus\LargeMessageSupport folder. This folder records the receiver
status information about the channel and the inbound files that will be reconstructed
in the directory c:\Inbound.

Important: The FileReceiver starts before the FileSender because the receiver
blocks indefinitely while the FileSender times out after 30 seconds then
close its connection and exits. You can restart FileSender to complete
the sample

4. Open another window to the ClientPlus\LargeMessageSupport folder then
enter the following command as a single line:

..\..\SonicMQ FileSender -u aSender -p passwordSend -qs SampleQ1
-f MQ2013_install_root\docs\program.pdf

A folder is created with the name aSender to record the file location and the
recoverable channel data for the receiver of the message on SampleQ1.

The aurea of the message transfer is displayed in the FileSender console window
shown:

MQ2013_install_root\samples\ClientPlus\LargeMessageSupport>

..\..\SonicMQ FileSender -u aSender -p passwordSend -qs SampleQ1

-f MQ2013_install_root\docs\program.pdf

Session is created

Try to send header message and establish channel to send file -
MQ2013_install_root\docs\program.pdf

13021815223128Broker1 channel established!

File size to send - 2345468

....10%....20%....30%....40%....50%....60%....70%....80%....90
%....100%

Transfer is complete!

Close connection and exit
Aurea Software, Inc. Confidential 86 Copyright © 2013 Aurea, Inc.

Message Traffic Monitor Samples
When the message transfer is complete, the source file remains intact and the
received file resides in the target directory. The aSender and aReceiver Channel
folders are empty.

If the transfer failed in aurea—either the sender or the receiver—the recoverable file
channel info is accessible to both the sender and the receiver applications when they
re-establish the channel through the broker.

Reviewing the Large Message Transfer Sample

The large message transfer sample shows:

• File transfer is, like FTP, a static physical file identified on one system replicated in a
specified location on another system.

• File transfers can be interrupted and contain the logic and records to resume an
interrupted transfer.

• The message that identifies the impending transfer is not needed for recovery.
Recovery is defined in logs and resumes by assessing unfinished channels and
continuing that defined transfer.

Message Traffic Monitor Samples
These samples each open GUI windows that provide a scrolling array of its contents. The
nature of the two monitors underscores fundamental differences between the Publish and
Subscribe messaging model and the Point-to-point messaging model. Table 3 shows these
differences.

Table 3: Differences Between QueueMonitor and MessageMonitor

QueueMonitor MessageMonitor

What messages
are displayed?

Undelivered. Delivered.

When does the
display update?

When you click the
Browse Queues button,
the list is refreshed.

When a message is
published to a subscribed
topic, it is added to the
displayed list.
Aurea Software, Inc. Confidential 87 Copyright © 2013 Aurea, Inc.

Chapter 3: Examining the SonicMQ JMS Samples
QueueMonitor Application (PTP)

The QueueMonitor moves through a queue, listing the active messages it finds as it
examines the queue.

To start QueueMonitor:

1. Open a console window to the QueuePTP\QueueMonitor folder.

2. Type ..\..\SonicMQ QueueMonitor and press ENTER.

The Queue Monitor browser window opens.

To start a Talk session without a receiver:

1. Open a console window to the QueuePTP\Talk folder.

2. Type ..\..\SonicMQ Talk -u Talk1 -qs SampleQ1 and press ENTER.

The Talk session Talk1, having no receiver, is started in the Talk console window.

When does the
message go
away?

When the message is
delivered (or when it
expires).

When the display is
cleared for any reason.

What happens
when the broker
and monitor are
restarted?

Listed messages marked
PERSISTENT are stored
in the broker persistent
storage mechanism. They
are redisplayed when the
broker and the
QueueMonitor restart and
then choose to browse
queues.

As messages are listed at
the moment they are
delivered, there are no
messages in the
MessageMonitor until new
deliveries occur.

Table 3: Differences Between QueueMonitor and MessageMonitor

QueueMonitor MessageMonitor
Aurea Software, Inc. Confidential 88 Copyright © 2013 Aurea, Inc.

Message Traffic Monitor Samples
To enqueue messages and then browse the queue:

1. In the Talk window, type some text and then press ENTER.

Repeat a few times.

2. In the Queue Monitor window, click Browse Queues to scan the queues and display
their contents.

The Queue Monitor appears similar to the window shown in Figure 22.

Figure 22: Queue Monitor Window

To receive the queued messages:

The messages that are waiting on the queue will get delivered to the next receiver who
chooses to receive from that queue.

Warning: If you do not perform this procedure the stored messages will be received in the
next application that receives on that queue.

1. In the Talk console window, press CTRL+C.

The application stops.

2. Type ..\..\SonicMQ Talk -u FlushQ1 -qr SampleQ1 and press ENTER.

The enqueued messages are delivered to the queue receiver.

To stop the sample:

1. In the console windows, press CTRL+C. The application stops.

2. In the Queue Monitor window, click the close button.
Aurea Software, Inc. Confidential 89 Copyright © 2013 Aurea, Inc.

Chapter 3: Examining the SonicMQ JMS Samples
MessageMonitor Application (Pub/Sub)

The MessageMonitor sample application provides an example of a supervisory application
with a graphical interface. By subscribing to all topics in the topic hierarchy, the application
listens for any message activity then displays each message in its window.

To start MessageMonitor:

1. Open a console window to the TopicPubSub\MessageMonitor folder, then enter:
..\..\SonicMQ MessageMonitor

The MessageMonitor Java window opens.

To run a Chat session to send messages to the MessageMonitor

1. Open a console window to the TopicPubSub\Chat folder, then enter:

..\..\SonicMQ Chat -u Chatter

This command starts a Chat session for the user Chatter.

2. Type any text in the Chat console window, then press ENTER.

The text is displayed in the Chat window and the MessageMonitor window. If you send
more messages, each one appends to the list displayed, as shown in Figure 23.
Aurea Software, Inc. Confidential 90 Copyright © 2013 Aurea, Inc.

Message Traffic Monitor Samples
Figure 23: Message Monitor Window

3. Click the Clear button. The list is emptied.
Aurea Software, Inc. Confidential 91 Copyright © 2013 Aurea, Inc.

Chapter 3: Examining the SonicMQ JMS Samples
Transaction Samples
Transacted messages are a group of messages that form a single unit of work. Much like
an accounting transaction made up of a set of balancing entries, a messaging example
might be a set of financial statistics where each entry is a completely formed message and
the full set of data comprises the update.

A session is declared as transacted when the session is created. While producers—PTP
Senders and Pub/Sub Publishers—produce messages as usual, the messages are stored
at the broker until the broker is notified to act on the transaction by delivering or deleting
the messages. To determine when the transaction is complete, the programmer must:

• Call the method to commit the set of messages. The session commit() method tells
the broker to sequentially release each of the messages that have been cached since
the last transaction. In this sample, the commit case is set for the string OVER.

• Call the method to roll back the set of messages. The session rollback() method
tells the broker to flush all the messages that have been cached since the last
transaction ended. In this sample, the rollback case is set for the string OOPS!.

Note: If you are interested in exploring global transactions with two-phase commits in a
sample, see the sample in Chapter 14, Distributed Transactions Using
XA ResourcSes on page 423.

TransactedTalk Application (PTP)

The following procedures explain how to run the TransactedTalk sample application.

To start TransactedTalk sessions:

The first TransactedTalk session receives on the first queue and sends to the second
queue, while the other session does the opposite.

1. Open a console window to the QueuePTP\TransactedTalk folder, then enter:

..\..\SonicMQ TransactedTalk -u Accounting -qr SampleQ1 -qs
SampleQ2

This command starts a TransactedTalk session for the user Accounting.

2. Open another console window to the QueuePTP\TransactedTalk folder, then
enter:

..\..\SonicMQ TransactedTalk -u Operations -qr SampleQ2 -qs
SampleQ1

This command starts a TransactedTalk session for the user Operations.
Aurea Software, Inc. Confidential 92 Copyright © 2013 Aurea, Inc.

Transaction Samples
To build a PTP transaction and commit it:

1. In a TransactedTalk window, type any text and then press ENTER.

Notice that the text is not displayed in the other TransactedTalk window.

2. Type more text in that window and then press ENTER.

The text is still not displayed in the other TransactedTalk window.

3. Type OVER and then press ENTER.

The TransactedTalk window in which you are working displays the message:

Committing messages...Done

All the messages you sent to a queue are delivered to the receiver. Subsequent
entries will form a new transaction.

To build a PTP transaction and roll it back:

1. In one of the TransactedTalk windows, type text and then press ENTER.

2. Type more text in that window and then press ENTER.

3. Type OOPS! and then press ENTER. Nothing is published.

The TransactedTalk window in which you are working displays the message:

Cancelling messages...Done!

All messages are removed from the broker. Subsequent messages will form a new
transaction. Any messages you resend will be redelivered.

TransactedChat Application (Pub/Sub)

The following procedures explain how to run the TransactedChat sample application.

To start Pub/Sub TransactedChat sessions:

1. Open a console window to the TopicPubSub\TransactedChat folder, then enter:

..\..\SonicMQ TransactedChat -u Sales

This command starts a TransactedChat session for the user Sales.

2. Open another console window to the TopicPubSub\TransactedChat folder, then
enter: ..\..\SonicMQ TransactedChat -u Audit

This command starts a TransactedChat session for the user Audit.
Aurea Software, Inc. Confidential 93 Copyright © 2013 Aurea, Inc.

Chapter 3: Examining the SonicMQ JMS Samples
To build a Pub/Sub transaction and commit it:

1. In the Sales window, type any text and then press ENTER.

Notice that the text is not displayed in the Audit window.

2. Type more text in the Sales window and then press ENTER.

The text is still not displayed in the Audit window.

3. Type OVER and then press ENTER.

The TransactedChat window in which you are working displays the message:

Committing messages...Sales:Message_Text

All of the messages now display in sequence in the Audit window. All of the lines you
published to a topic are delivered to subscribers. Subsequent entries will form a new
transaction.

To build a Pub/Sub transaction and roll it back:

1. In the Sales window, type text and then press ENTER.

2. Type more text in that window and then press ENTER.

3. Type OOPS! and then press ENTER.

The TransactedTalk window in which you are working displays the message:

Cancelling messages...Done!

No messages are published. All messages are removed from the broker. Subsequent
entries will form a new transaction. Any messages you resend will be redelivered.

Reviewing the Transaction Samples

The transaction samples show:

• The transaction scope is between the client in the JMS session and the broker. When
the broker receives commitment, the messages are placed onto queues or topics in
the order in which they were buffered but with no transaction controls. The following
message delivery is normal:

• PTP Messages — The order of messages in the queue is maintained with
adjustments for priority differences but there is no guarantee that—when multiple
consumers are active on the queue—a MessageConsumer will receive one or more
of the MessageProducer’s transacted messages.

• Pub/Sub Messages — Messages are delivered in the order entered in the
transaction yet influenced by the priority setting of these and other messages, the
use of additional receiving sessions, and the use of additional or alternate topics.
The messages are not delivered as a group.
Aurea Software, Inc. Confidential 94 Copyright © 2013 Aurea, Inc.

Reliable, Persistent, and Durable Messaging Samples
• Transactions are a set of messages that is complete only when a command is given.
As an alternative, message volume could be reduced by packaging sets of messages.
For example, an XML message enables the publisher to send a package of messages
and the subscriber to interpret the set of packaged entries as a single message. See
XML Messages on page 79 for details.

• While most of the samples use two sessions—a producer session to listen for
keyboard input and send messages, and a consumer session to listen for messages
and receive them—the transacted samples set only the producer session as
transacted so that committing or rolling back impacts only the sent messages.

Changing the consumer behavior has no real effect on nondurable Pub/Sub
messages but causes an interesting behavior in PTP: When you roll back receipt of
messages, the message listener sees the messages again and then simply receives
them again. Rolling back a transacted consumer session causes the messages to be
redelivered.

You can explore this behavior by modifying TransactedTalk.java to set the receive
session to be transacted, like this:

receiveSession =
connect.createSession(true,javax.jms.Session.AUTO_ACKNOWLEDGE);

Then follow the send session commit line and send session rollback line with similar
statements for the receive session like this:

sendSession.rollback();

receiveSession.rollback();

...

sendSession.commit();

receiveSession.commit();

Start the two sessions described in the TransactedTalk sample, then run
QueueMonitor sample. Notice that whether you commit or roll back, no messages stay
in the queue. Stop the TransactedTalk sessions and the refresh the queue monitor.
Note that the messages sent since the last commit were all reinstated in the queue.

For more information, see Transacted Sessions on page 210.

Reliable, Persistent, and Durable Messaging
Samples

The preceding applications make the same delivery promise: If you are connected and
receiving during the message’s lifespan, you could be a consumer of this message.

One of the features of SonicMQ is the breadth of services that can be applied to messaging
to give just the right quality of service (QoS) for each type and category of message.
Aurea Software, Inc. Confidential 95 Copyright © 2013 Aurea, Inc.

Chapter 3: Examining the SonicMQ JMS Samples
There are programmatic mechanisms for:

• Increasing the chances that the client and broker are actively connected

• Registering a PTP sender’s interest in routing messages that are undeliverable to a
dead message queue and sending notification events to the administrator

• Registering a Pub/Sub subscriber’s interest in messages published to a topic even
when the subscriber is disconnected

The reliable, persistent, and durable messaging samples demonstrate these features of
SonicMQ.

Reliable Connections

The ReliableTalk and ReliableChat samples show techniques for monitoring a
connection for exceptions and re-establishing the connection if it has been dropped.

The Reliable samples use an aggressive technique (CTRL+C) that emulates an unexpected
broker interruption.
An intentional shutdown invokes an administrative Shutdown function on the broker. This
function is a command in the Management Console runtime.

In a Talk session, if the broker stopped and you sent a message, you would see:

javax.jms.IllegalStateException: The session is closed

This error occurs because Talk sample assumes that the connection is established and
available. The Talk sample does not consider the possibility that a problem occurred with
the connection (such as the network failing or the broker failing).

The ReliableTalk and ReliableChat samples, in contrast, are written to handle
exceptions. Both samples use a connection setup routine for retrying connections that fail
for some reason.

The ReliableTalk and ReliableChat samples also use the PERSISTENT delivery mode
option ensures that messages are logged before they are acknowledged and are
nonvolatile in the event of a broker failure. Consequently, as shown in the ReliableTalk
example, the application tries repeatedly to reconnect.

A unique SonicMQ feature monitors the heartbeat of the broker by pinging the broker at a
preset interval, letting the thread sleep for a while but initiating reconnection if the broker
does not respond. For more information, see Creating and Monitoring a Connection on
page 161.

These examples demonstrate techniques an application programmer can use to explicitly
handle connection exceptions. These samples do not, however, take advantage of an
important SonicMQ feature: fault-tolerant connections.

Fault-tolerant connections automatically detect problems with a connection and seamlessly
reconnect, if possible, either to the same broker or possibly to a backup broker (if your
deployment is set up to perform broker replication). This feature significantly enhances the
reliability of a connection.
Aurea Software, Inc. Confidential 96 Copyright © 2013 Aurea, Inc.

Reliable, Persistent, and Durable Messaging Samples
The exception handling logic in the ReliableTalk and ReliableChat programs is devoted
to retrying a connection after the connection fails for some reason. This logic, as written,
would not be necessary with a fault-tolerant connection, because the fault-tolerant
connection is able to automatically retry the connection on your behalf. A fault-tolerant
connection can attempt to reconnect indefinitely or for a fixed period of time, depending on
how it is set up.

When a fault-tolerant connection encounters a problem and is able to reconnect, your
application does not get an exception and continues processing after the connecting is
reestablished.

When a fault-tolerant connection times out without successfully reconnecting, the
connection is dropped and an exception is generated. Your exception handling logic can
decide what to do the exception. Retrying the connection might not make sense if the
automatic retry was unsuccessful.

For detailed information about fault-tolerant connections, see Fault-Tolerant Connections
on page 172.

ReliableTalk Application (PTP)

The following procedure explains how to run the ReliableTalk sample application.

To run the ReliableTalk sample:

1. Open a console window to the QueuePTP\ReliableTalk folder, then enter:

..\..\SonicMQ ReliableTalk -u AlwaysUp -qr SampleQ1 -qs SampleQ1

This command starts a ReliableTalk session for the user AlwaysUp.

2. Type some text then press ENTER.

The text is displayed, preceded by the user name that initiated that text. The message
was sent from the client application to the SampleQ1 queue on the broker and then
returned to the client as a receiver on that queue. The connection is active.

3. Stop the broker by pressing CTRL+C in the broker window.

The connection is broken. The ReliableTalk application tries repeatedly to reconnect,
as shown:

[MESSAGE RECEIVED] AlwaysUp: Hello

There is a problem with the connection.

JMSException: Connection dropped

Please wait while the application tries to re-establish the
connection...

Attempting to create connection...

Cannot connect to broker: localhost:2506. Pausing 10 seconds
before retry.
Aurea Software, Inc. Confidential 97 Copyright © 2013 Aurea, Inc.

Chapter 3: Examining the SonicMQ JMS Samples
Attempting to create connection...

Cannot connect to broker: localhost:2506. Pausing 10 seconds
before retry.

Attempting to create connection...

Cannot connect to broker: localhost:2506. Pausing 10 seconds
before retry.

Attempting to create connection...

Cannot connect to broker: localhost:2506. Pausing 10 seconds
before retry.

4. Restart the container and broker by using the Windows Start menu command or the
startmf script. The ReliableTalk application reconnects, as shown:

Attempting to create connection...

...Connection created.

...Setup complete.

...Connection started.

Receiving messages on queue "SampleQ1".

Enter text to send to queue "SampleQ1".

Press Enter to send each message.

ReliableChat Application (Pub/Sub)

The following procedure explains how to run the ReliableChat sample application.

To run the ReliableChat sample:

1. Open a console window to the TopicPubSub\ReliableChat folder, then type:

..\..\SonicMQ ReliableChat -u AlwaysUp

This command starts a ReliableChat session for the user AlwaysUp.

2. Type text and then press ENTER.

The text is displayed, preceded by the user name that initiated that text. The message
was sent from the client application to the broker and then returned to the client as a
subscriber to that topic. The connection is active.

3. Stop the broker by pressing CTRL+C in the broker window.

The connection is broken. The ReliableChat application tries repeatedly to reconnect.
The console window shows message similar to those in the ReliableTalk example.
Aurea Software, Inc. Confidential 98 Copyright © 2013 Aurea, Inc.

Reliable, Persistent, and Durable Messaging Samples
Restart the container and broker by using its Windows Start menu command or the
startmf script. The ReliableChat application reconnects. The console window shows
message similar to those in the ReliableTalk example.

Persistent Storage Application (PTP)

When a message is sent to a queue, the sender can take steps to assure that messages
sent are placed on a particular queue by specifying some additional requirements:

• Set the message delivery mode to PERSISTENT — The message is logged before the
producer is acknowledged and is guaranteed to be retained in the final broker’s
message store until it is either acknowledged as delivered or expires.

• Set the JMS_SonicMQ_preserveUndelivered message property to true — If the
message is for any reason undelivered, retain it.

• Set the JMS_SonicMQ_notifyUndelivered message property to true — Send notice to
the administrator of the broker that manages the queue.

Every broker provides a dead message queue where messages appropriately flagged are
moved when they become expired or undeliverable because a destination on that broker
or another remote broker puts message delivery into jeopardy.

In the DeadMessages sample application, you first modify two settings in the Management
Console that control the broker’s periodic checks of queues for expired messages. You
then start a session and create a sender to SampleQ1. You create a PERSISTENT message
that has a short time-to-live (so that it will expire). Because this message is PERSISTENT and
will expire, the message will be sent to the DMQ after it expires. You send the message to
SampleQ1, then observe the message on queue browsers on SampleQ1 and the DMQ.
Finally, you start the DeadMessages sample application that receives messages on the DMQ
and displays them in a Java window.

Note: Dynamic routing exposes several other reasons a message could get enqueued in
the Dead Message Queue. In a variation of this sample, a message could be
unexpired yet become undeliverable because it is sent to a bad node (such as
BadNode::SampleQ1) or a bad destination (such as ::BadQ). See the “Guaranteeing
Messages” chapter in the Aurea SonicMQ Application Programming Guide for
detailed examples of each reason code.

To change queue cleanup settings in the Management Console:

1. Start the SonicMQ container and broker (or confirm that they are already running),
then start the Management Console.

See Starting the SonicMQ Container and Management Console on page 70 for
instructions. See the Aurea SonicMQ Configuration and Management Guide for
detailed instructions about working with the Management Console.

2. In the Management Console, click the Configure tab.

3. In the left panel of the Management Console, expand the node for your broker
connection, right-click on the Queues node and select Properties.
Aurea Software, Inc. Confidential 99 Copyright © 2013 Aurea, Inc.

Chapter 3: Examining the SonicMQ JMS Samples
The Properties dialog box opens, as shown in Figure 24.

Figure 24: Queue Properties in Management Console

4. Set the queue cleanup properties as shown in Figure 25:

Figure 25: Set Queue Cleanup Interval

a. Enter a value in the Cleanup Interval field. For this example, enter 60 [seconds].

b. Make sure the Enable Cleanup Interval check box is activated.

c. Click OK.

The cleanup interval is set for the broker.
Aurea Software, Inc. Confidential 100 Copyright © 2013 Aurea, Inc.

Reliable, Persistent, and Durable Messaging Samples
5. Reload the broker to activate the new cleanup interval:

a. In the Management Console, click the Manage tab.

b. In the left panel, expand the Containers node and right-click the node for your
broker.

c. From the pop-up menu, choose Operations > Reload.

d. Click YES in the confirmation dialog box that opens.

The broker is reloaded, and the cleanup interval is activated.

To create a queue session, queue sender, and queue browsers:

1. Start the JMS Test client.

See Chapter 2, Using the JMS Test Client on page 45 for instructions.

2. To connect to a broker, click Message Brokers in the left panel of the JMS Test client
window.

In the right panel:

a. In the Broker Host field, enter localhost:2506.

b. In the Connect ID field, enter Conn1.

c. In the User field, enter Administrator.

d. In the Password field, enter Administrator.

e. Click Connect.

A node for this connection appears under the Message Brokers node in the left panel,
and the connection appears in the list of connections in the lower right panel.

3. To create a new queue session, in the left panel click the node for the broker you just
connected to: localhost:2506:Conn1.

In Create New Session area of the right panel:

a. In the Name field, enter Session1 for the new session.

b. In the Type field, select Queue from the pull-down list.

c. Click Create.

A node for the new queue session appears under the node for your broker connection
in the left panel. The queue session is listed in the Established Sessions area in the
right panel.
Aurea Software, Inc. Confidential 101 Copyright © 2013 Aurea, Inc.

Chapter 3: Examining the SonicMQ JMS Samples
4. To create a queue sender, in the left panel, click the Senders node under
QueueSession:Session1 node.

In the Create New Sender area of the right panel:

a. In the Queue field, enter SampleQ1 as the queue name.

b. Click Create.

A node for SampleQ1 appears under the Senders node in the left panel, and the new
sender is listed in the Established Senders area in the right panel. This new sender
will send messages to SampleQ1.

5. Create queue browsers for SampleQ1 and the DMQ:

a. In the left panel, click the Browsers node.

b. In the Create New Browser area, enter SampleQ1 in the Name field. Click Create.

A queue browser is created for SampleQ1.

c. In the Create New Browser area, enter SonicMQ.deadMessage in the Name field,
then click Create.

A queue browser is created for the DMQ.

Figure 26 shows the two queue browsers created for this queue session.

Figure 26: Create Queue Browsers

You will use these browsers to watch the message move to the dead message queue
after it has expired and the cleanup interval has passed.
Aurea Software, Inc. Confidential 102 Copyright © 2013 Aurea, Inc.

Reliable, Persistent, and Durable Messaging Samples
To create and send a PERSISTENT message that will expire:

1. To create and send a message to SampleQ1, in the left panel click the node for your
queue sender: Sender: SampleQ1.

a. Under the Body tab in the right panel:

• Enter some text for the body of the message.

• In the Summary area, choose the Delivery Mode option PERSISTENT and
enter a Time To Live value greater than zero, for example, 30000 [ms].

b. Under the Properties tab in the right panel:

• Choose the Property Name JMS_SonicMQ_preserveUndelivered from the
pull-down list. In the Property Value field, enter true. Click Set.

• Choose the Property Name JMS_SonicMQ_notifyUndelivered from the
pull-down list. Click Set. The Property Value true is carried forward, as
shown in Figure 27.

Figure 27: Persistent Message

2. Click Send to send the message to SampleQ1.

The message will be enqueued on SampleQ1 for 30 seconds, the Time To Live value that
you specified. If you had put an active receiver on that queue before the message expired,
you would see that the message was listed in SampleQ1, awaiting receivers on that queue.
Then your receiver would have taken it off the queue. However, the purpose of this sample
is to demonstrate a message that expires while waiting for a receiver. For that reason, you
created queue browsers that allow you to browse the messages without removing them
from the queue.

Messages that have expired are not removed from the original queue until they are
examined by the broker and found to be expired.
Aurea Software, Inc. Confidential 103 Copyright © 2013 Aurea, Inc.

Chapter 3: Examining the SonicMQ JMS Samples
To view messages on SampleQ1 and the DMQ:

1. In the left panel of the JMS Test client, click the SampleQ1 browser node, then click
the left arrow button in the right panel.

If it has been less than a minute (the time you set for the queue cleanup interval) since
the message expired, the message is listed in the Messages area.

2. Click the SonicMQ.deadMessages browser node, then click the left arrow in the right
panel.

When more than a minute has passed since the message expired, the message will
appear on the DMQ and you will see it in the browser, as shown in Figure 28.

Figure 28: Expired PERSISTENT Message on DMQ

3. Click the Properties tab.

Figure 29 shows the properties of the undelivered, expired message.
Aurea Software, Inc. Confidential 104 Copyright © 2013 Aurea, Inc.

Reliable, Persistent, and Durable Messaging Samples
Figure 29: Expired PERSISTENT Message Properties

The properties include the original settings to preserve and notify when undelivered.
The undelivered timestamp indicates the time of dequeuing into the DMQ. The reason
code, 1, indicates that the message expired.

4. Click the Body tab.

The body is unchanged, as shown in Figure 30.

Figure 30: Expired PERSISTENT Message Body

5. Click the left arrow in the SampleQ1 browser to see that the message has been
removed from that queue.

Expired messages are examined and, with the appropriate properties set, are transferred
to the dead message queue. The property you set instructs the broker to transfer the
expired message to the DMQ, placing it under administrative control with no expiration. The
message must now be explicitly flushed or dequeued. You can remove this message from
the DMQ by creating a receiver to that queue, or by running an application that takes a
message off the DMQ. The following procedure explains how to run the Dead Message
browser sample application to remove the message from the DMQ and display it in a Java
window.
Aurea Software, Inc. Confidential 105 Copyright © 2013 Aurea, Inc.

Chapter 3: Examining the SonicMQ JMS Samples
To run the DeadMessages browser sample:

1. Open a console window to the QueuePTP\DeadMessages folder.

2. Type ..\..\SonicMQ DeadMessages and press ENTER.

The Dead Messages Received Java window opens.

3. The dead messages are listed in the Dead Messages Received window, as shown in
Figure 31.

Figure 31: Dead Messages Received Browser

4. In the JMS Test client, click the SonicMQ.deadMessages browser node, then click the
left arrow in the right panel.

The message has been removed from the DMQ by the Dead Message browser sample
application.

A management application might clone the body into a new message and use some
business logic to reroute the message to an optional or fallback destination.

While expiration is common to all messaging deployments, there are several other reasons
a messages could be in-doubt or undeliverable in a dynamic routing architecture.

See the Aurea SonicMQ Application Programming Guide for information about using the
dead message queue and the dynamic routing architecture.

DurableChat Application (Pub/Sub)

In Pub/Sub messaging, when messages are produced, they are sent to all active
consumers who subscribe to a topic. Some subscribers register an enduring interest in
receiving messages that were sent while they were inactive. These durable subscriptions
are permanent records in the broker’s persistent storage mechanism.

Whenever a subscriber reconnects to the topic (under the registered username, subscriber
name, and client identifier), all undelivered messages to that topic that have not expired are
delivered immediately. The administrator can terminate durable subscriptions or a client
can use the unsubscribe() method to close the durable subscription.
Aurea Software, Inc. Confidential 106 Copyright © 2013 Aurea, Inc.

Reliable, Persistent, and Durable Messaging Samples
In an application, there are only a few changes to set up a subscriber as a durable
subscriber. Where Chat was coded as:

subscriber = subSession.createConsumer(topic);

DurableChat is coded as follows:

//Durable Subscriptions index on username, clientID, subscription name
//It is a good practice to set the clientID:
connection.setClientID(CLIENT_ID);
...
subscriber = subSession.createDurableSubscriber(topic,
"SampleSubscription");

As with ReliableChat, using the PERSISTENT delivery mode ensures that messages are
logged before they are acknowledged and are nonvolatile in the event of a broker failure.

Figure 32 shows what occurs when the subscriber requests an extra effort to ensure
delivery.
Aurea Software, Inc. Confidential 107 Copyright © 2013 Aurea, Inc.

Chapter 3: Examining the SonicMQ JMS Samples
Figure 32: Sequence Diagram for the DurableChat Application

To start DurableChat sessions:

1. Open a console window to the TopicPubSub\DurableChat folder, then enter:

..\..\SonicMQ DurableChat -u AlwaysUp

This command starts a DurableChat session for the user AlwaysUp.

2. Open another console window to the TopicPubSub\DurableChat folder, then
enter:

..\..\SonicMQ DurableChat -u SometimesDown

This command starts a DurableChat session for the user SometimesDown.

Message

YES

Consumer
(Subscriber)

Producer
(Publisher)

Connection TopicSession

request connection

topic

acknowledge

subscriber name .

NO

YES
Is the subscriber
session active?

Are there
messages waiting?

Broker's
Persistent
Data Store

consume
message

close connection

topic

name,
topic

Connection:
- Start

Broker
process

Message:
- Publish to topic

Message:
- Listen (asynch)

- Consume
consume
message

Restart
Connection

Message:
- Durable Subscription

- Consume

Topic:
- Create Topic
- Create Producer
- Create Consumer

Connection:
- New connection
- Set ClientId
- New session

Time
to

live

produce
message

topic
for

 durable
 subscribers

Connection
Factory

subscriber name, topic
if DURABLE

topic
Aurea Software, Inc. Confidential 108 Copyright © 2013 Aurea, Inc.

Reliable, Persistent, and Durable Messaging Samples
3. In the AlwaysUp window, type text and then press ENTER.

The text is displayed on both subscriber’s consoles.

4. In the SometimesDown window, type text and then press ENTER.

The text is displayed on both subscriber’s consoles.

5. Stop the SometimesDown session by pressing CTRL+C.

6. In the AlwaysUp window, send one or more messages.

The text is displayed on that subscriber’s console.

7. In the window where you stopped the DurableChat session, restart the session under
the same name.

When the DurableChat session reconnects, the retained messages are delivered and
then displayed in the SometimesDown console window.

While durable, the messages were not implicitly everlasting. The publisher of the message
sets a time-to-live parameter—a value that, when added to the publication timestamp,
determines the expiration time of the message. The time-to-live value in milliseconds can
be any positive integer. In this sample, the time-to-live is 1,800,000 milliseconds (thirty
minutes). Setting the value to zero retains the message indefinitely.

Continuous Producer Demonstrating Client
Persistence

Note: This sample require the ClientPlus libraries for the SonicMQ client. When you have
the ClientPlus edition or the Enterprise Plus edition, these features are available to
you.

While the ReliableTalk sample (see ReliableChat Application (Pub/Sub) on page 98)
showed that the client can reconnect when the broker is again available, other features
enable the client to continue its work when it is sending messages and the broker
connections fails. The SonicMQ ClientPlus has an extended capability that enables the
client to establish a message cache on the client where a definable volume of sent
messages can be buffered while a connection is re-established. When the connection and
session are again active, the oldest messages buffered are sent normally and more recent
messages sent continue to accrue in the buffer. When the local store is empty, the use of
the local store is transparent.

The applications in the LocalStore sample provide the extended feature of client
persistence, a way for client application to continue sending messages despite losing
connection with the broker. Messages sent by the client are buffered in a persistent store
on the client system until connection is established at which time the accrued messages
are sent. This section includes two sets of samples, one for each messaging domain. Each
set runs a continuous producer that sends and displays a sequence number and a
consumer that receives the messages sent. The broker is stopped to effect the local store
of produced message. When the broker restarts, the messages are sent and the receiver
displays them.
Aurea Software, Inc. Confidential 109 Copyright © 2013 Aurea, Inc.

Chapter 3: Examining the SonicMQ JMS Samples
Local Store Sample (PTP)

This example includes two applications to continuously send and receive messages using
the PTP messaging model.

To send Chat messages even when the broker connection stops:

1. Open a console window to the ClientPlus\LocalStore folder, then enter:

..\..\SonicMQ MessageReceiver -u Warehouse -qr SampleQ1

This command starts a MessageReceiver session for the receiver Warehouse.

2. Open another console window to the ClientPlus\LocalStore folder, then type:

..\..\SonicMQ ContinuousSender -u HandHeld -qs SampleQ1

This command starts a MessageReceiver session for the sender HandHeld.

The sender connects and starts sending messages to the queue. The receiver takes
the enqueued messages from the queue.

3. Stop the broker by pressing CTRL+C in the SonicMQ Container console window.

The connection is broken for both the sender and the receiver. The receiver tries
repeatedly to reconnect. The sender continues to send messages without pause while
the broker is unavailable, as shown in Figure 33.

Figure 33: ContinuousSender Sample Sends Without Pause

4. Restart the broker by using its Windows Start menu command or the startmf script.
Both applications reconnect to the broker.
Aurea Software, Inc. Confidential 110 Copyright © 2013 Aurea, Inc.

Reliable, Persistent, and Durable Messaging Samples
After reconnecting, the MessageReceiver application gets all the sent messages from
its local store, including those sent while the broker connection was broken, as shown
in Figure 34.

Figure 34: MessageReceiver Sample Handling Disconnection

You can stop both sessions by pressing CTRL+C in the sender and receiver console
windows before proceeding to the next sample.

Local Store Sample (Pub/Sub)

This example includes two applications to continuously publish and subscribe using the
Pub/Sub messaging model.

To run the LocalStore Pub/Sub sample:

1. Open a console window to the ClientPlus\LocalStore folder, then enter:

..\..\SonicMQ ContinuousPublisher -u Wireless

The publisher connects and starts publishing messages to the LocalStore.sample
topic.

2. Open another console window to the ClientPlus\LocalStore folder, then enter:

..\..\SonicMQ MessageSubscriber -u Customer

The subscriber connects and receives messages published to the LocalStore.sample
topic.
Aurea Software, Inc. Confidential 111 Copyright © 2013 Aurea, Inc.

Chapter 3: Examining the SonicMQ JMS Samples
3. Stop the broker by pressing CTRL+C in the broker window.

The connection is broken for both the publisher and the subscriber. The subscriber
tries repeatedly to reconnect.

4. Restart the container and broker using Windows Start menu command or the startmf
script.

Both applications reconnect to the broker.

After reconnecting, the MessageSubscriber application gets all the published
messages from its local store, including those published while the broker connection
was broken.

You can stop both sessions by pressing CTRL+C in the sender and receiver console
windows before proceeding to the next sample.

Reviewing Reliable, Persistent, and Durable
Messaging

The characteristics demonstrated in this section improve Quality of Service (QoS) while
requiring modest overhead. The examples in this section can be combined so that you
create a reliable, persistent talk and a reliable, durable chat. The source code of these
samples is readily transferable into your applications.

The ClientPlus feature of persistence on the client shows how clients can store messages
to provide a higher level of reliability to supporting applications that need to produce
messages at will. There are also other facets to consider for optimal QoS, including the
various security, encryption, access control, and transport protocols. See the Aurea
SonicMQ Deployment Guide for information about security and protocols.

Request and Reply Samples
Loosely coupled applications require special techniques when it is important for the
publisher to certify that a message was delivered in either messaging domain:

• Point-to-point — While a sender can see if a message was removed from a queue,
implying that it was delivered, there is no indication where it went.

• Publish and Subscribe — While the publisher can send long-lived messages to
durable receivers and get acknowledgement from the broker, neither of these
techniques confirms that a message was actually delivered or how many, if any,
subscribers received the message.

A message producer can request a reply when a message is sent. A common way to do
this is to set up a temporary destination and header information that the consumer can
use to create a reply to the sender of the original message.
Aurea Software, Inc. Confidential 112 Copyright © 2013 Aurea, Inc.

Request and Reply Samples
In both Request and Reply samples, the replier’s task is a simple data processing exercise:
standardize the case of the text sent—receive text and send back the same text as either
all uppercase characters or all lowercase characters—then publish the modified message
to the temporary destination that was set up for the reply.

While request-and-reply provides proof of delivery, it is a blocking transaction—the
requestor waits until the reply arrives. While this situation might be appropriate for a system
that, for example, issues lottery tickets, it might be preferable in other situations to have a
formally established return destination that echoes the original message and a correlation
identifier—a designated identifier that certifies that each reply is referred to its original
requestor.

Note: JMSReplyTo and JMSCorrelationID are used as a suggested design pattern
established as a part of the JMS specification. The application programmer
ultimately decides how these fields are used, if they are used at all.

The sample applications use JMS sample classes, TopicRequestor and QueueRequestor.
You should create the Request/Reply helper classes that are appropriate for your
application.

Request and Reply (PTP)

In the PTP domain, the requestor application can be started and even send a message
before the replier application is started. The queue holds the message until the replier is
available. The requestor is still blocked, but when the replier’s message listener receives
the message, it releases the blocked requestor. The sample code includes an option (-m)
to switch the mode between uppercase and lowercase.

To start the PTP Request and Reply sessions:

1. Open two console windows to the QueuePTP\RequestReply folder.

2. In one console window enter:

..\..\SonicMQ Requestor -u QRequestor

This command starts a PTP Requestor session for the user QRequestor.

3. In the other console window enter:

..\..\SonicMQ Replier -u QReplier

This command starts a PTP Replier session for the user QReplier.

The default value of the mode in this sample is uppercase.
Aurea Software, Inc. Confidential 113 Copyright © 2013 Aurea, Inc.

Chapter 3: Examining the SonicMQ JMS Samples
To test a PTP request and reply:

• In the Requestor window, type AaBbCc then press ENTER.

The Replier window reflects the activity, displaying:

[Request] QRequestor: AaBbCc

The Replier does its operation (converts text to uppercase) and sends the result in a
message to the Requestor. The Requestor window gets the reply from the Replier:

[Reply] Uppercasing-QRequestor: AABBCC

Request and Reply (Pub/Sub)

In this example in the Pub/Sub domain, the replier application must be started before the
requestor so that the Pub/Sub replier’s message listener can receive the message and
release the blocked requestor.

To start the Pub/Sub Request and Reply sessions:

1. Open two console windows to the TopicPubSub\RequestReply folder.

2. In one of the windows enter:

..\..\SonicMQ Replier

This command starts a Pub/Sub Replier session.

The default value of the mode in this sample is uppercase.

3. In the other window enter:

..\..\SonicMQ Requestor

This command starts a Pub/Sub Requestor session.

To test a Pub/Sub request and reply:

1. In the Requestor window, type AaBbCc then press ENTER.

The Replier window reflects the activity, displaying:

[Request] SampleReplier: AaBbCc

The replier completes its operation (converts text to uppercase) and sends the result
in a message to the requestor. The requestor gets the reply from the replier:

[Reply] Uppercasing-SAMPLEREQUESTOR: AABBCC
Aurea Software, Inc. Confidential 114 Copyright © 2013 Aurea, Inc.

Selection, Group, and Wild Card Samples
Reviewing the Request and Reply Samples

These request and reply samples show:

• Request and reply mechanisms are very similar across domains.

• While there might be zero or many subscriber replies, there will be, at most, one PTP
reply.

• Using message header fields (JMSReplyTo and JMSCorrelationID) and the requestor
sample classes (javax.jms.TopicRequestor and javax.jms.QueueRequestor) are
suggested implementations for request-and-reply behavior in JMS. These examples,
however, require you to use model-specific JMS Version 1.02b interfaces. For a
description about how you can accomplish request-reply functionality using interfaces
common to both models, see Reply-to Mechanisms on page 279.

Selection, Group, and Wild Card Samples
While specific queues and topics provide focused content nodes for messages that are of
interest to application producers and consumers, there are circumstances where the
programmer might want to control what subsets of messages a receiver actively selects, or
what subsets of messages a queue receiver is passively assigned to accept. The two
techniques are mutually exclusive for queue receivers. Either:

• The receiver decides which messages it wants through message selection based on
syntax much like an SQL WHERE clause.

• The receiver is assigned to one or more message groups defined by the queue
sender and dispatched by the broker.

A variation of selection is also explored in this section. SonicMQ lets you use dot-delimited
naming hierarchies so that a topic consumer can create wildcards that express interest in
receiving messages in leaf topic levels without knowing specific topic names.

Message Selection: SelectorTalk and
SelectorChat

While a consumer could declare each destination of interest, the dynamic naming of topics
(assuming there are no security constraints) means that a subscriber application might
need to scan many topics.

In PTP domains, all message selection takes place on the server. However, in Pub/Sub
domains, all messages for a subscribed topic are by default delivered to the subscriber and
then the filter is applied to decide what will be consumed. When the subscriber message
traffic is a burden and server resources can handle it, you can command a Pub/Sub
message selector to filter the messages on the server by calling
factory.setSelectorAtBroker(true) on the ConnectionFactory.
Aurea Software, Inc. Confidential 115 Copyright © 2013 Aurea, Inc.

Chapter 3: Examining the SonicMQ JMS Samples
SelectorTalk Application (PTP)

The SelectorTalk sample application starts by declaring a selector String-value that will
be attached to the message as PROPERTY_NAME=‘String_value’. The sessions send and
receive to alternate queues so that they pass each other messages. The receive method
has a selector string parameter (-s). In PTP domains, all messages for a queue topic are
filtered on the broker and then the qualified messages are delivered to the consumer.

To run SelectorTalk sessions:

1. Open a console window to the QueuePTP\SelectorTalk folder, then enter:

..\..\SonicMQ SelectorTalk -u AAA -s North -qr SampleQ1 -qs
SampleQ2

This command starts a SelectorTalk session for the user AAA with the selector string
North.

2. Open another console window to the QueuePTP\SelectorTalk folder, then enter:

..\..\SonicMQ SelectorTalk -u BBB -s South -qr SampleQ2 -qs
SampleQ1

This command starts a SelectorTalk session for the user BBB with the selector string
South.

3. In the AAA window, type any text and then press ENTER.

The message is enqueued but there is no receiver. The BBB selector string does not
see any enqueued messages except those that evaluate to South.

4. Stop the BBB session by pressing CTRL+C.

5. In the BBB window start a new session, changing the selector string:

..\..\SonicMQ SelectorTalk -u BBB -s North -qr SampleQ2 -qs Sample
q1

The session starts and the message that was enqueued is immediately received.

6. In the AAA window, again type any text and then PRESS ENTER.

The message is enqueued and the BBB selector string qualifies the message for
immediate delivery.

SelectorChat Application (Pub/Sub)

In the SelectorChat application, the application starts by declaring the String-value that
will be attached to the message as PROPERTY_NAME=‘String_value’. The method for the
subscription declares the sample’s topic, jms.samples.chat, and the selector string (-s).
Aurea Software, Inc. Confidential 116 Copyright © 2013 Aurea, Inc.

Selection, Group, and Wild Card Samples
To run SelectorChat sessions:

1. Open a console window to the TopicPubSub\SelectorChat folder, then enter:

..\..\SonicMQ SelectorChat -u Closer -s Sales

This command starts a SelectorChat session for the user Closer with the selector
string Sales.

2. Open another console window to the TopicPubSub\SelectorChat folder, then enter:

..\..\SonicMQ SelectorChat -u Presenter -s Marketing

This command starts a SelectorChat session for the user Presenter with the selector
string Marketing.

3. In the Closer window, type any text and then press ENTER.

The text is only displayed in the Closer window. The Presenter selector string
excludes the Sales message.

4. In the Presenter window, type any text and then press ENTER.

The text is only displayed in the Presenter window. The Closer selector string
excludes the Marketing message.

5. Stop the Closer session by pressing CTRL+C.

6. In the Closer window start a new session, changing the selector string:

..\..\SonicMQ SelectorChat -u Closer -s Marketing

7. Type text in either window and then press ENTER.

Because the selector string matches for the sessions, the text is displayed in both
windows.

MessageGroupTalk (PTP)

In the MessageGroupTalk sample, a queue is set up on the broker that will enable message
grouping. Then producer applications send messages with message group identifiers. As
consumer applications are allocated messages by the broker, they are bound to message
groups.

To set up a queue that enables message grouping:

1. Start the SonicMQ container and broker (or confirm that they are already running),
then start the Management Console.

See Starting the SonicMQ Container and Management Console on page 70 for
instructions.

2. In the Management Console, click the Configure tab.
Aurea Software, Inc. Confidential 117 Copyright © 2013 Aurea, Inc.

Chapter 3: Examining the SonicMQ JMS Samples
3. In the left panel of the Management Console, expand the node for your broker
connection, right-click on the Queues node and select New Queue.

4. In the New Queue dialog box, enter the queue name MessageGroupTalkQueue, as
shown:
Aurea Software, Inc. Confidential 118 Copyright © 2013 Aurea, Inc.

Selection, Group, and Wild Card Samples
5. Click the Message Groups tab, and then select (check) Enable Message Group
Handling, as shown:

6. Click OK.

The queue is created and ready to dispatch messages that request grouping on
dispatch to consumers.

To run MessageGroupTalk sessions:

1. Open a console window to the QueuePTP\MessageGroupTalk folder, then enter:

..\..\SonicMQ MessageGroupTalk -u Claims1 -qr
MessageGroupTalkQueue

This command starts a MessageGroupTalk receiver session for the user Claims1.

2. Open another console window, then enter:

..\..\SonicMQ MessageGroupTalk -u Claims2 -qr
MessageGroupTalkQueue

This command also starts a MessageGroupTalk receiver session for the user Claims2.
Aurea Software, Inc. Confidential 119 Copyright © 2013 Aurea, Inc.

Chapter 3: Examining the SonicMQ JMS Samples
These are undifferentiated receivers. Without message grouping, they would take turns
receiving the messages off the queue.

1. Open a console window, then enter:

..\..\SonicMQ MessageGroupTalk -u Adjuster1 -qs
MessageGroupTalkQueue -g ABC

This command starts a MessageGroupTalk send session for the group ABC.

2. Open another console window, then enter:

..\..\SonicMQ MessageGroupTalk -u Adjuster2 -qs
MessageGroupTalkQueue -g DEF

This command starts a MessageGroupTalk send session for the group DEF.

3. In the Adjuster1 window, type any text and then press ENTER.

The text is displayed in the window of its assigned receiver.

Notice that the message indicates the message group. That message group is bound
to that receiver as long as the broker and the receiver are running. (There is a settable
timeout based on inactivity, and the sender can explicitly tell the broker to close the
assigned receiver. See Using Message Grouping on page 288 for details.)

4. Enter more messages in the Adjuster1 window.

The text is also displayed in the window of the assigned receiver to group ABC.

5. In the Adjuster2 window, type any text and then press ENTER.

The text is displayed in the window of its assigned receiver, which likely is the other
receiver.

6. Enter more messages in the Adjuster2 window.

The text is displayed in the window of the assigned Claims receiver to group DEF.

Keep these windows open while you explore other message grouping behaviors.

Reassigning a message group’s receiver

1. Stop the Claims1 receiver session by pressing CTRL+C. Then start it again using the
same commandline as before.

2. In each of the sender (Adjuster1 and Adjuster2) windows, enter text. The messages
are both received in the Claims2 window. When you closed the other receiver, its
message group was reassigned by the broker to another active receiver.
Aurea Software, Inc. Confidential 120 Copyright © 2013 Aurea, Inc.

Selection, Group, and Wild Card Samples
Adding another sender (and group) and another receiver:

1. Open another console window, then enter:

..\..\SonicMQ MessageGroupTalk -u Claims3 -qr
MessageGroupTalkQueue

This command starts a MessageGroupTalk receiver session for the user Claims1.

2. Open a console window, then enter:

..\..\SonicMQ MessageGroupTalk -u Adjuster3 -qs
MessageGroupTalkQueue -g GHI

3. In the Adjuster3 window, enter a few messages.

Either the new receiver or the restarted receiver get the new group.

You can continue to explore the behaviors with other exercises:

• Stop Claims2 and then restart it. Send messages from each Adjuster. Note the two
groups assigned to that receiver are assigned to the other receivers.

• Stop an Adjuster, change its group name to the same group name as an active
Adjuster, and then restart it. Send messages from each Adjuster. Note that senders
to the same group are all received by the same assigned group receiver. Also notice
that starting and stopping the sender had no impact on the assigned group receivers.

HierarchicalChat Application (Pub/Sub)

SonicMQ provides a hierarchical topic structure that allows wild card subscriptions. This
feature enables an application to have the power of a message selector plus a more
streamlined way to often get the same result. In this sample, each application instance
creates two sessions, one for the publish topic (-t) and one for the subscribe topic (-s).

To start HierarchicalChat sessions:

1. Open a console window to the TopicPubSub\HierarchicalChat folder then
enter:

..\..\SonicMQ HierarchicalChat -u HQ -t sales.corp -s sales.*

This command starts two HierarchicalChat sessions for the user HQ:

• One session that publishes messages to the topic sales.corp

• One session that listens for messages from the subscribe topic sales.*

2. Open another console window to the TopicPubSub\HierarchicalChat folder
then enter:

..\..\SonicMQ HierarchicalChat -u America -t sales.usa -s
sales.usa
Aurea Software, Inc. Confidential 121 Copyright © 2013 Aurea, Inc.

Chapter 3: Examining the SonicMQ JMS Samples
This command starts two HierarchicalChat sessions for the user America:

• One session that publishes messages to the topic sales.usa

• One session that listens for messages from the subscribe topic sales.usa

To run HierarchicalChat:

1. In the HQ window, type text and then press ENTER.

The text is displayed in only the HQ window because HQ subscribes to all topics in the
sales hierarchy while America is subscribing to only the sales.usa topic.

2. In the America window, type text and then press ENTER.

The text is displayed in both windows because:

• America subscribes to the sales.usa topic.

• HQ subscribes to all topics that start with sales.

Reviewing the Selection, Group, and Wild Card
Samples

While selector strings can provide a variety of ways to qualify what messages will be
chosen for receipt by a consumer, the overhead in the evaluation of the selectors can slow
down overall system performance. See Message Selection on page 271 for more
information about message selectors.

Message groups enable queue senders in concert with broker queue administrators to
focus receivers on the queue on a series of messages that should be consumed in order.
While not as strict as exclusive receivers or transactions, message grouping provides pretty
good handling of sets messages as identified entirely by the message producers. See
Using Message Grouping on page 288 for more information about message grouping.

HierarchicalChat illustrates a feature of SonicMQ that can provide the advantages of
selectors with minimal overhead. Note also that security access control uses similar wild
card techniques to enable read/write security for all subtopics within a topic node. See
Hierarchical Name Spaces on page 411 for more information about hierarchical name
spaces selectors. For information on hierarchical security, see the Aurea SonicMQ
Deployment Guide.

Test Loop Sample
A simple loop test lets you experiment with messaging performance.
Aurea Software, Inc. Confidential 122 Copyright © 2013 Aurea, Inc.

Enhancing the Basic Samples
QueueRoundTrip Application (PTP)

The RoundTrip sample application sends a brief message to a sample queue and then uses
a temporary queue to receive the message back. A counter is incremented and the
message is sent for another trip. After completing the number of cycles you entered when
you started the test, the run completes by displaying summary and average statistics.

To run QueueRoundTrip:

1. Open a console window to the QueuePTP\QueueRoundTrip folder then enter:

..\..\SonicMQ QueueRoundTrip -n 100

This command starts a QueueRoundTrip session that sends a message on 100 round
trips to a temporary queue.

The QueueRoundTrip window displays information about the cycles, as shown:

Sending Messages to Temporary Queue...

Time for 100 sends and receives: 631ms

Average Time per message: 6.31ms

Press enter to continue...

2. In the QueueRoundTrip window enter:

..\..\SonicMQ QueueRoundTrip -n 1000

This command starts a QueueRoundTrip session that sends a message on 1000 round
trips to a temporary queue.

The QueueRoundTrip window displays information for the 1000 cycles, as shown:

Sending Messages to Temporary Queue...

Time for 1000 sends and receives: 5538ms

Average Time per message: 5.538ms

Press enter to continue...

Note: This sample lets you evaluate features and is not intended as a performance tool.
For information on performance, see the Aurea SonicMQ Performance Tuning
Guide.

Enhancing the Basic Samples
After exploring the basic samples you can modify the sample source files to learn more
about SonicMQ. You need a Java compiler to compile your changes.
Aurea Software, Inc. Confidential 123 Copyright © 2013 Aurea, Inc.

Chapter 3: Examining the SonicMQ JMS Samples
Use Common Topics Across Clients

When you run the Pub/Sub samples you might notice that while all the Chat applications
get Chat messages and all the DurableChat applications get DurableChat messages, they
do not receive each other’s messages. This is because the applications are publishing to
different topics. You can set the two applications to monitor messages on the same topic.

To put Chat and DurableChat on the same topic:

1. Open the SonicMQ sample file DurableChat.java for editing.

2. Change the value of the variable APP_TOPIC from jms.samples.durablechat
to jms.samples.chat.

3. Save and compile the edited DurableChat.java file.

4. Run the new DurableChat.class file.

Now messages sent from DurableChat and Chat are received by both regular and durable
subscribers. The durable subscribers will receive messages when they recover from offline
situations, but the regular subscribers will not recover missed messages.

Important: If you make this change, the broker will maintain the durable subscriptions for
all the Chat messages. While DurableChat messages expire after 30 minutes,
Chat messages are published with the default time-to-live (never expire). The
Chat messages will endure for durable subscribers until one of the following
occurs:

The durable subscriber connects to receive the messages.

The durable subscriber explicitly unsubscribes.

The persistent storage mechanism is initialized.

Trying Different RoundTrip Settings

The RoundTrip sample application lets you choose a number of produce-then-consume
iterations to perform when the application runs. You can enhance the application to explore
the time impact of other settings and parameters as well.

Note: This sample lets you evaluate features and is not intended as a performance tool.
For information on performance, see the Aurea SonicMQ Performance Tuning
Guide.

A counter is incremented and the message is sent for another trip. After completing the
number of cycles you entered when you started the test, the run completes by displaying
summary and average statistics.
Aurea Software, Inc. Confidential 124 Copyright © 2013 Aurea, Inc.

Enhancing the Basic Samples
To extend the QueueRoundTrip sample:

1. Edit the SonicMQ sample file QueuePTP\QueueRoundTrip.java to establish any
of the following behavior changes:

• Change the javax.jms.message.DeliveryMode from NON_PERSISTENT to
PERSISTENT. Run it, then change it to NON_PERSISTENT_ASYNC.

• You could change the priority or timeToLive values, but in this sample the
effect would be negligible.

• Change the message type from the bodyless createMessage() to a bodied
message type, such as createTextMessage().

• Create a set of sample strings (or other appropriate data type) to populate a
bodied-message payload with different size payloads.

• Use createXMLMessage() and load the message payload with well-formed XML
data. Then try the same payload as a TextMessage.

• Change the receiver session acknowledgement mode from AUTO_ACKNOWLEDGE to
DUPS_OK_ACKNOWLEDGEMENT. Change it again to CLIENT_ACKNOWLEDGE or
SINGLE_MESSAGE_ACKNOWLEDGE, then add an explicit acknowledge() after the
receive is completed.

2. Save and compile the edited .java file.

3. Open a console window to the QueuePTP\QueueRoundTrip folder then enter

..\..\SonicMQ QueueRoundTrip -n 100

4. Look at the results and compare them to other round trips (see QueueRoundTrip
Application (PTP) on page 123).

Modifying the MapMessage to Use Other Data
Types

The concept of the MapMessage sample application is limited when its content is just a
snippet of text. The key concepts of the MapMessage sample are that:

• The body is a collection of name-value pairs.

• The values can be Java primitives.

• The receiver can access the names in any sequence.

• The receiver can attempt to coerce a value to another data type.

The following exercise adds some mixed data types to the MapTalk source file before the
message is sent. Then the receiver takes the data in a different sequence and formats it for
display.

The example uses typed set() methods to populate the message with name-typedValue
pairs. The get() methods retrieve the named properties and attempt coercion if the data
type is dissimilar.
Aurea Software, Inc. Confidential 125 Copyright © 2013 Aurea, Inc.

Chapter 3: Examining the SonicMQ JMS Samples
To extend the MapTalk sample to use and display other data types:

1. Edit the SonicMQ sample file MapTalk.java at the lines:

javax.jms.MapMessage msg = sendSession.createMapMessage();

msg.setString("sender", username);

msg.setString("content", s);

2. Add the lines for the set() methods (or your similar lines):

msg.setInt("FiscalYearEnd", 10);

msg.setString("Distribution", "global");

msg.setBoolean("LineOfCredit", true);

3. You must extract the additional data by get() methods to expose the values in the
receiving application. Because the sample is a text-based display, you can include the
getString () methods in the construction of the string that will display in the console.

Change this:

String content = mapMessage.getString("content");

System.out.println(sender + “: “ + content);

to:

SString content =

("Content: " + mapMessage.getString("content") + "\n" +

"Distribution: " + mapMessage.getString("Distribution") + "\n"
+

"FiscalYearEnd: " + mapMessage.getString("FiscalYearEnd") +
"\n" +

"LineOfCredit: " + mapMessage.getString("LineOfCredit") +
"\n");

System.out.println("MapMessage from " + sender + "\n------- \n" +
content);

4. Save and compile the edited .java file.

5. Run the edited .class file.

Now when the MapTalk sample runs, the content is the text you typed plus the mapped,
resequenced, and converted properties.
Aurea Software, Inc. Confidential 126 Copyright © 2013 Aurea, Inc.

Enhancing the Basic Samples
Modifying the XMLMessage Sample to Show
More Data

The XMLDOMTalk and XMLDOMChat samples for the XMLMessage type are limited to the data
that is input as text as a single content node. While the data collection/validation loops and
the data transfers from application data stores are reserved as more advanced exercises,
this example demonstrates how well-formed XML data is transformed into DocNodes from
the org.w3c.dom.Node standards.

To extend the XMLDOMChat sample to show more data:

1. Edit the SonicMQ sample file XMLDOMChat.java starting after:

// Note that the XMLMessage is a aurea Software extension

progress.message.jclient.XMLMessage xMsg =

...

StringBuffer msg = new StringBuffer();

msg.append ("<?xml version=\"1.0\"?>\n");

msg.append ("<message>\n");

msg.append (" <sender> + username + “</sender>\n");

msg.append (" <content> + s + “</content>\n");

2. Insert the formatted, tagged XML lines you want to append to the message. For
example:

msg.append ("<RFP>\n");

msg.append ("<REQUEST>\n");

msg.append ("<REQ_ID>1125-2000-225</REQ_ID> \n");

msg.append ("<FOB>Portland Maine</FOB> \n");

msg.append ("<RFP_DUE>31-JAN-2000</RFP_DUE> \n");

msg.append ("<DELIVERY_DUE>15-AUG-2000</DELIVERY_DUE> \n");

msg.append ("<CATEGORY>Grains</CATEGORY> \n");

msg.append ("<LINE_ITEMS>\n");

msg.append ("<LINE>\n");

msg.append ("<ITEM>1125-2000-225.1 Wheat</ITEM> \n");

msg.append ("<QTY>10000 tons</QTY>\n");

msg.append ("</LINE> \n");

msg.append ("<LINE>\n");

msg.append ("<ITEM>1125-2000-225.2 Rice</ITEM> \n");
Aurea Software, Inc. Confidential 127 Copyright © 2013 Aurea, Inc.

Chapter 3: Examining the SonicMQ JMS Samples
msg.append ("<QTY>20000 tons</QTY>\n");

msg.append ("</LINE>\n");

msg.append ("<LINE>\n");

msg.append ("<ITEM>1125-2000-225.3 Corn</ITEM> \n");

msg.append ("<QTY>40000 tons</QTY> \n");

msg.append ("</LINE> \n");

msg.append ("</LINE_ITEMS> \n");

msg.append ("</REQUEST> \n");

msg.append ("</RFP> \n");

msg.append ("</message> \n");

3. Save and compile the edited .java file.

4. Run the edited .class file.
Aurea Software, Inc. Confidential 128 Copyright © 2013 Aurea, Inc.

Enhancing the Basic Samples
When you run the application and enter a basic text message, the complete document
object model (DOM) is also displayed, similar to the subscriber session listing in Figure 35.

Figure 35: XMLMessage Parsed into a Document Object Model
Aurea Software, Inc. Confidential 129 Copyright © 2013 Aurea, Inc.

Chapter 3: Examining the SonicMQ JMS Samples
Because the data is interpreted in the DOM format only when the message is an instance
of an XMLMessage, a Chat session displays the same message as a TextMessage—
the XML-tagged text without DOM interpretation, as shown in Figure 36.

Figure 36: XMLMessage as Tagged Text

Note: You could have appended the XML tagged lines without the \n, suppressing the
blank TEXT_MODE lines in the DOM. It would, however, make one unbroken text line
for general text or raw XML review.

You can continue working with the samples by changing broker settings to explore
connection protocols and protocol handlers. You can also enable security on the broker
persistent storage mechanism then examine the protocols that provide connection security.
For information about using protocols and security, see the Aurea SonicMQ Configuration
and Management Guide.
Aurea Software, Inc. Confidential 130 Copyright © 2013 Aurea, Inc.

4
SonicMQ Connections

This chapter explains the programming concepts and actions required to establish and
maintain SonicMQ connections. This chapter contains the following sections:

• Overview of SonicMQ Connections on page 132

• Protocols on page 133

• JVM Command Options on page 139

• Connection Factories and Connections on page 142

• Client Persistence on page 163

• Asynchronous Message Delivery on page 167

• Fault-Tolerant Connections on page 172

• Starting, Stopping, and Closing Connections on page 202

• Using Multiple Connections on page 203

• Communication Layer on page 203
Aurea Software, Inc. Confidential 131 Copyright © 2013 Aurea, Inc.

Chapter 4: SonicMQ Connections
Overview of SonicMQ Connections
The SonicMQ clients provide a lightweight platform that can access the messaging features
provided by the SonicMQ brokers. In the JMS programming model, a programmer creates
JMS connections that establish the application’s identity and specify how the connection
with the broker will be maintained. Within each connection, one or more sessions are
established. Each session is used for a unique delivery thread for messages that are
delivered to the client application. This chapter explains the programming required to
establish and maintain client connections to brokers. Chapter 5, SonicMQ Client Sessions
on page 205 explains the programming required to establish and maintain client sessions.

A SonicMQ application starts by accessing a ConnectionFactory and using this to create
a connection that binds the client to the broker (see JVM Command Options on page 139).
ConnectionFactory objects are administered objects—objects with connection
configuration parameters that can be defined by an administrator (see Connecting to
SonicMQ Using Administered Objects on page 152), or created by the client application.

Within a connection, one or more sessions can be created. Each session establishes a
single-threaded context in which messages can be sent or received. Figure 37 shows a
client application where one connection has been made through which one session has
been established. The client application uses programmatic interfaces to the JMS Client
API that are executed through the SonicMQ client runtime on the session.

Figure 37: JMS Session on a Connection

Multiple sessions can be established on a single connection. Once the connection and
sessions are established, the broker traffic can be either:

• A message producer delivering a message to its broker

• A broker delivering a message to an application that will consume it

Client Application

SonicMQ
Broker

JMS Client API

ConnectionFactory

S
E
S
S
I
O
N

C
O
N
N
E
C
T
I
O
N

Aurea Software, Inc. Confidential 132 Copyright © 2013 Aurea, Inc.

Protocols
In the example shown in Figure 38, two sessions exist on the same connection.

Figure 38: Producers and Consumers

See Chapter 7, on page 261 for more information about message producers and
consumers.

Protocols
This section describes the protocols that client applications use for broker communication
from a JMS client application:

• TCP on page 133

• SSL on page 134

• HTTP on page 138

• HTTPS on page 138

• “sonicrn:///” on page 138

These protocols are nearly transparent within the application. When the port acceptor on
the broker matches the connection factory parameter from the application, connection can
be established under that protocol.

See Connecting to SonicMQ Directly on page 152 for details on explicit use of the protocol
value.

Note: For information on "sonicrn:///" Protocol, refer to Location Tranparency chapter in
Aurea SonicMQ Deployment Guide.

TCP

TCP is the default socket type for SonicMQ. Client applications that are Internet-enabled
generally use TCP/IP protocols.

Messages

SonicMQ
Broker

DESTINATION

CONSUMER subscribes, receives

PRODUCER publishes, sends

C
O
N
N
E
C
T
I
O
N

S
E
S
S
I
O
N

S
E
S
S
I
O
N

Aurea Software, Inc. Confidential 133 Copyright © 2013 Aurea, Inc.

Chapter 4: SonicMQ Connections
SSL

SonicMQ supports encryption at the connection level through SSL. SonicMQ ships with
Java Secure Socket Extensions (JSSE) SSL. If you have a business arrangement with RSA
Security such that you have BSAFE-J SSL libraries from RSA Security, you can add the
RSA libraries to your broker installation, and set the broker to use RSA SSL.

See the Aurea SonicMQ Deployment Guide for more information about SSL, and how to
configure JSSE and RSA SSL on the broker and between brokers.

Using SSL on the Client

Transport layer security between a client application and a broker involves a set of libraries
and files on the client and the broker that enable SSL connectivity. Clients need to set
several Java runtime properties to identify the SSL provider, the certificates, and the cipher
suites preferred for the encryption of the communication channel.

These properties can be established in any one of the following ways:

• Command line — Pass the SSL properties at the command line when starting the
application.

• Programmatically — Code the SSL properties directly into your application.

• Properties — Create and reference a properties file containing SSL properties.

• Scripts — Create and run a script to pass the SSL properties when starting the
application. If you plan to run an application with SSL more than once, you will save
time by writing a script to add the properties.

Authentication

Authentication is the process of presenting an identity to the broker and then providing a
password or certificate that certifies the user’s credentials.

Using Authentication via Username and Password

The following procedure explains how to run an application with SSL with client
authentication via username and password.
Aurea Software, Inc. Confidential 134 Copyright © 2013 Aurea, Inc.

Protocols
To run the Talk sample application using SSL with password-based client
authentication:

Note: The following steps on the broker use the Management Console. For detailed
procedures to perform these steps, see the section “Configuring SSL on
Acceptors” in the chapter “Configuring Acceptors” in the Aurea SonicMQ
Configuration and Management Guide.

1. On the broker:

a. Set up or choose an acceptor for SSL connections.

b. Clear the option to enable client authentication, as shown in this view from the
Management Console:

c. Set up two users on the broker:

• aUser with the password aPassword

• bUser with the password bPassword

2. On the client:

a. Open a console window at the directory level of the application you want to run.
For example:

MQ2013_install_root\samples\QueuePTP\Talk

b. Enter the following code as a single line in the console window:

..\..\SonicMQ -DSSL_CA_CERTIFICATES_DIR=MQ2013_install_root\certs\CA
Talk -b ssl://localhost:2506 -u aUser -p aPassword
-qr SampleQ1 -qs SampleQ2

The authenticated user is accepted and the application starts.

3. You can send messages between clients using SSL. To demonstrate this process with
the Talk sample application, you can either administratively add another user to the
broker’s authentication domain or start another instance of the user already added, as
follows:

a. Open another console window to the directory level of the Talk application, and
start the Talk application in this window:

..\..\SonicMQ -DSSL_CA_CERTIFICATES_DIR=MQ2013_install_root\certs\CA
Talk -b ssl://localhost:2506 -u aUser -p aPassword
-qr SampleQ2 -qs SampleQ1

b. Send messages from each console window and observe the messages as each
is received in the other window.
Aurea Software, Inc. Confidential 135 Copyright © 2013 Aurea, Inc.

Chapter 4: SonicMQ Connections
Using SSL Authentication via Mutual Certificates

SonicMQ always uses server authentication when using SSL. To have mutual
authentication, you must enable Client Authentication on the broker’s acceptor. The
following procedure explains how to run an application with SSL with client authentication
via client certificate.

To run the Talk sample application with client authentication via a client certificate:

Note: The following steps on the broker use the Management Console. For detailed
procedures to perform these steps, see the section “Configuring SSL on
Acceptors” in the chapter “Configuring Acceptors” in the Aurea SonicMQ
Configuration and Management Guide.

On the broker:

1. Set up or choose an acceptor for SSL connections.

2. Choose the option to enable client authentication, as shown in this view from the
Management Console:

On the client:

1. Open a console window at the directory level of the application you want to run. For
example:

MQ2013_install_root\samples\QueuePTP\Talk

2. Enter the following code as a single line in the console window:

..\..\SonicMQ
-DSSL_CA_CERTIFICATES_DIR=MQ2013_install_root\certs\CA

-DSSL_CERTIFICATE_CHAIN=MQ2013_install_root\certs\client.p7c

-DSSL_PRIVATE_KEY=MQ2013_install_root\certs\clientKey.pkcs8

-DSSL_PRIVATE_KEY_PASSWORD=password

-DSSL_CERTIFICATE_CHAIN_FORM=PKCS7

Talk -b ssl://localhost:2506 -u AUTHENTICATED

-qr SampleQ1 -qs SampleQ2

The connection is authenticated by a mutual exchange of certificates between the
client and broker.

Optional:

You can also open another console window at the directory level of the application and
start the application by passing the username and password in the command line. This
step requires that you have previously added a user with username and password to
Aurea Software, Inc. Confidential 136 Copyright © 2013 Aurea, Inc.

Protocols
the broker’s authentication domain. For example, if you have added a user with
username bUser and password bPassword, you can enter the following command:

..\..\SonicMQ
-DSSL_CA_CERTIFICATES_DIR=MQ2013_install_root\certs\CA

-DSSL_CERTIFICATE_CHAIN=MQ2013_install_root\certs\client.p7c

-DSSL_PRIVATE_KEY=MQ2013_install_root\certs\clientKey.pkcs8

-DSSL_PRIVATE_KEY_PASSWORD=password

-DSSL_CERTIFICATE_CHAIN_FORM=PKCS7

Talk -b ssl://localhost:2506 -u bUser -p bPassword
-qr SampleQ2 -qs SampleQ1

The connection is authenticated by a mutual exchange of certificates between the
client and broker, and the broker additionally authenticates the client with the
username and password.

Enter messages in both windows, and observe the messages as each is received in
the other window.

Now you can open more clients and work with the Talk sample application, or implement
SSL for other sample applications included with SonicMQ. For each client application, you
must either:

• Import a certificate and include the user parameter with username AUTHENTICATED
when running the sample application.

• Add the user with username and password and provide the password parameter with
the password when running the sample application.

Setting Cipher Suites

In SonicMQ, if no cipher suite is specified explicitly, all supported cipher suites are enabled.
The client application can provide a subset of the available cipher suites by listing them in
the preferred order. For example, using JSSE cipher suites:

-DSSL_CIPHER_SUITES=SSL_RSA_WITH_NULL_MD5,SSL_DH_anon_WITH_RC4_128_MD5

This statement indicates the following:

• If the broker has the cipher suite SSL_RSA_WITH_NULL_MD5, that suite should be used.

• If the broker does not have that suite, the suite SSL_DH_anon_WITH_RC4_128_MD5
should be tried.

• If neither suite is available, the SSL communication fails regardless of whether the
client and server might have compatible cipher suites available in their libraries.

For a list of cipher suite options for SonicMQ, see the section “Cipher Suites” in the chapter
“Channel Encryption” in the Aurea SonicMQ Deployment Guide.

For information about implementing your own security using the SonicMQ Login SPI, or
about using the Login SPI to plug in a Java Authentication and Authorization Service
(JAAS) based authentication feature, see the chapter “Security Considerations in System
Design” in the Aurea SonicMQ Deployment Guide.
Aurea Software, Inc. Confidential 137 Copyright © 2013 Aurea, Inc.

Chapter 4: SonicMQ Connections
HTTP

HTTP is used extensively in SonicMQ. This book focuses on HTTP as a way to establish
and maintain client connection to a messaging broker on host port. HTTP's other
functionality is discussed in the following sections of the Aurea SonicMQ Deployment
Guide:

• HTTP Tunneling — How to set up firewalls and proxy servers is discussed in the
Aurea SonicMQ Deployment Guide chapter “Security Considerations in System
Design.”

• HTTP Direct — SonicMQ can interface with pure HTTP Web applications and Web
Servers. For example:

• Inbound to the SonicMQ broker, protocol handlers on acceptors let SonicMQ act
as a Web Server, transforming received HTTP documents into JMS messages.

• Outbound from the SonicMQ broker, sending JMS messages to routing
connections that translate the JMS message into a well-formed HTTP message
before sending to the designated URL (typically a Web server).

HTTP Direct is a way to handle messages one-by-one at the broker without
establishing connections and sessions. Other than programmatically setting X-HTTP-*
properties on the JMS message outbound to the routing node (see page User-defined
Properties on page 256 for details), this book does not discuss the general
functionality of HTTP Direct. See the Aurea SonicMQ Deployment Guide section on
“Using HTTP(S) Direct” for information about HTTP Direct.

Using HTTP in a connection attempts to use the host and port that you designate as an
entry point to HTTP tunneling. See the “TCP and HTTP Tunneling Protocols” chapter of the
Aurea SonicMQ Deployment Guide for information about HTTP tunneling.

HTTPS

HTTPS tunneling is similar to HTTP except that data is transmitted over a secure socket
layer instead of a normal socket connection. The broker has a different acceptor
(configured for HTTPS) than the acceptor that accepts HTTP requests.

Secured HTTP tunneling is discussed in the chapter “SSL and HTTPS Tunneling
Protocols” in the Aurea SonicMQ Deployment Guide.

HTTPS can be implemented:

• In client-to-broker or broker-to-broker connections

• With or without proxy servers

• Under HTTP forward proxy

sonicrn:///

The "sonicrn:///" protocol can be specified as an alternative to regular SonicMQ factory
connection URLs in:
Aurea Software, Inc. Confidential 138 Copyright © 2013 Aurea, Inc.

JVM Command Options
• SonicMQ connection factories stored in the Sonic JNDI SPI

• SonicESB connection configurations.

Note: Only a single “sonicrn:///” URL may be specified.

JVM Command Options
Several command options can be used in the client application command line, whether it is
in a script or an entry line. The following are some of the Java command options available
in SonicMQ.

HTTP Tunneling through an Authenticating
Proxy

SonicMQ supports three HTTP Authentication schemes for HTTP tunneling connections:
Basic, Digest and NTLM. When a proxy presents multiple authentication challenges the
client selects the preferred scheme in the following order Digest, NTLM then Basic.

Specifying Credentials

There are several ways to specify the username and password to use for HTTP
authentication. (When running from an applet, this is not necessary as the browser handles
HTTP credentials.)

• By setting the following System properties:

–Dsonic.http.proxyUsername=username

-Dsonic.http.proxyPassword=password

• By setting the following System property:

-Dsonic.http.authenticator=className

where className is the name of an accessible class that provides a concrete
implementation of java.net.Authenticator.

• By registering an instance of a java.net.Authenticator via
java.net.Authenticator.setDefault(java.net.Authenticator)

NTLM Authentication

A client can perform NTLMv1 authentication if a proxy requests it. For regular Java
applications SonicMQ NTLM authentication is supported on all platforms. When running
from an Applet NTLM authentication is currently only supported on Windows machines and
it is up to the browswer plugin to handle NTLM authentication.
Aurea Software, Inc. Confidential 139 Copyright © 2013 Aurea, Inc.

Chapter 4: SonicMQ Connections
When NTLM is used as the authentication scheme a Windows domain name must be
provided. This can be done in one of two ways:

• By prepending the domain to the username separated by a backslash, as shown:

DOMAIN\<username>.

This method takes precedence over the following one.

• By setting the following System property:

-Dhttp.auth.ntlm.domain=domain

where domain is the Windows domain name.

NTLM authentication also requires that a workstation name be provided. By default the
machine’s hostname is used if it can be obtained, otherwise it can be specified explicitly by
setting the following System property:

-Dsonic.http.auth.ntlmWorkStation=workstation

HTTP Forward Proxy

In order to configure an HTTP tunneling client through a forward proxy, the following
standard JDK properties are supported to specify the forwarding proxy host:

-Dhttp.proxyHost=proxy_host_name
-Dhttp.proxyPort=proxy_host_port

HTTPS Forward Proxy

In order to configure an HTTPS tunneling client through a forward proxy, the following
SonicMQ properties are supported to specify the forwarding proxy host:

-Dhttps.proxyHost=proxy_host_name
-Dhttps.proxyPort=proxy_host_port
Aurea Software, Inc. Confidential 140 Copyright © 2013 Aurea, Inc.

JVM Command Options
HTTPS Tunneling Through an Authenticating
Forward Proxy

If you want to tunnel through a secure forward proxy server using HTTPS, use the following
procedures for authentication:

Note: Proxy authentication requires that the client uses Sun JVM 1.4.1_02 or similar.

1. Enable tunneling via a secure proxy

Set the system property -Dsonic.https.proxyAuthentication on the client's Java
command line to enable tunneling through a secure proxy using
javax.net.ssl.HttpsURLConnection. Since the JVM's HttpsURLConnection class
uses JSSE, the required CA certificates must be imported to a trustStore.

If client authentication is enabled on the broker, the client certificate and its
corresponding private key must be imported to a keyStore as well.

See Sun's JSSE documentation for more details.

2. Register an Authenticator

A concrete subclass of java.net.Authenticator is required to handle proxy
authentication. Applications register an authenticator programatically using the static
method setDefault of the java.net.Authenticator class.

Instead, you can direct the Sonic runtime to install an authenticator by specifying the
package qualified class name as the -D system property
sonic.https.proxyAuthenticator on the client's Java command line.

A default authenticator for BASIC authentication is provided if the system properties
sonic.https.proxyUsername and sonic.https.proxyPassword are specified.

3. Register a Hostname Verifier

A concrete subclass of javax.net.ssl.HostnameVerifier is required to register a
hostname verifier. An application can register a hostname verifier programatically
using the setHostnameVerifier method of the HttpsURLConnection class.

Instead, you can direct the Sonic runtime to install a hostname verifier by specifying
the -D system property sonic.https.hostnameVerifier on the client's Java
command line.

A default hostname verifier that accepts any hostname in the certificate is provided if
the -D system property sonic.https.useAnyHostnameVerifier is specified.
Aurea Software, Inc. Confidential 141 Copyright © 2013 Aurea, Inc.

Chapter 4: SonicMQ Connections
SSL/HTTPS

The following SSL command options were shown in the procedure for running the Talk
sample application with client authentication via a client certificate on page 136:

-DSSL_CA_CERTIFICATES_DIR=MQ2013_install_root\certs\CA
-DSSL_CERTIFICATE_CHAIN=MQ2013_install_root\certs\client.p7c
-DSSL_PRIVATE_KEY=MQ2013_install_root\certs\clientKey.pkcs8
-DSSL_PRIVATE_KEY_PASSWORD=password
-DSSL_CERTIFICATE_CHAIN_FORM=PKCS7

Nagle Algorithm

The Nagle algorithm allows buffering of small data before sending the data as a fully
constructed IP packet. By default, this algorithm is disabled.

To enable this algorithm, set -DSonicMQ.TCP_NODELAY=false on the JVM command line; to
disable it, set -DSonicMQ.TCP_NODELAY=true.

HTTP Map Host to IP

This client setting indicates whether conversion of the host name to its corresponding IP
Address should be attempted before connecting. In some environments, the client system
does not have a DNS available but the forward proxy server system does. When this
property is set to false, the HTTP requests are sent from the client to the forward proxy,
with the HOST header set to the host name instead of the host's IP address. This allows the
DNS lookup to be delayed until the proxy server tries to establish the connection to that
host.

The syntax of the property is:

-DHTTP_MAP_HOST_TO_IP=[true|false]

where:

• true causes conversion of the host name to its IP address before connecting (this
is the default value)

• false causes no conversion of the host name to its IP address before connecting

Connection Factories and Connections
The following sections describe how to use connection factories to create connections with
SonicMQ broker.
Aurea Software, Inc. Confidential 142 Copyright © 2013 Aurea, Inc.

Connection Factories and Connections
Connection Factories

To establish a Java connection with the SonicMQ broker, a Java client uses a
ConnectionFactory object. Prior to JMS 1.1, model-specific factories were required for the
Pub/Sub and Point-to-Point message models; however, beginning in JMS 1.1, common
connection factories can be used for both models.

These common connection factories are:

• ConnectionFactory

• XAConnectionFactory

Java clients can obtain a connection factory in the following three ways:

• Instantiating a new connection factory object by specifying connection information in
the object constructor (and possibly customizing further using set methods on the
factory)

• Obtaining a preconfigured connection factory object from a JNDI store

• Deserializing a preconfigured factory object from a file

Each of these techniques is described in this chapter.

SonicMQ connection factory objects encapsulate the information needed to connect and
configure the SonicMQ JMS client connection. This information might be specified or
defaulted to include:

• Host, port, and protocol information

• User, password, and other identity information

• Load balancing, fault-tolerance, selector location, and similar connection or session
behavioral settings

The most important connection factory, and hence connection, settings are discussed
below. Some of the settings are identifiers that differentiate and distinguish JMS client
registrations. These identifiers have specific name restrictions, shown in Table 4.

Important: Table 4 lists characters that are not allowed in SonicMQ. You must not use
these restricted characters in your identifier names.See also Appendix A of
Aurea Sonic Installation and Upgrade Guide for a complete reference to use
of characters in SonicMQ names.

Table 4: Restricted Characters for Names

Parameter Restricted Characters

ClientID pound (#), dollar sign ($), percent sign (%), asterisk (*), and
period (.)

ConnectID pound (#), dollar sign ($), asterisk (*), period (.), and slash (/)
Aurea Software, Inc. Confidential 143 Copyright © 2013 Aurea, Inc.

Chapter 4: SonicMQ Connections
Note: Although a Durable Subscription name is not a connection factory setting, it is
included in Table 4 for completeness.

A "sonicrn:///" URL is specified in the form:

sonicrn:///<routing node name>[?<parameter name>=<parameter
value>[&<parameter name>=<parameter value>]...]

where:

<routing node name> is the SonicMQ routing node name for the broker or cluster
to which connections will be made

<parameter name>=<parameter value> is a supported "sonicrn:///" URL
parameter from the following:

At runtime, a connecting SonicMQ JMS client using a “sonicrn:///” URL will actually connect
using the resolved form of the URL.

URL

The Uniform Resource Locator identifies the broker where the connection is intended. The
URL is in the form:

[protocol://]hostname[:port]

where:

• protocol is the broker’s communication protocol (default value: tcp).

• hostname is a networked SonicMQ broker machine.

Durable
Subscription

dollar sign ($), period (.), slash (/), and backslash (\).
Note that asterisk (*) and pound sign (#) have wildcard meaning.

User asterisk (*), pound (#), dollar sign ($), slash (/), and backslash (\).

Table 4: Restricted Characters for Names

Parameter Restricted Characters

Parameter Name Parameter Value

acceptor The value should map to the name given to one or more
configured broker acceptors (e.g. the default TCP acceptor
of a new SonicMQ broker is "TCP_ACCEPTOR".

Note: This parameter can be specified multiple times.

visibility Legal values are "all", "external" or "internal" (default "all")
(see “Visibility” discussion below)
Aurea Software, Inc. Confidential 144 Copyright © 2013 Aurea, Inc.

Connection Factories and Connections
• port is the port on the host where the broker is listening. The broker’s default
port value is 2506.

• For HTTP direct, you can also add a url extension that determines the
parameters and factories.

ConnectID

The ConnectID determines whether the broker allows multiple connections to be
established using a single username/ConnectID combination. You control the broker’s
behavior by calling the ConnectionFactory.setConnectID(String connectID) method:

• To allow only one connection, provide a valid connectID.

• To allow unlimited connections, use null as the connectID.

You can create a valid ConnectID by combining the username with some additional
identifier.

Note: See Table 4 for a list of restricted characters for ConnectID names.

ConnectID can also be preconfigured in a ConnectionFactory administered object, or
passed as an argument to a SonicMQ ConnectionFactory object constructor.

Username and Password

The username and password define a principal’s identity maintained by the SonicMQ
broker’s authentication domain to authenticate a user with the SonicMQ broker and the
broker’s authorization policy to establish permissions and access rights. These parameters
are optional. When both parameters are omitted, they both default to “”, an empty string.
When security is not enabled, the username is simply a text label.

A username can be:

• Preconfigured in a ConnectionFactory administered object

• Passed as a parameter to a ConnectionFactory constructor

• Passed as a parameter to the ConnectionFactory.createConnection() method

Under the SSL protocol, client authentication can be achieved by retrieving the username
from the client certificate. In that case you simply pass the special-purpose username
AUTHENTICATED. The password is ignored.

Note: See Table 4 for a list of restricted characters for usernames.

ClientID

The ClientID is a unique identifier that can avoid conflicts for durable subscriptions when
many clients might be using the same username and the same subscription name.
Aurea Software, Inc. Confidential 145 Copyright © 2013 Aurea, Inc.

Chapter 4: SonicMQ Connections
To set the value of the ClientID, do one of the following:

1. In the client application, immediately after creating a connection, call the
Connection.setClientID(String clientid) method.

2. Set the ClientID in the ConnectionFactory. You can either preconfigure the ClientID
via the JMS Administered Objects tool in the Sonic Management Console, or you can
call ConnectionFactory.setClientID(String clientid) in the client application.

If you preconfigure the ClientID, calling ConnectionFactory.setClientID(String
clientid) throws an IllegalStateException.

See Table 4 for a list of restricted characters for ClientID names.

Load Balancing

Any broker in a cluster can redirect incoming client connections to another broker in the
same cluster for the purpose of load balancing. Load balancing must be configured on the
broker. The client must also be configured to indicate that it is willing to have a connect
request re-directed to another broker.

To configure the client to allow load-balancing redirects of connect requests:

Call ConnectionFactory.setLoadBalancing(true) prior to calling the create
connection method.

To check the client load-balancing setting:

Call ConnectionFactory.getLoadBalancing() to return a boolean indicator of whether
load-balancing redirects are allowed by the client.

Note: When using custom load balancers on the broker, you can provide hints to the
broker by using the method setLoadBalancingClientData(String clientData) in
the Java client and then using getClientData() in the load balancer.

See the Aurea SonicMQ Configuration and Management Guide for information about
configuring broker load balancing from the Management Console.

Alternate Connection Lists

Independent of load balancing, a client can specify a list of broker URLs to which the client
can connect. The connection is made to the first available broker on the list. Brokers in the
list are tried in random or sequential order.

To create a connection list programmatically:

1. Create a comma-separated list of broker URLs. The client will attempt to connect to
brokers in this list.

2. Call ConnectionFactory.setConnectionURLs(brokerList) to point to the text list you
created. The client will connect to the first available broker on the list.
Aurea Software, Inc. Confidential 146 Copyright © 2013 Aurea, Inc.

Connection Factories and Connections
3. Call ConnectionFactory.setSequential(boolean) to set whether to start with the first
name in the list (true) or a random element (false).

Important: When a client traverses a connection URL list, the client uses the same userId
and password for each broker in the list. If a security exception occurs while
the client tries to connect to a broker in the list, the connection fails and the
client stops any further traversal of the list.

To check connection lists, call ConnectionFactory.getConnectionURLs() to return the
broker list, and then call ConnectionFactory.getSequential() to return the boolean
indicator of whether the list is used sequentially or randomly.

Note: Not applicable for “sonicrn:///” urls

Obtaining the Connected Broker URL or Node Name

To get the URL or routing node name of the broker that the client connects to as a result of
load balancing or alternate connection lists, call the following methods (on the connection
object, not the factory object):

• For the connected broker’s URL, call the method getBrokerURL.

• For the connected broker’s routing node name, call the method getRoutingNodeName.

Setting Server-based Message Selection

Connections where message selectors are used can receive a large number of messages
from the broker and select only a few messages for processing. This condition can be
relieved by setting the connection to evaluate messages through a given message selector
on the broker and then deliver only the qualified message to the client.

For example, in the SelectorChat sample, adding a method call chooses message
selection on the server. Notice that it is called after the connection factory is created and
before the connection is created, as shown:

javax.jms.ConnectionFactory factory;
factory = (new progress.message.jclient.ConnectionFactory (broker));
factory.setSelectorAtBroker(true);
connect = factory.createConnection (username, password);

Choosing where message selectors do their filtering does not effect the messages
processed, but might drastically reduce the message traffic at the expense of some
additional overhead on the broker.

This option can be set on Connection Factories that are defined as Administered Objects.
See the Aurea SonicMQ Configuration and Management Guide for information.
Aurea Software, Inc. Confidential 147 Copyright © 2013 Aurea, Inc.

Chapter 4: SonicMQ Connections
Setting a Socket Connect Timeout

You can specify a timeout to be used when establishing a socket connection to a broker.
The ConnectionFactory method setSocketConnectTimeout (int timeout) lets you set
the number of milliseconds to allow for the socket connection to be established, as shown:

javax.jms.ConnectionFactory factory;
factory = (new progress.message.jclient.ConnectionFactory (broker));
factory.setSocketConnectTimeout(5000);
connect = factory.createConnection (username, password);

Setting a value of 0, the default value, means the socket connect request does not time out.

If the socket connection is not established within the timeout interval, an exception is
returned to the caller with the error code ERR_SOCKET_CONNECT_TIMEOUT.

Note: The SocketConnectTimeout setting interacts with the InitialConnectTimeout
setting described in Specifying Connection Timeouts on page 176, and—for fault
tolerant connections—the operating systems settings discussed in the “Tuning
TCP to Optimize CAA Failover” in the SonicMQ V6.1 Performance Tuning Guide.

The socket connect timeout should enable an attempt at every listed URL. For
example, where a URL list contains six URLs, the default setting for the
InitialConnectTimeout of 30 seconds would require that the
SocketConnectTimeout value be set to 5 seconds. The tuning of the operating
system for fault tolerant failover assures that the OS does not add unintended
delays.

This option can be set on Connection Factories that are defined as Administered Objects.
See the Aurea SonicMQ Configuration and Management Guide for information.

Setting QoP Cache Size

Brokers that enable security and Quality of Protection (QoP) require that clients enforce (or
override) the QoP setting specified for each destination when sending messages.
Whenever a broker responds to a client with the appropriate setting, the client caches the
values in its QoP cache, adequate for 128 QoP settings for topics and queues as well as
other connection administration, actions, sessions, and message producers/consumers.
Using a least-recently-used algorithm for clearing the cache so that it can accomodate new
entries, the cache is adequate and efficient in most situations. However some
circumstances make it crucial to increase the size of the cache so that the cache is not
constantly being updated.

When using MultiTopics (see MultiTopics on page 336), the topic list might easily surpass
the client connection’s cache limit. If this situation occurs, every topic is sent with QoP set
to PRIVACY, and the response from the broker indicates whether that level of protection was
required. That QoP setting is cached but might be promptly dropped when other QoP
settings are recorded in the cache. In that case, you can modify the cache size through the
ConnectionFactory parameter:

ConnectionFactory.setQopCacheSize(Integer size)
Aurea Software, Inc. Confidential 148 Copyright © 2013 Aurea, Inc.

Connection Factories and Connections
where size needs to accomodate the application topics yet leave space for other cached
items. The recommended value when you choose to reset the QoP cache is:

(the number of application topics or queues) + 128

For example:

javax.jms.ConnectionFactory factory;
factory = (new progress.message.jclient.ConnectionFactory (broker));
factory.setQoPCacheSize(256);
connect = factory.createConnection (username, password);

This option cannot be set on Connection Factories that are defined as Administered
Objects.

Setting the Maximum DeliveryCount

The setMaxDeliveryCount method in progress.message.jclient.ConnectionFactory
sets the maximum number of times delivery of a message to a consumer should be
attempted. Messages that have exceeded the delivery limit are processed according to
message properties that govern disposition of undeliverable messages.

The following syntax sets the maximum delivery count:

ConnectionFactory.setMaxDeliveryCount(java.lang.Integer value)

where:

• value is 0 when you want no redelivery limit

• value is an positive integer that specifies to deliver and then redeliver the
specified number of times

A related method is public java.lang.Integer getMaxDeliveryCount(). It returns the
integer value set (or defaulted) for the maximum delivery limit.

For example:

javax.jms.ConnectionFactory factory;
factory = (new progress.message.jclient.ConnectionFactory (broker));
factory.setMaxDeliveryCount(10);
connect = factory.createConnection (username, password);

This option can be set on Connection Factories that are defined as Administered Objects.
See the Aurea SonicMQ Configuration and Management Guide for information.

Setting to Minimize Subscriber Traffic

The setMinimizeSubscriberTraffic method in
progress.message.jclient.ConnectionFactory provides control over TopicSubscribers
and DurableSubscribers. When set to true, the subscriber will attempt to flow control the
broker as soon as messages are delivered into the client’s buffer. The subscriber could
receive more messages put on the wire by the broker before it receives the flow control
message. Sending resumes when the subscriber's buffer becomes empty.
Aurea Software, Inc. Confidential 149 Copyright © 2013 Aurea, Inc.

Chapter 4: SonicMQ Connections
The feature lets an applications effectively shut down or reduce the subscriber’s client
buffer to minimize the background priming (at the cost of increased latency).

The following syntax sets the option to minimize subscriber traffic:

ConnectionFactory.setMinimizeSubscriberTraffic(boolean value)

where:

• value is true when you want to minimize subscriber traffic

A related method is public java.lang.boolean getMinimizeSubscriberTraffic().
It returns the value that indicates whether subscriber traffic is being minimized.

This option can be set on Connection Factories that are defined as Administered Objects.
See the Aurea SonicMQ Configuration and Management Guide for more information.

Note: Feature in C and C++ clients — This feature is also in the Sonic C and C++ clients.
In those clients, the option is set in a parameter of a new ConnectionFactory
signature. See the Aurea SonicMQ C Client Guide and Aurea SonicMQ C++ Client
Guide for more information.
Aurea Software, Inc. Confidential 150 Copyright © 2013 Aurea, Inc.

Connection Factories and Connections
Enabling Message Compression

Some throughput problems are caused by large messages and low bandwidth networks.
Applications that produce and consume messages of significant size over these slow
networks might improve overall performance by compressing messages.

The setEnableCompression method in progress.message.jclient.ConnectionFactory
causes messages produced in the scope of the connection factory to be compressed so
that:

• MessageProducers compress every message before sending it, and the broker
decompresses every message it receives on these connections.

• MessageConsumers decompress every message when received because the broker
compressed every message it delivered to the consumer on these connections.

When a SonicMQ client application enables message compression, the client negotiates
with the broker to which it is connecting to agree on the compression characteristics and
error checking. The actual compression and decompression functions are implicit when the
option is enabled.

Message compression has time and space requirements on both the client and the broker.
An administrator needs to determine which connections can offset the compression
overheads with the savings in message transfer time, and how many connections that
enable compression can be supported by the broker’s resources.

The following syntax enables message compression on a connection factory:

ConnectionFactory.setEnableCompression(boolean value)

For example:

javax.jms.ConnectionFactory factory;
factory = (new progress.message.jclient.ConnectionFactory (broker));
factory.setEnableCompression(true);
connect = factory.createConnection (username, password);

This option can be set on Connection Factories that are defined as Administered Objects.
See the Aurea SonicMQ Configuration and Management Guide for information.
Aurea Software, Inc. Confidential 151 Copyright © 2013 Aurea, Inc.

Chapter 4: SonicMQ Connections
Connecting to SonicMQ Directly
An application can use the SonicMQ API directly to create a new ConnectionFactory object,
as shown in Figure 39. This method usually hard-wires many default values into the
compiled application. Any overrides to the settings can be read in through a properties file
or command-line options when the application is started.

Figure 39: Connecting to SonicMQ Directly

There are several supported constructors for creating a ConnectionFactory object. The
constructors use combinations of the brokerURL, brokerHostName, brokerPort,
brokerProtocol, connectID, defaultUsername, and defaultPassword parameters.

Note: When user identification is omitted when creating a connection, the connection
uses the default values from the ConnectionFactory. If authentication is enabled
and the username is invalid, a javax.jms.JMSSecurityException is thrown.
You can use the common name from a certificate when you use SSL mutual
authentication. See the Aurea SonicMQ Deployment Guide for more about SSL
and security.

Connecting to SonicMQ Using Administered
Objects

JMS administered objects are objects containing JMS configuration information that are
created by a JMS administrator and later used by JMS clients. These objects make it
practical to administer JMS applications in the enterprise.

Broker
brokerURL

factory = new ConnectionFactory (brokerURL)

SonicMQ
Client connect = factory.createConnection (username, password)

Connection
Aurea Software, Inc. Confidential 152 Copyright © 2013 Aurea, Inc.

Connecting to SonicMQ Directly
JMS specifies the following types of administered objects:

• Connection Factories:

• ConnectionFactory and XAConnectionFactory

• QueueConnectionFactory and XAQueueConnectionFactory

• TopicConnectionFactory and XATopicConnectionFactory

Note: The JMS 1.1 specification states that some JMS version 1.02b
(model-specific) interfaces might be deprecated in the future.
Consequently, if you are developing new JMS client applications, it is
recommended that, wherever possible, you use the common interfaces in
place of the older model-specific interfaces. Here, you should use
ConnectionFactory and XAConnectionFactory instead of the
model-specific interfaces.

• Destinations

• Queue

• Topic

JMS client applications obtain instances of SonicMQ connection factory objects (see
Lookup Using the Sonic JNDI SPI on page 154) and use JMS specified factory methods on
those objects to create connections. (See Lookup and Use of Administered Objects on
page 154.)

Important: Permission Denied Issues for Older Clients — If you are using JNDI SPI
clients and your domain enforces management permissions (a feature
introduced in V7.5), the JNDI SPI clients should be upgraded to at least V7.5
to avoid the potential of spurious ConfigurePermissionsDenied exceptions
which could deny JNDI access.

Advantages of Using JMS Administered Objects

JMS administered objects can be created using tools provided in SonicMQ (see the Aurea
SonicMQ Configuration and Management Guide for information on using the Management
Console to create JMS administered objects). Administered objects hide vendor-specific
information. Since administered objects implement a public interface and can be retrieved
using JNDI, JMS client applications can be coded to be independent of JMS vendor
implementations.

The indirection the JNDI lookup name provides has an additional and more significant
benefit: JMS client applications can be coded to be independent of broker location. For
example, the application can be coded to use a factory located under the name cn=QCF,
without knowing which broker will service the application. When some deployment change
is made (for example, when a backup system comes online or if during certain hours load
is directed to another machine), the administrator simply replaces the connection factory
stored at the location cn=QCF with another factory instance that encapsulates connection
information to a broker running on a different system.
Aurea Software, Inc. Confidential 153 Copyright © 2013 Aurea, Inc.

Chapter 4: SonicMQ Connections
The Sonic JMS Administered Objects Toolis modified to support the display of the
ResolvedConnectionURLs property in a new field, "Resolved Connection URLs".

Lookup and Use of Administered Objects

SonicMQ administered objects are both serializable and referenceable, and thus can be
stored in a wide range of JNDI accessible stores, including Sonic's own internal JNDI store
and LDAP. SonicMQ provides tools and APIs with which to create, store and lookup
SonicMQ implementations of administered objects.

This chapter describes how to use the following JNDI SPIs:

• In the SonicMQ internal JNDI store (see page 155 for details)

• In an external LDAP server through JNDI (see page 158 for details and a code
sample)

See the Aurea SonicMQ Configuration and Management Guide for information about using
the Sonic Management Console. See Appendix A, Using the Sonic JNDI SPI on page 443
for information about programming using the JNDI SPI.

In the code samples that follow, the name used to find an administered object is formatted
to correspond to the store implementation used to store the object:

• Simple name: ContextName — For the SonicMQ internal JNDI store.

• Schema name: cn=ContextName — For an external LDAP server through JNDI.

• Filename: ContextName.sjo — For a serialized file object.

Lookup Using the Sonic JNDI SPI

JNDI defines the way an initial context is obtained; obtaining a Sonic context follows these
same techniques. The JNDITalk sample (an excerpt of which is shown in Programming with
the Sonic JNDI SPI (JNDITalk Sample) on page 155) provides a simple demonstration of
JNDI programming with the Sonic SPI. The sample shows:

• Creating a JNDI environment (hash table) with Sonic SPI specific values and
additional properties

• Obtaining an initial context

• Using the context to perform a lookup of a ConnectionFactory object
Aurea Software, Inc. Confidential 154 Copyright © 2013 Aurea, Inc.

Connecting to SonicMQ Directly
Programming with the Sonic JNDI SPI (JNDITalk Sample)

private static final String QCF_LOOKUP_NAME = "TalkQCF";
...
Context context = null;
...
Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,
 "com.sonicsw.jndi.mfcontext.MFContextFactory");
env.put(Context.PROVIDER_URL, "tcp://localhost:2506");
env.put("com.sonicsw.jndi.mfcontext.domain", "Sonic");
env.put("com.sonicsw.jndi.mfcontext.idleTimeout", "60000");
env.put(Context.SECURITY_PRINCIPAL, "Administrator");
env.put(Context.SECURITY_CREDENTIALS, "Administrator");
...
context = new InitialContext(env);
...
javax.jms.ConnectionFactory factory = null;
...
factory = (javax.jms.ConnectionFactory)context.lookup(QCF_LOOKUP_NAME);
...

This type of lookup submits a name to the JNDI store for lookup. In Figure 40 the factory
name TalkQCF (a simple arbitrary name for a ConnectionFactory object used in these
examples) is submitted in the format TalkQCF.

Figure 40: Connecting to SonicMQ Using JNDI

Note: The context name can also be submitted in the LDAP format: cn=TalkQCF, but this
format is not required.

Setting up an Administered ConnectionFactory Object

The JNDITalk example attempts to lookup a ConnectionFactory object. For the lookup to
succeed, the administered ConnectionFactory object must be defined in the Sonic JNDI
store. You can define and store an administered ConnectionFactory object using the JMS
Administered Objects tool. The Aurea SonicMQ Configuration and Management Guide
provides detailed instructions on the JMS Administered Objects tool.

To create an administered ConnectionFactory object for the JNDITalk sample:

1. Start the SonicMQ Container that hosts the Directory Service that the broker will use.

2. Start the Sonic Management Console.

lookup TalkQCF

SonicMQ
Client

SonicMQ
JNDI Store

JNDI

Broker
brokerURL

ConnectionFactory Object for 'TalkQCF'
containing: host:port, user, password, options

connect host:port, user, password, options

Connection
Aurea Software, Inc. Confidential 155 Copyright © 2013 Aurea, Inc.

Chapter 4: SonicMQ Connections
3. Select Tools > JMS Administered Objects. Select the local JNDI store:

a. Choose JNDI Naming Service.

b. Select the Sonic Storage option.

c. Enter the URL for the Directory Service container.(localhost:2506 for example.)

d. Enter the user, such as Administrator.

e. Enter the user’s password, such as Administrator.

f. Click Connect.

The provider URL you entered appears in the Object Stores list in the JMS
Administered Objects window, and a node for this provider URL appears in the left
panel.

4. Set up the connection factory. For the example:

a. In the left panel of the Sonic Management Console, choose the connection you
just established to the JNDI Naming Service.

b. In the right panel, choose the Connection Factories tab then click New.

c. In the Lookup Name field, enter a new record with TalkQCF as the name value.

d. From the Factory Type pull-down list, choose ConnectionFactory.

e. Enter an URL for the application connection, such as localhost:2506

Do not enter a user or password. The example will override the username and
password and show how they can be supplied in application parameters, thus
enabling varied authorizations for applications that use the lookup information.

f. Enter a Connect ID such as First. This is a value that will be changed in the
example to demonstrate how administrative changes to the lookup value are
passed through the connections that use the connection factory.

g. Click Update.

The TalkQCF object is entered in the JNDI store.

Running the JNDITalk Sample

You are now ready to run the modified Talk sample that performs a lookup to the JNDI store
to get a context.

To run the JNDITalk sample, do the following:

1. In a console window at the JNDITalk directory, enter:

..\..\SonicMQ JNDITalk -u Administrator -p Administrator -qr
SampleQ1 -qs SampleQ2

2. Open a console window to the Talk directory then enter:

..\..\SonicMQ Talk -u Administrator -p Administrator -qr
SampleQ2 -qs SampleQ1
Aurea Software, Inc. Confidential 156 Copyright © 2013 Aurea, Inc.

Connecting to SonicMQ Directly
Each sample will receive the messages sent by the other application.

1. In the Talk console window, type some text and press Enter.

The JNDITalk window displays the text, preceded by:

Administrator:

2. In the JNDITalk window, enter text and press Enter.

The Talk window displays the text preceded by:

Administrator:

You can extend this test by looking at the connection through the Sonic Management
Console:

• Under the Manage tab, in the left panel click Containers\Container1, then click the
node for your broker. Click the Connections node under the broker.

The right panel lists the connections for this broker, as shown in Figure 41.

Figure 41: Connection Using JNDI Store Lookup

One of the connections lists its Connect ID as First, the name used for the
ConnectionFactory stored in the JNDI store.

If you use the JMS Administered Objects window to update the TalkQCF object to have
a Connect ID of Next, that value will not be reflected in the connections until the
connection factory is looked up again. By stopping the JNDITalk application and then
restarting it, the connection listed in the Management Console will display the revised
Connect ID for TalkQCF.
Aurea Software, Inc. Confidential 157 Copyright © 2013 Aurea, Inc.

Chapter 4: SonicMQ Connections
Using the LDAP JNDI SPI

JNDI provides interfaces to standard directory servers such as those that are compliant
with the Lightweight Directory Access Protocol (LDAP). With SonicMQ, you can either use
the internal JNDI package provided with SonicMQ to access objects stored in the SonicMQ
directory server, or you can access an external LDAP directory server, as described in this
section.

Important: External LDAP directory servers are distinct products that you must install and
configure separate from SonicMQ. The Javasoft JNDI Web site can point you
to evaluation editions of LDAP directory servers so that you can explore these
services.

In Figure 42 the context name TalkQCF is submitted as cn=TalkQCF.

Figure 42: Alternate Connection Techniques Using Factory Objects or JNDI Lookup

From a client program, select an external LDAP server such as the JNDI store by setting
the system property “javax.naming.Context.INITIAL_CONTEXT_FACTORY” to
“com.sun.jndi.ldap.LdapContextFactory”. The property
“javax.naming.Context.PROVIDER_URL” specifies how to locate to LDAP server and
establish the initial JNDI naming context. For example:
“ldap://mypc.a.sonicmq.com:389/ou=jmsao,ou=sonicMQ,o=a.sonicmq.com
”

See Java JNDI SPI Sample on page 447 for information about a sample application that
demonstrates using the Sonic JNDI SPI.

Connecting to SonicMQ Using Serialized
Factories

SonicMQ allows you to administratively store objects as Serialized Java Objects (.sjo) in
a file system. By updating the .sjo objects with the JMS Administered Objects tool in the
Sonic Management Console, you can isolate the programmer from specific broker
configuration parameters and destination names. However, the programmer must still
maintain and deploy the .sjo files.

lookup TalkQCF

SonicMQ
Client

LDAP
StoreJNDI

Broker
brokerURL

ConnectionFactory Object for 'TalkQCF'
containing: host:port, user, password, options

connect host:port, user, password, options

Connection
Aurea Software, Inc. Confidential 158 Copyright © 2013 Aurea, Inc.

Connecting to SonicMQ Directly
Figure 43 illustrates deserializing a factory from a specified path location. An administrator
stores serialized Java objects as files with .sjo extensions. The files can then be loaded
(and deserialized) using the java.io package.

Figure 43: ConnectionFactory Object Instantiated By Lookup of a Serialized Java Object

Setting Up Serialized Objects

readFile Method on page 159 provides an example of how serialized objects can be set up.
This example assumes:

• The ConnectionFactory for the sample application is stored in the file
ChatConnectionFactory.sjo.

• The Topic for the application is stored in the file ChatTopic.sjo.

• A new method, readFile(), is used for both administered objects.

readFile Method

/**
*Read an object from the given file.
*@param filename The name of the file.
*@return The deserialized object. If the file does not contain
* a valid JMS managed object or there is some
* read/deserialization problem, then return null.
*/
private Object readFile(String filename)
{
try
{
java.io.FileInputStream fis = new java.io.FileInputStream(filename);
java.io.ObjectInputStream ois = new java.io.ObjectInputStream(fis);
Object readObj = ois.readObject();
fis.close();
return readObj;
}
catch(java.io.IOException e) { } // return null
return null;
}

Load file "QCF.sjo"

SonicMQ
Client Broker

host:port

Get Connection Object containing:
host:port, user, password, options

Simple File Store

connect host:port, user, password, options

Connection
Aurea Software, Inc. Confidential 159 Copyright © 2013 Aurea, Inc.

Chapter 4: SonicMQ Connections
Using Serialized Objects

After serialized objects are set up, those objects can be used in your applications. Within
the application code where the connection is established, use the readFile() method to
read the active javax.jms objects, as shown in Using readFile to Read Active javax.jms
Objects on page 160.

Using readFile to Read Active javax.jms Objects

javax.jms.ConnectionFactory factory;
// Read in the factory from a file
factory = (javax.jms.ConnectionFactory)
readFile("ChatConnectionFactory.sjo");
...
// Continue, creating connection from the factory
// Continue, creating the session from the connection.
...
// Finally, retrieve the TOPIC for our application
javax.jms.Topic topic = (javax.jms.Topic) readFile ("ChatTopic.sjo");

Connections

After instantiating a ConnectionFactory object, the factories’ createConnection()
methods are used to create a connection. The first action a client must take is to identify
and establish connection with a broker. The following constructors use a connection factory
object to get the connection.

Important: The JMS specification states that an application should not use a Java
constructor to create connections directly, otherwise applications will not be
portable.

Creating a Connection

A Connection is an active connection to a SonicMQ broker. A client application uses a
connection to create one or more Sessions, the threads used for producing and consuming
messages.

You create Connection by using a ConnectionFactory object. There are two variants of the
createConnection() method:

• Use the default username and password:

connect = factory.createConnection();

Important: Use this method only when you are not concerned about security, or
when your JNDI store is very secure.

• Supply the preferred username and its authenticating password:

connect = factory.createConnection (username, password);
Aurea Software, Inc. Confidential 160 Copyright © 2013 Aurea, Inc.

Connecting to SonicMQ Directly
Creating and Monitoring a Connection

ReliableChat: setupConnection on page 161, taken from the ReliableChat sample’s
setupConnection() method, shows how to create and monitor a connection. This code
uses active pings to check the health of the connection.

ReliableChat: setupConnection

// Get a connection factory
javax.jms.ConnectionFactory factory = null;
try
{
factory = (new progress.message.jclient.ConnectionFactory (m_broker));
} catch (javax.jms.JMSException jmse) ...
// Wait for a connection.
while (connect == null)
{
try
{
System.out.println("Attempting to create connection...");
connect = (progress.message.jclient.Connection)
factory.createConnection (m_username, m_password);
...
// Ping the broker to see if the connection is still active.
connect.setPingInterval(30);
} catch (javax.jms.JMSException jmse)
{
System.out.print("Cannot connect to broker: " + m_broker);
System.out.println("Pausing " + CONNECTION_RETRY_PERIOD / 1000 +
" seconds before retry.");
try
{
Thread.sleep(CONNECTION_RETRY_PERIOD);
} catch (java.lang.InterruptedException ie) { }
continue;
}
...

In ReliableChat: setupConnection on page 161, the statement
connect.setPingInterval(30) indicates the use of a method that lets the application
detect when a connection gets dropped by setting a PingInterval of 30 seconds. The
active pings are a SonicMQ feature that allows an application to check the presence and
alertness of the broker on a connection. This technique is particularly useful for connections
that listen for messages, but do not send messages.

Invoking setPingInterval(interval_in_seconds) on a connection sends a ping
message to the broker on that connection at the specified interval to examine the health of
the connection.
Aurea Software, Inc. Confidential 161 Copyright © 2013 Aurea, Inc.

Chapter 4: SonicMQ Connections
The broker is required to respond to each ping sent by the client. If the client does not
receive any traffic within a ping interval, then the client assumes the connection is bad and
drops the connection. See Handling Dropped Connection Errors on page 163 for more
information. But this is true only when the connection is not fault tolerant. When a
connection is fault tolerant, pings are still necessary for monitoring the network. When a
fault tolerant connection is in use, the ping is activated by default and is set to 30 seconds.
However, unlike non-fault tolerant connections, a ping response is not required from the
broker, and will not cause a connection drop. See Fault-Tolerant Connections on page 172
for additional information about fault tolerant connections.

You can also configure active pings in the ConnectionFactory by invoking the
ConnectionFactory.setPingInterval(interval_in_seconds) method, or by
preconfiguring ConnectionFactory administered objects with a ping interval.

Synchronous pings are always used when you explicitly set a non-zero ping interval. The
difference between fault tolerant and non-fault tolerant is when the ping interval is not set.
There are no pings by default on a non-fault tolerant connection, whereas there are
asynchronous pings by default on a fault tolerant connection.

Note: Avoid setting a small ping interval. This wastes cycles and your application will be
burdened with temporary network unavailability. Also, if you set a ping interval that
is too small, it might give false connection drops.

Handling Exceptions on the Connection

The exception handler can handle errors actively as shown in ReliableChat: Reconnection
Routine on page 162, from the ReliableChat sample, where a connection problem initiates
a reconnection routine.

ReliableChat: Reconnection Routine

// Handle asynchronous problem with the connection.
public void onException (javax.jms.JMSException jsme)
{
// See if connection was dropped.
// Tell the user that there is a problem.
System.err.println ("\n\nThere is a problem with the connection.");
System.err.println (" JMSException: " + jsme.getMessage());
//If the error is a dropped connection, try to reconnect.
// NOTE: the test is against aurea SonicMQ error codes.
int dropCode = progress.message.jclient.ErrorCodes.ERR_CONNECTION_DROPPED;
if (progress.message.jclient.ErrorCodes.testException(jsme, dropCode))
{
System.err.println ("Please wait while the application tries to "+
"re-establish the connection...");
// Reestablish the connection
connect = null;
setupConnection();
Aurea Software, Inc. Confidential 162 Copyright © 2013 Aurea, Inc.

Client Persistence
Handling Dropped Connection Errors

When broker failure occurs, the existing protocol reset initiates the onException() method
of the ExceptionListener with the error code:
progress.message.jclient.ErrorCodes.ERR_CONNECTION_DROPPED.

In the case of network failure, when a broker becomes disconnected from the network JMS
clients generally notice some time after they try to publish or send a message. If the
application is only acting as a subscriber, network failure might not be detected by the
client. Enabling active ping will ensure timely detection of loss of network.

Exception Listeners Are Not Intended for JMS Errors

The ExceptionListener provides a way to pass information about a problem with a
connection by calling the listener’s onException() method and passing it a JMSException
describing the problem.

Using the ExceptionListener in this way allows a client to be asynchronously notified of a
problem. Some connections only consume messages, and have no other way to learn that
their connection has failed. Also, if you have many sessions in the connection, you should
not tie reconnect logic to the session. Reconnecting should be done only once at the
connection level.

The exceptions delivered to ExceptionListener are those that do not have any other place
to be reported. If an exception is thrown on a JMS call, then by definition the exception must
not be delivered to an ExceptionListener. In other words, the ExceptionListener is not
for the purpose of monitoring all exceptions thrown by a connection.

Client Persistence
SonicMQ installations that provide ClientPlus features have the option of enabling client
persistence. Client persistence provides a higher level of reliability than is defined in the
JMS specification. Where a network failure during a JMS send would normally cause a
message being sent to be effectively lost unless the user application takes additional
precautions, client persistence enables client-based logging of messages sent until the
broker connection is re-established. This feature enhances delivery guarantees and
provides disconnected operation.

When flow control forces a message producer to pause, clients that have enabled client
persistence continue to produce messages into the persistent store. When producer flow
control is no longer in effect, persisted messages flow to the broker in order while the
message producer continues to add messages to the local store. When the local store is
cleared, messages flow directly from the producer to the broker.

The persistent store is a set of files in a directory name specified by the user in association
with a JMS connection. The client run time uses the files to store messages and manage
their delivery to the SonicMQ broker.

The characteristics of the client persistence store and the wait time before flow controlled
messages are persisted in the store can be set programmatically on the connection factory
or on connection factory administered objects.
Aurea Software, Inc. Confidential 163 Copyright © 2013 Aurea, Inc.

Chapter 4: SonicMQ Connections
For each connection using persistence, the persistence directory on the client includes a
subdirectory identified by ClientId that contains:

• One or more files to store messages rejected by the broker

• Recovery files for logging restart information

• For each session on the connection, a file that records all messages sent while in the
disconnected state

When the client has an active connection to the broker, the client operates normally.
Messages are not written to the persistent store until a network outage or a flow control
pause is detected.

When a network outage or a flow control pause is detected, the currently active message
is written to the persistent store and the client switches to writing all messages—persistent
and non-persistent—to the store. The size of the session log is limited by the local store
size. Non-persistent messages in memory when the outage is detected are dropped.

While disconnected because of a network outage, the client runtime tries to reconnect to a
broker. It is possible for the client to reconnect to a different broker (than it originally
connected to) if you provided a list of brokers in the connection parameters of the factory,
or if broker load balancing is configured and the client elected load balancing.

When a connection is reestablished or the flow control is no longer in effect, the client
runtime sends all persistent messages in memory at the time of the disconnect, then
replays the session log. New messages are accepted while the messages in the session
log are sent to the broker and acknowledged. The persistent client controls the rate of
accepting messages into the store relative to the rate of sending stored messages out of
the local store to the broker in an effort to drain the backlog of messages. The sender
experiences a slower producer rate while messages are being restored. However, it is
possible for messages to accumulate in the store faster than they can be sent to the broker.
If this occurs, the local store size might be exceeded in which case the sender gets an
exception.

Files are deleted after all messages have been sent to the broker and acknowledged and
all rejections have been processed by the RejectionListener. An application should
explicitly close sessions and connections to allow the client runtime to perform cleanup. In
the event of an abnormal end to the client connection, the next startup will send
unacknowledged messages and cleanup unneeded files.

Using Client Persistence

SonicMQ applications that want to use client persistence require some modest coding
changes from existing SonicMQ applications. Because this feature is asynchronous
store-and-forward, immediate feedback on delivery failures is not available. To
compensate, the application must set up a listener to handle send failures. Also JMS
functions such as creation of receivers and transacted sessions are not allowed when using
client persistence (see Coding Limitations on page 166). The directory and size of the
persistent store is specified on the ConnectionFactory.
Aurea Software, Inc. Confidential 164 Copyright © 2013 Aurea, Inc.

Client Persistence
Continuous Sender: Implementing Client Persistence on page 165, from the
ContinuousSender sample application, shows a coding construct for implementing client
persistence.

Continuous Sender: Implementing Client Persistence

// Connect id is required when using local Store
factory = (new progress.message.jclient.QueueConnectionFactory
(m_broker,"StoreTest"));
// Configure factory for local store
// ClientId must be set in the factory when using the local store
factory.setClientID(CLIENT_ID);
factory.setEnableLocalStore(true);
factory.setLocalStoreDirectory("MyDir");
factory.setLocalStoreSize(1000); // 1 MB
// seconds before client persists when flow controlled
Integer waitPersist = new(Integer(5));
factory.setLocalStoreWaitTime(waitPersist);

connect = (progress.message.jclient.QueueConnection)
factory.createQueueConnection(m_username, m_password);

// Enable client ping to expedite loss of network detection
// on some UNIX platforms
connect.setPingInterval(30);
connect.setRejectionListener (this);

This sample accepts the default values of the parameters for reconnect timeout and
reconnect interval. The parameters in this example are similarly used for
TopicConnectionFactory in the ContinuousPublisher sample.

The setter methods for client persistence are listed in Table 5.

Table 5: ConnectionFactory Methods for Client Persistence

Method Default Description

setEnableLocalStore(boolean value) false Enables use of the local store.

setLocalStoreDirectory(String name) current
working
directory

The name of the directory that the local
stores for the connection factory will use.
When you have multiple connection
factories, use different directories to avoid
unpredictable behaviors.

setLocalStoreSize(long size) 10000
(10MB)

The maximum size of the local store (in
Kilobytes). The size puts a limit on how many
messages can be stored while operating in
disconnected mode.

setReconnectTimeout(int minutes) 0 (none) Sets how long (in minutes) the runtime
should try to make a connection to the broker
at which point an exception will be returned to
the ExceptionListener. A value of 0 indicates
no timeout—the runtime will try indefinitely.
Aurea Software, Inc. Confidential 165 Copyright © 2013 Aurea, Inc.

Chapter 4: SonicMQ Connections
Rejection Listener

The client is notified of delivery failures by a RejectionListener established by a method
of progress.message.jclient.Connection:

setRejectionListener (RejectionListener rl);

The user must provide an implementation of the RejectionListener interface:

public interface RejectionListener
{
void onRejectedMessage (javax.jms.Message msg, javax.jms.JMSException e);
}

The message is removed from the persistent store when onRejectedMessage returns.

See also RejectionListener Semantics on page 171 for additional information.

Coding Limitations

A message that is in transit when a disconnect occurs is resent when the connection is
reestablished. A consumer receiving messages sent by a persistent client should be
prepared to handle duplicates.

Transacted sessions and message consumers are not supported in sessions where the
connection implements client persistence. The following methods return an error when the
connection has local persistence:

• Connection: Creation of transacted sessions, createConnectionConsumer,
createDurableConnectionConsumer

• Session: createBrowser, createDurableSubscriber, createReceiver,
createSubscriber, createTemporaryQueue, createTemporaryTopic,
setMessageListener

Note: An application can create a separate connection without persistence to use
message consumers and transacted sessions.

setReconnectInterval(int seconds) 30
seconds

Sets the interval between reconnect
attempts.

setLocalStoreWaitTime(Integer
seconds)

0
(indefinite
wait)

Sets the wait time before messages paused
by flow control are written to the local store.

Table 5: ConnectionFactory Methods for Client Persistence

Method Default Description
Aurea Software, Inc. Confidential 166 Copyright © 2013 Aurea, Inc.

Asynchronous Message Delivery
Client persistence can be combined with fault-tolerant connections. For information about
the considerations involved, see Client Persistence and Fault-Tolerant Connections on
page 183.

Asynchronous Message Delivery
Asynchronous message delivery provides increased performance for delivery modes that
are not explicitly asynchronous—NON_PERSISTENT on a security-disabled broker and
NON_PERSISTENT_ASYNC delivery mode. This feature adds asynchronous operation to the
NON_PERSISTENT_REPLICATED delivery mode, a delivery mode used by fault-tolerant brokers
replicating nonpersistent messages from the active peer to its standby.

Asynchronous message delivery does not impact and is not applicable to DISCARDABLE
delivery mode, or delivery within a transaction.

Asynchronous message delivery can be set in the connection factory to address the
following challenges associated with asynchronous message delivery:

• Close Behavior — When asynchronous delivery mode is used, there may be some
messages still in client buffers that have not been delivered to (or acknowledged by)
the broker. This could be caused by SonicMQ flow control, TCP flow control, or just
several sends followed immediately by a close.

• Error propagation on failed sends — When sending asynchronously, it is not possible
to throw an exception to the caller on the send call if there is a problem with the
message send. Examples of send errors are: the connection was dropped, an ACL
check failed, queue or node was not found error, and message too large for a queue.

• Number of in doubt messages — For some applications, it is good practice to limit the
number of messages that can be in-doubt, in case of an application failure or
connection drop. JMS defines the number of in-doubt messages as 1 for each session.

Delivery Mode Behavior

Whether messages are delivered to the broker synchronously or asynchronously can be
set on the ConnectionFactory by the method:

ConnectionFactory.setAsynchronousDeliveryMode(Integer mode)

or, using the constants:

ConnectionFactory.setAsynchronousDeliveryMode.ASYNC_DELIVERY_MODE_DEFAULT
ConnectionFactory.setAsynchronousDeliveryMode.ASYNC_DELIVERY_MODE_ENABLED
ConnectionFactory.setAsynchronousDeliveryMode.ASYNC_DELIVERY_MODE_DISABLED

The following table describes how the setting for asynchronous delivery mode at the
ConnectionFactory level is handled for each non-transacted MessageProducer or Message
DeliveryMode:
Aurea Software, Inc. Confidential 167 Copyright © 2013 Aurea, Inc.

Chapter 4: SonicMQ Connections
1 PERSISTENT Delivery is allowed on an ASYNC_DELIVERY_MODE_ENABLED connection.
2 Queue messages are sent synchronously, Topic messages are sent asynchronously.
3 When security is enabled on the broker, Topic messages are sent synchronously.
4 Specified DeliveryMode is deprecated.

Reliability of Produced Messages

The meaning of successful delivery of a message to the broker depends on the delivery
mode with which the message is sent. The available delivery modes are as follows:

• PERSISTENT — The message has been received by the broker and will be delivered
to each durable subscriber even if the broker crashes or fails over. If the producer is
fault tolerant, message doubt can be resolved in transient connection failures or
failovers.

• NON_PERSISTENT_REPLICATED — The message has been received by the broker
and additionally replicated to the broker's backup. Messages will be sent to fault
tolerant subscribers and durable subscribers unless the active broker is brought down
from any state other than ACTIVE. If the producer is fault tolerant, message doubt can
be resolved in transient connection failures or failovers.

• NON_PERSISTENT — The message has been received by the broker, but is not
guaranteed to survive if the broker goes down or fails over to a backup. If the producer
is fault tolerant messages can be lost in a transient connection failure or failover. The
broker can be configured to instruct clients to internally upgrade messages produced
with NON_PERSISTENT delivery mode to NON_PERSISTENT_REPLICATED.

• DISCARDABLE — This delivery mode can only be used by TopicPublishers and
non-transacted sessions. The client and broker make a best effort to deliver the
message to receivers, but the message will be discarded if it would trigger flow control
or otherwise block the publisher. DISCARDABLE messages will not survive broker failure
or client application/connection failure. DISCARDABLE messages are not fault tolerant.

Delivery Mode Asynchronous Delivery Mode Setting

DISABLED ENABLED DEFAULT

PERSISTENT Synchronous Allowed1 Synchronous

NON_PERSISTENT_REPLICATE
D

Synchronous Asynchronous Synchronous

NON_PERSISTENT Synchronous Asynchronous Q: Synchronous2

T: Asynchronous2,3

NON_PERSISTENT_SYNC4 Synchronous Synchronous Synchronous

NON_PERSISTENT_ASYNC4 Asynchronous Asynchronous Asynchronous

DISCARDABLE Asynchronous Asynchronous Asynchronous
Aurea Software, Inc. Confidential 168 Copyright © 2013 Aurea, Inc.

Asynchronous Message Delivery
Synchronous Message Reliability

For synchronously produced messages, the reliability guarantees described above are met
when the send or publish call returns without an error. Otherwise, until the send call returns,
message delivery to the broker is in doubt. Because sessions are single threaded at most
one message is ever in doubt at any time per session.

Asynchronous Message Reliability

For asynchronously produced messages, the reliability guarantee is not met until the
session is closed. If close returns successfully, then all asynchronously produced
messages have been delivered to (or rejected by) the broker; otherwise, all asynchronously
produced messages are in doubt. See Close Behavior on page 170 for more details.

Setting a connection’s delivery doubt window can limit the number of asynchronously
produced messages that are in doubt at any time. See Close Behavior on page 170 for
more information.

Setting a RejectionListener on the connection is critical for ensuring that asynchronously
produced messages have been accepted by the broker. The broker may reject a message
sent to it for any of the reasons that would cause a synchronous send to throw a
JMSException. See RejectionListener Semantics on page 171 for more information.

Ordering of Asynchronously Produced
Messages

Messages sent asynchronously follow the same ordering guarantees outlined in Message
Ordering and Reliability on page 262. Messages that are of the same DeliveryMode,
Destination and JMSPriority define an ordered stream of messages to the broker. Using
asynchronous delivery can complicate ordering if a particular message in a stream is
rejected by the broker, as subsequent messages in the stream that do not produce an error
are successfully delivered.

Delivery Doubt Window

Delivery of asynchronously produced messages is in doubt until the session on which they
are produced is successfully closed. A connection’s delivery doubt window can be set by
the method:

ConectionFactory.setDeliveryDoubtWindow(Integer numMessages)

Specifying a value of 0 indicates that there is no explicit limit on the number of
asynchronously produced messages at a given time.

Setting a positive integer value n for the number of messages in the delivery doubt window
means that the send call will block when n number of messages have not been reliably
delivered to the broker. Therefore, setting this value limits the number of messages that can
be lost in a failure.
Aurea Software, Inc. Confidential 169 Copyright © 2013 Aurea, Inc.

Chapter 4: SonicMQ Connections
Failure conditions when fault tolerant brokers are not in use include an application crash,
connection failure, broker failure, or an unsuccessful attempt to close the session.

Brokers licensed for fault tolerance that are replicating messages under PERSISTENT and
NON_PERSISTENT_REPLICATED delivery mode do not experience message loss due to a
connection or broker failure.

Close Behavior

Asynchronously produced messages are in doubt until a session is successfully closed.
A successful close of a session is accomplished by either session.close() or
connection.close() returning without throwing an exception. Upon successful close, any
message not reported on the connection's RejectionListener has been successfully
delivered to the broker. If close does not complete successfully, then the delivery status of
any message not reported on the connection's RejectionListener is in doubt. In other
words, if close generates an error, it is not guaranteed that all indoubt messages are
reported on the RejectionListener. This is because some JMS delivery modes will not be
acknowledged by the broker, and, as such, their acknowledgement is implicitly achieved by
the synchronous close call. If the close call throws an exception, then some messages
might not be reported on the RejectionListener.

Close Timeout

When messages are produced asynchronously, it is possible that some messages are
pending delivery when close is called. These messages may be in transit to the broker, in
a client queue, or being processed by the broker. If the producer is flow controlled or the
client has a large backlog of undelivered messages, it is possible that close could take a
substantial amount of time. For applications that are unwilling to wait for asynchronous
message delivery to complete and are capable of handling message loss, a close timeout
can be configured that specifies how long to wait for undelivered or in-doubt messages to
reach the broker.

ConnectionFactory.setDeliveryCloseTimeout(Long timeout)

If the close timeout value is -1, close will block until message delivery is either complete
or there is an exception in close. If the connection’s close timeout value is greater than or
equal to 0, any asynchronously produced messages for which delivery guarantees cannot
be met within the timeout are reported on the connection's RejectionListener with a
JMSAsyncDeliveryException and an error code of ERR_JMS_DELIVERY_TIMEOUT_ON_CLOSE.
The delivery status of such a message is in doubt. Delivery timeout will not cause an
exception to be thrown from close. Therefore, in the absence of another exception being
thrown, any message not reported on the RejectionListener were successfully delivered.
In the absence of an exception on close, all undelivered messages are reported on the
RejectionListener.

Although the default value for close timeout is 0, it is recommended that you increase this
value, or set it to -1 when using asynchronous delivery.
Aurea Software, Inc. Confidential 170 Copyright © 2013 Aurea, Inc.

Asynchronous Message Delivery
Delivery close timeout also applies to synchronously produced messages. If a call to
publish() or send() is blocked waiting for delivery to complete, it will throw a JMSException
with the error code ERR_JMS_DELIVERY_TIMEOUT_ON_CLOSE if the timeout is reached during
close.

Delivery close timeout also applies to DISCARDABLE messages. DISCARDABLE messages are
written to the wire—in a best effort to deliver the messages—instead of dropping them
when a close timeout is specified. However, if the session becomes flow controlled,
DISCARDABLE messages are dropped.

The close timeout does not specify a timeout for the entire close operation, only the
amount of time that close will wait for message delivery to complete.

RejectionListener Semantics

The RejectionListener reports asynchronously delivered messages that could not be
delivered to the broker. All asynchronous delivery failures are reported using a
JMSAsyncDeliveryException. For errors that are reported by the broker, the
JMSAsyncDeliveryException will generally include a linked JMSException with the delivery
error. When this is the case, JMSAsyncDeliveryException.getErrorCode() returns the
error code of the linked exception.

When ASYNC_DELIVERY_MODE_ENABLED is not set, delivery failures are not reported on the
RejectionListener to avoid breaking existing applications that use the
RejectionListener. Instead these messages are silently dropped (preserving the existing
behavior).

Because the RejectionListener is single threaded, the connection serializes its execution.

If a RejectionListener results in an unchecked exception being thrown it will be caught,
and the RejectionListener will not be called again. It is good practice to ensure that all
unchecked exceptions are handled by a RejectionListener implementation.

Because session.close() cannot complete until all RejectionListener calls have
completed, RejectionListener implementations should take care not to perform any
operations that could block for an extended period of time. A RejectionListener must
never call a JMS close method. This restriction is in place because close itself cannot
complete prior to all RejectionListener calls returning.

Once a session is closed, the RejectionListener will no longer be called for any messages
that were produced by any of its MessageProducers, regardless of whether or not close
returned successfully.

A delivery failure for a DISCARDABLE message is never reported on the RejectionListener.

The RejectionListener does not guarantee that errors are reported in any particular order.
Aurea Software, Inc. Confidential 171 Copyright © 2013 Aurea, Inc.

Chapter 4: SonicMQ Connections
The RejectionListener should be set prior to sending any asynchronous messages. If the
RejectionListener is set after sending an asynchronous message then applications can't
count on errors being reported. You can change the RejectionListener—doing so will
cause new delivery failures to be reported on the new RejectionListener. You could unset
the RejectionListener by specifying a null RejectionListener, but it is not
recommended.

Fault-Tolerant Connections
The client aspect of the Sonic Continuous Availability Architecture is client connections that
are fault tolerant. A fault-tolerant connection is designed to be resilient when it detects
problems with the broker or network. A standard connection, in contrast, is immediately
dropped when the broker or network fails. Because the standard connection is immediately
dropped, your client application has to explicitly deal with the situation, possibly trying to
create a new connection and resolve any in-doubt messages.

A fault-tolerant connection, unlike a standard connection, is kept alive when the broker or
network fails. It automatically performs several tasks on your behalf when a problem
occurs. For example, it automatically attempts to reconnect when it encounters a problem
with a connection. If it successfully reconnects, it immediately executes several state and
synchronization protocol exchanges, allowing it to resynchronize client and broker state
and resolve in-doubt messages. When the connection successfully resynchronizes client
and broker state, the connection is said to be resumed, and your client application can
continue its operations without any directly visible disruption.

A fault-tolerant connection can respond to broker or network failure in a variety of ways.
How it responds depends on how you have deployed SonicMQ and on the nature of the
failure. There are several possibilities:

• If the network experiences a transient failure, the fault-tolerant connection can
repeatedly try to recover the connection until the network returns to normal.

• If your client application has redundant network pathways to the broker, one pathway
can fail, and the fault-tolerant connection can use the other pathway to resume the
connection.

• If your client application is connected to a standalone broker, which fails, the
fault-tolerant connection can repeatedly try to reconnect to the broker, until it is
recovered and restarted.

• If you have configured and deployed a backup broker, and the primary broker fails, the
fault-tolerant connection can connect to the backup broker.
Aurea Software, Inc. Confidential 172 Copyright © 2013 Aurea, Inc.

Fault-Tolerant Connections
Fault-tolerant connections are designed to provide continuous operation across failures for
JMS operations that are intended for high reliability:

• Production of PERSISTENT messages to both topics and queues.

• Consumption (that is, acknowledgement) of messages from queues and durable
subscriptions.

• Production and consumption of messages in a transacted session, integrity of the
transaction demarcation operations commit() and rollback(), including duplicate
transaction detection.

• Client requests that manage temporary queues.

For more information about fault-tolerant deployments and continuous availability, see the
Aurea SonicMQ Deployment Guide. For more information about configuring fault-tolerant
brokers, see the Aurea SonicMQ Configuration and Management Guide.

Note: Fault-tolerant connections are not supported for HTTP Direct.

How Fault-Tolerant Connections are Initially
Established

To initially establish a fault-tolerant connection, the client runtime works through a
connection URL list, which can include multiple broker URLs. You add URLs to this list by
calling the ConnectionFactory.setConnectionURLs() method.

If your client application wants to use fault-tolerant connections against a replicated broker,
the programming model requires you to specify the URLs for your primary and backup
brokers in the ConnectionFactory URL list. Before the client application initially connects,
it does not know which broker (primary or backup) is active; if you omit the active broker
from the list, the client will not be able to initially connect.

See Alternate Connection Lists on page 146.

The client runtime works through the list one URL at a time, and connects to the first
available broker on the list. The client runtime can work through the list in either of two
ways:

• In sequential order, starting from the beginning of the list (this is the default behavior).

• In sequential order, starting from a random entry in the list (to get this behavior, you
must call the ConnectionFactory.setSequential(false) method).

The following code snippet demonstrates how to make the client runtime randomly choose
a broker from a list:

//cf is a ConnectionFactory

cf.setSequential(false);

//primary and backup brokers paired in list
cf.setConnectionURLs(“B1P,B1B,B2P,B2B,B3P,B3B,B4P,B4B”);
Aurea Software, Inc. Confidential 173 Copyright © 2013 Aurea, Inc.

Chapter 4: SonicMQ Connections
The following code snippet demonstrates how to make the client runtime choose a broker
by starting at the beginning of the list:

cf.setSequential(true);

//primary and backup brokers paired in list
cf.setConnectionURLs(“B1P,B1B,B2P,B2B,B3P,B3B,B4P,B4B”);

The following code snippet also demonstrates how to make the client runtime choose a
broker by starting at the beginning of the list:

cf.setSequential(true);

//primary brokers listed before backup brokers
cf.setConnectionURLs(“B1P,B2P,B3P,B4P,B1B,B2B,B3B,B4B”);

However, in this snippet, the primary brokers are listed before their corresponding backup
brokers. This approach would be appropriate, for example, if the backup brokers were on
slower machines than the primary brokers.

ConnectionFactory Methods for
Fault-Tolerance

The ConnectionFactory class has several methods related to fault tolerant connections, as
shown in Table 6. The usage of these methods is described in more detail in the sections
following the table.

Table 6: ConnectionFactory Methods for Fault-Tolerance

Method Signature Description

Long getClientTransactionBufferSize() Gets the client transaction buffer size.

Boolean getFaultTolerant() Indicates whether new Connections will be fault
tolerant.

Integer
getFaultTolerantReconnectTimeout()

Gets the fault tolerant reconnect timeout.

Integer getInitialConnectTimeout() Returns the initial connect timeout.

setClientTransactionBufferSize(Long size) Sets the client transaction buffer size.

setFaultTolerant(Boolean faultTolerant) Enables and disables fault tolerance for new
connections.

setFaultTolerantReconnectTimeout(Integer
seconds)

Sets the fault tolerant reconnect timeout.

setInitialConnectTimeout(Integer seconds) Sets the initial connect timeout.
Aurea Software, Inc. Confidential 174 Copyright © 2013 Aurea, Inc.

Fault-Tolerant Connections
Enabling Fault-Tolerant Connections

By default, a ConnectionFactory creates standard connections, not fault-tolerant ones. If
you want to create a fault-tolerant connection, you must first call the following method:

ConnectionFactory.setFaultTolerant(Boolean faultTolerant)

If faultTolerant is true, the ConnectionFactory creates fault tolerant connections; if
false, the ConnectionFactory creates standard connections.

To get the ConnectionFactory’s current fault-tolerance setting, call the following method:

Boolean ConnectionFactory.getFaultTolerant()

You cannot create a fault-tolerant connection unless the broker is licensed to support-fault
tolerance. A broker that is not licensed to support fault tolerance will effectively ignore the
ConnectionFactory setting. You can determine if a connection is fault tolerant by calling
the progress.message.jclient.Connection.isFaultTolerant() method.

Client Transaction Buffers

When a fault-tolerant connection fails in the middle of a transaction, the client runtime
attempts to resume the connection with the broker. If the broker is down, the client runtime
attempts to connect to a standby broker, provided you’re using broker replication. If the
client runtime is able to resume the connection with either broker, it must make sure that its
transaction state is synchronized with the broker’s transaction state.

The broker, for performance reasons, buffers transacted messages in memory, instead of
saving each message individually as it is received. Consequently, the client runtime also
buffers t,he unsaved messages, so that if the broker goes down and loses the buffered
messages, they can be automatically resent by the client runtime.

The broker tuning parameter, Transactions: Buffer Size, specifies the size of the broker’s
buffer on a per-transaction basis. In general, performance improves as the buffer size is
increased. However, the improved performance has two costs: the client runtime uses
more memory, and it takes longer to resend the unsaved messages if the broker goes
down.

The client application can override the transaction buffer size. This is done by calling the
following method:

ConnectionFactory.setClientTransactionBufferSize(Long size)
Aurea Software, Inc. Confidential 175 Copyright © 2013 Aurea, Inc.

Chapter 4: SonicMQ Connections
Valid values for size are as follows:

• Zero (0) (the default) — Indicates the broker Transactions: Buffer Size is applied. The
client runtime must be able to buffer up to the broker Transactions: BufferSize
parameter per transaction.

• Positive Long integer — Specifies the size, in bytes, that the client runtime is willing
to buffer per transaction. If the buffer size is reached, JMS client sending threads will
block until further messages are saved by the broker. The broker will apply a
transaction buffer size that is the lesser of the client-specified value and the broker’s
Transactions: Buffer Size.

The client runtime must be able to allocate sufficient memory to buffer messages for
each active transaction. For local transactions, each JMS Session can have at most
one transaction active. For global transactions, every active XA transaction branch is
considered an active transaction.

The broker flushes transacted messages to disk when the amount of transacted messages
exceeds a calculated amount: the lesser of the broker’s Transaction Buffer Size parameter
or the fault-tolerant client’s transaction buffer size.

To get the client’s transaction buffer size, call the following method:

public Long getClientTransactionBufferSize()

Specifying Connection Timeouts

When a client application tries to establish an initial connection or resume a fault-tolerant
connection, it might not succeed immediately. The client can continue to try until it
succeeds, or it can specify a time interval (timeout) beyond which it will stop trying.

The client application can specify two timeouts related to fault tolerant connections:

• Initial connect timeout — Indicates how long the client runtime tries to establish an
initial connection to the broker

• Fault tolerant reconnect timeout — Indicates how long the client runtime tries to
resume a fault tolerant connection after a problem is detected

To set the initial connect timeout, call the following method:

ConnectionFactory.setInitialConnectTimeout(Integer timeout)

The default timeout is 30 seconds.

When the client runtime tries to establish an initial connection, it sequentially tries the URLs
listed in the ConnectionFactory. You can set this list programmatically with the
ConnectionFactory.setConnectionURLs() method (see How Fault-Tolerant Connections
are Initially Established on page 173).
Aurea Software, Inc. Confidential 176 Copyright © 2013 Aurea, Inc.

Fault-Tolerant Connections
The client runtime continues to try to establish a connection until either a connection is
successful or the initial connect timeout is exceeded. If the client runtime is trying to connect
to a URL when a timeout occurs, it will not stop immediately. It must complete its current
attempt (and fail) before returning a failure to the client application. However, it can return
a failure before trying all URLs in the list.

Note: The InitialConnectTimeout setting interacts with the setting described in Setting
a Socket Connect Timeout on page 148, and—for fault tolerant connections—the
operating systems settings discussed in the “Tuning TCP to Optimize CAA
Failover” in the SonicMQ V6.1 Performance Tuning Guide.

The socket connect timeout should allow for an attempt at every listed URL.
For example, where a URL list contains six URLs, the default setting for the
InitialConnectTimeout of 30 seconds would require that the
SocketConnectTimeout value be set to 5 seconds. The tuning of the operating
system for fault tolerant failover assures that the OS does not add unintended
delays.

When you call the setInitialConnectTimeout() method, valid values are as follows:

• Positive non-zero value — Specifies a timeout; the client runtime will abandon further
connection attempts if the timeout is exceeded.

• Zero (0) — Specifies no timeout; the client runtime will try indefinitely.

• Negative one (-1) — Specifies that each URL is tried one time only; the client runtime
will try each URL sequentially one at a time until a successful connection is made or
until all URLs have been tried. This sequence is the same as the connection sequence
used for standard connections.

If a connection cannot be established within the allocated time, a connection exception will
be thrown.

To set the fault tolerant reconnect timeout, call the following method:

ConnectionFactory.setFaultTolerantReconnectTimeout(Integer
timeout)

The default timeout is 60 seconds.

When a problem is detected with a fault tolerant connection, the client runtime tries to
resume the connection. If it can connect to the same broker, it will; otherwise, it will try to
reconnect to a standby broker (if you are using broker replication).

When the client runtime successfully establishes a fault tolerant connection with a broker,
the broker sends a list of URLs to the client runtime to be used for the purpose of
reconnection. If replicated, the broker also sends a list of standby broker URLs for the
purpose of reconnection. After a connection is established, you can see the values in these
lists by calling the following methods:

• progress.message.jclient.Connection.getBrokerReconnectURLs()

• progress.message.jclient.Connection.getStandbyBrokerReconnectURLs
()
Aurea Software, Inc. Confidential 177 Copyright © 2013 Aurea, Inc.

Chapter 4: SonicMQ Connections
When you call the setFaultTolerantReconnectTimeout() method, valid values are as
follows:

• A positive integer — Specifies a timeout; the client runtime will abandon further
reconnection attempts if the timeout is exceeded.

• Zero (0) — Specifies no timeout: the client runtime will try to reconnect indefinitely.

If the client is using the client persistence feature and the client runtime fails to reconnect,
the connection will go offline. For more information, see Client Persistence and
Fault-Tolerant Connections on page 183.

If the client is not using the client persistence feature and the client runtime fails to resume
a connection, the client runtime drops the connection and returns a connection dropped
exception to the client application’s ExceptionListener.

The client’s ability to reconnect is also influenced by the advanced broker property Client
Reconnect Timeout. The default timeout is 600 seconds—10 minutes. This property limits
the overall length of time the broker will maintain state for any fault-tolerant connection that
fails and cannot reconnect. The maximum length of time that a broker maintains state is the
lesser of the client-specified fault tolerant reconnect timeout and the value set in Client
Reconnect Timeout.

If the client fails to reconnect in the allocated time, the client is completely disconnected by
the broker. A fault-tolerant client runtime that attempts to reconnect late and after the broker
has discarded state will encounter a connection failure.

Connection Methods for Fault-Tolerance

The progress.message.jclient.Connection class has several methods related to fault
tolerant connections, as shown in Table 7. The usage of these methods is described in
more detail in the sections following the table.

Table 7: Connection Methods for Fault-Tolerance

Method Signature Description

int getConnectionState() Returns the current connection state.

ConnectionStateChangeListener
getConnectionStateChangeListener()

Returns the current
ConnectionStateChangeListener.

setConnectionStateChangeListener(
ConnectionStateChangeListener listener)

Sets the current ConnectionStateChangeListener.

String getBrokerURL() Returns the URL of the currently connected broker.

String[] getBrokerReconnectURLs() Returns a String array containing all of the URLs that
the client runtime can use to try to resume a
connection to the connected broker.
Aurea Software, Inc. Confidential 178 Copyright © 2013 Aurea, Inc.

Fault-Tolerant Connections
Handling Connection State Changes

If a fault-tolerant connection fails for some reason, the client runtime reacts differently than
it does for a standard connection. When a standard connection fails, the client runtime
immediately drops the connection and raises an exception. How the exception is returned
to the client application depends on what the application was doing when the exceptional
condition was raised. If the client application was in the middle of a synchronous call, the
exception would be thrown by the invoked method. If the exception occurred
asynchronously, the client runtime would pass an exception to the connection’s
ExceptionListener.

When a fault tolerant connection encounters a problem and cannot communicate with the
broker, the client runtime does not immediately drop the connection. Instead, it tries to
resume the connection. While it is trying to resume the connection, it defers passing any
exceptions to the client application. If it fails in its attempt to reconnect, it then passes the
exceptions to the client application, in the same manner as it would for a standard
connection.

While the client runtime is trying to resume a fault-tolerant connection, the client application
appears to block. However, the client application can stay informed about the state of the
connection by implementing a ConnectionStateChangeListener and registering it with the
appropriate Connection object.

Whenever the state of the connection changes, the client runtime calls the listener’s
connectionStateChanged(int state) method. This method accepts the following valid
values (each value represents a different connection state):

• progress.message.jclient.Constants.ACTIVE — The connection is active.

• progress.message.jclient.Constants.RECONNECTING — The connection is
unavailable, but the client runtime is trying to resume the connection.

• progress.message.jclient.Constants.FAILED — The client runtime has tried to
reconnect and failed.

• progress.message.jclient.Constants.CLOSED — The connection is closed.

A client application can obtain the connection’s current state by calling the following method
on the Connection object:

int getConnectionState()

If a standard connection calls the getConnectionState() method, it will never get a
RECONNECTING state.

String[] getBrokerStandbyReconnectURLs() Returns a String array containing all of the URLs that
the client runtime can use to try to resume a
connection to a backup broker.

boolean isFaultTolerant() Returns true if the connection is fault tolerant.

Table 7: Connection Methods for Fault-Tolerance

Method Signature Description
Aurea Software, Inc. Confidential 179 Copyright © 2013 Aurea, Inc.

Chapter 4: SonicMQ Connections
When a fault tolerant connection is working normally, the connection state is ACTIVE. If a
problem occurs with the connection, the client runtime changes the state to RECONNECTING
and attempts to resume the connection. If the attempt is successful, the client runtime
changes the state back to ACTIVE; if all attempts to reconnect fail, the client runtime
changes the state to FAILED. Finally, if an ExceptionListener is registered, the client
runtime calls its onException() method.

When you implement a ConnectionStateChangeListener, you must not perform any JMS
operations related to the connection, except for calling the following informational methods:

• progress.message.jclient.Connection.getConnectionState()

• progress.message.jclient.Connection.getBrokerURL()

• progress.message.jclient.Connection.getBrokerReconnectURLs()

• progress.message.jclient.Connection.getBrokerStandbyReconnectURLs
()

It is recommended that you do not perform any time- or CPU-intensive processing in the
connectionStateChanged() method, as this may impede the client reconnect.

Getting the URL of the Current Broker

If you are using client URL lists or broker load-balancing, a client connection (fault-tolerant
or standard) can be made to one of a number of brokers. Further, with broker
load-balancing, it is typical that the URL provided by a load-balancing broker is not
configured by the client. With fault-tolerance enabled, the connection can reconnect to a
different URL or to a different broker than it initially connected to. In all these cases, a client
application can determine which broker it is currently connected to by calling the
progress.message.jclient.Connection getBrokerURL() method. The signature of this
method is as follows:

public String getBrokerURL()

This method returns the URL of the currently connected broker. If the current connection
state is RECONNECTING, this method returns the URL of the last broker connected when the
connection state was ACTIVE. This method may be called after the connection is closed.

URL Lists for Reconnecting

When a client initially establishes a fault-tolerant connection to a broker, the broker passes
two URL lists to the client runtime. The first list contains all of the URLs that are tried to
resume a connection to the connected broker; the second list contains all of the URLs that
are tried to resume a connection to its standby broker.

A client application can access the first list by calling the
progress.message.jclient.Connection getBrokerReconnectURLs() method. The
signature of this method is as follows:

public String[] getBrokerReconnectURLs()
Aurea Software, Inc. Confidential 180 Copyright © 2013 Aurea, Inc.

Fault-Tolerant Connections
A client application can access the second list by calling the
progress.message.jclient.Connection getStandbyBrokerReconnectURLs() method.
The signature of this method is as follows:

public String[] getStandbyBrokerReconnectURLs()

Both of these methods are used for purely informational purposes, such as for writing to an
audit log; the reconnect logic is automatically performed by the client runtime. These
methods can both be called after the fault-tolerant connection is closed.

Broker Reconnect URLs

These are URLs the client runtime can use to try and reconnect to the current broker, in the
event of connection failure (transient or other). The broker reconnect URLs allows multiple
acceptors on redundant network interfaces to be configured and included in client
reconnect logic. The broker reconnect URLs are derived from the configuration by the
following rules:

• If the active broker has a default routing URL configured, return the currently
connected URL.

• If the active broker has one or more URLs with same acceptor name as the currently
connected URL, return the URLs with same acceptor name, and include the currently
connected URL (getBrokerURL()).

• Otherwise return the currently connected URL (getBrokerURL()).

If getBrokerReconnectURLs() is called against a fault-tolerant connection that is
RECONNECTING, the method returns the broker reconnect URLs when the connection state
was last ACTIVE.

Standby Broker Reconnect URLs

These are URLs the client runtime can use to connect to a standby broker (a broker that is
paired for fault-tolerance with the current broker) if it cannot successfully resume its
connection with the current broker. The list of standby broker reconnect URLs is derived
from the configuration by the following rules. These rules are consistent with how broker
load-balanced connections are selected:

• If the broker is standalone, return null.

• If the standby broker has a default routing URL configured, return the standby broker
default routing URL.

• If the standby broker has one or more URLs with same acceptor name as the primary
broker URL, return the standby broker URLs with same acceptor name.

• Otherwise return null.

The final case is regarded as a configuration error. Replicated brokers must be configured
with corresponding acceptor names.

If getStandbyBrokerReconnectURLs() is called against a fault-tolerant connection that is
RECONNECTING, the method returns the standby broker reconnect URLs of the last broker
connected when the connection state was ACTIVE.
Aurea Software, Inc. Confidential 181 Copyright © 2013 Aurea, Inc.

Chapter 4: SonicMQ Connections
Reconnect Errors

A fault-tolerant connection might fail to reconnect for a variety of reasons. When a failure
occurs, the ERR_CONNECTION_DROPPED error code is included in the exception returned to the
Connection’s ExceptionListener; a linked exception provides more information about the
specific cause of the failure.

Load Balancing Considerations

When a client is connecting to a replicated broker, both the primary and backup URLs
should be specified in the ConnectionFactory’s URL list. This holds true if the replicated
broker is also a load-balancing broker. If a fault-tolerant client is redirected to a broker that
is replicated, the client is automatically capable of reconnecting that broker’s list of
reconnect URLs and standby reconnect URLs.

To get the URL of the broker that the client connects to as a result of load balancing, call
getBrokerURL() on the connection object.

To get the reconnect URLs of the broker that the client connects to as a result of load
balancing, call getBrokerReconnectURLs() on the connection object.

To get the URLs of the backup broker for the broker that the client connects to as a result
of load balancing, call getStandbyBrokerReconnectURLs() on the connection object.

Acknowledge and Forward Considerations

The acknowledge-and-forward feature allows clients to atomically acknowledge a queue
message and move it a new queue. The acknowledge operation and move operation either
both succeed or both fail. As part of the acknowledge-and-forward call, the message
consumer can optionally change the delivery mode of the message.

The only reliable acknowledge-and-forward operation that will be supported with
fault-tolerant connections is PERSISTENT to PERSISTENT.

PERSISTENT to NON_PERSISTENT, and vice-versa, will throw an IllegalStateException
when attempted on a fault-tolerant connection.

Forward and Reverse Proxies

Fault-tolerant connections will work through forward proxy servers.

Fault-tolerant connections will also work through reverse proxy servers that provide
address translation. URLs for primary and backup brokers that are exterior to the firewall
should be configured in the ConnectionFactory. When configuring a broker for
fault-tolerance behind a firewall, you must configure the default routing URL to the exterior
URL.
Aurea Software, Inc. Confidential 182 Copyright © 2013 Aurea, Inc.

Fault-Tolerant Connections
Client Persistence and Fault-Tolerant
Connections

Fault-tolerant connections and client persistence can be used together. When you use
these features together, you need to understand how the client runtime makes the
transition from ordinary messaging to client persistence, and vice versa.

You need to understand the purpose of the settings in Table 8 and how they affect client
behavior.

When the client runtime initially establishes a fault-tolerant connection, it checks the value
of the initial connect timeout, set with the setInitialConnectTimeout() method. This
method determines how long the client runtime tries to establish an initial fault-tolerant
connection.

After the fault-tolerant connection is successfully established, it will continue to operate
normally until a problem occurs with the network or broker. If a problem occurs, the client
runtime will try to resume the connection. The setFaultTolerantReconnectTimeout()
method determines how long the client runtime attempts to resume the connection.

While the client runtime tries to resume the fault-tolerant connection, the persistent client is
still online. However, once the fault-tolerant reconnect timeout expires, the persistent client
goes offline, and JMS message sends are saved to the client’s local disk.

While offline, the persistent client runtime internally attempts to reconnect. This process is
controlled by two persistent client settings: reconnect interval and reconnect timeout. The
setReconnectInterval() method determines the interval between reconnect attempts.
The setReconnectTimeout() method determines how long the client runtime tries to
reconnect before returning an exception to the application; this method effectively puts a
cap on how long the persistent client is willing to operate offline.

The client persistence feature is essentially indifferent to the type of connection you are
using, whether standard or fault-tolerant. The only difference between a standard
connection and a fault-tolerant connection is when the transition to client persistence takes
place. If a standard connection has a problem with the broker or network, the connection is
immediately dropped, and the transition to client persistence immediately follows. If a
fault-tolerant connection has a problem with the broker or network, it tries to resume the
connection, delaying the transition to client persistence until the fault-tolerant reconnect
timeout expires.

Table 8: Timeout Settings

Setting progress.message.jclient.ConnectionFactory Method

Initial connect timeout setInitialConnectTimeout()

Fault-tolerant reconnect
timeout

setFaultTolerantReconnectTimeout()

Reconnect timeout setReconnectTimeout()

Reconnect interval setReconnectInterval()
Aurea Software, Inc. Confidential 183 Copyright © 2013 Aurea, Inc.

Chapter 4: SonicMQ Connections
Consider the following example. Suppose a client application wants to use the client
persistence feature and combine it with fault-tolerant connections. Further suppose the
client application uses the following settings:

• Initial connect timeout — 30 seconds

• Fault-tolerant reconnect timeout — 60 seconds

• Reconnect timeout — 360 minutes

• Reconnect interval — 600 seconds

When the client application initially connects to the broker, it does so within 25 seconds, so
the fault-tolerant connection succeeds. The persistent client application goes online. When
the client is online, JMS messages are transmitted directly to the broker. Later, the network
fails, and the client runtime attempts to resume the connection, but fails to do so within 60
seconds, so the fault-tolerant reconnect timeout expires. At this time, the persistent client
goes offline.

When the client is offline, JMS messages are saved on the client's local disk. The offline
persistent client runtime continues to save JMS messages, but internally the runtime is
attempting to reconnect to the broker. This process is controlled by two persistent client
settings: reconnect interval and reconnect timeout. After every reconnect interval, the
persistent client will attempt to reconnect. If the reconnect timeout is exceeded the
persistent client will fail and return an exception to the application. By default, the reconnect
timeout is set to 0, which means that the client runtime will continually try and connect to
the broker.

Continuing this example, suppose the broker restarts after 15 minutes. Since the reconnect
interval is set to 600 seconds (10 minutes), on the second reconnect attempt the client will
succeed and go back online. In this case the client operates offline for a period of 20
minutes.

JMS Operation Reliability and Fault-Tolerant
Connections

Reliability refers to resilience after a broker failure—a broker crashed, recovered fully, and
restarted successfully; or a replicated broker crashed and failed over to its backup broker.
The general term failure means either a broker failure or a transient network failure. The
reliability of various JMS and SonicMQ-specific operations in the event of a client reconnect
after a failure are as follows:

• Production and consumption of persistent messages to temporary queues for
fault-tolerant clients are highly reliable across failures.

• Production and consumption of persistent messages to temporary topics are
unreliable across failure. For fault tolerant request-reply, applications should use a
durable subscriber to handle replies.

• Transaction timeouts (a Sonic-specific feature) are restarted when a broker fails.
Aurea Software, Inc. Confidential 184 Copyright © 2013 Aurea, Inc.

Fault-Tolerant Connections
• QueueBrowsers are unreliable if a fault-tolerant connection detects a problem with the
broker or network; all QueueBrowsers are immediately closed. The current browse
cursor will throw a java.util.NoSuchElementException exception with text indicating
that the browse has been terminated due to fail-over. Any attempt to call a
QueueBrowser method after fail-over will result in a
javax.jms.IllegalStateException. Explanatory text is provided in the exception.
The following String error code will be provided:

progress.message.jclient.ErrorCodes.BROWSER_CLOSED_DURING_RECO
NNECT

• Access to read-exclusive queues (a Sonic-specific feature) may be lost during
fail-over. It is possible for a fault-tolerant connection with a QueueReceiver open on a
read-exclusive queue to fail to reconnect after broker failure. This will happen if
another client opens a receiver to the same queue before the fault-tolerant client
reconnects. In this case, normal JMS connection failure occurs. This problem cannot
occur when the client connection recovers from transient network failure.

When a message is sent from a client to an active broker, the client maintains a copy of the
message until two acknowledgements are received. The first acknowledgement is from the
active broker, the second acknowldegement is from the standby broker through the active
broker. If the active broker fails before the second acknowledgement is returned,
then—when the client reconnects to the standby as it assumes the active state—it
negotiates its state: what was the last message received, what was the last
acknowledgement received by the client, and so on. When the now-active broker has
synchronized with the client, any missed messages are resent from the client cache. If the
active broker fails prior to replication, then—when the client negotiates its state at
reconnection—missing messages are resent from the client cache. Messages are removed
from the client cache after both acknowledgements have been received.

Reconnect Conflict

Connect conflicts are possible during client connection recovery. Conflicts can happen at
the JMS connection level and at the durable subscriber level.

JMS Connection Reconnect Conflict

To uniquely identify connections, the ConnectionFactory username and connectID values
are used. A non-null connectID is required, so that only one connection with the
particular username and connectID combination is permitted, and connected when failover
occurs. Before reconnecting, another client can attempt to connect using the same
connectID and username identifiers. A normal (non recovery) connect is received for this
client. To the broker this also happens if the original client application inelegantly
disconnects then attempts to create a new connection. For this reason, it is undesirable for
the broker to reject new connects while maintaining state for a fault-tolerant connection that
has failed and is pending reconnect. Therefore if a fault-tolerant connection has failed and
is pending reconnect in the broker and a new connection (non-recovery) is received with
the same connectID and username, the new connection will be accepted and the previous
connection state will be discarded.
Aurea Software, Inc. Confidential 185 Copyright © 2013 Aurea, Inc.

Chapter 4: SonicMQ Connections
If connectID is null (default) a unique connect identifier is allocated by the broker.
Therefore, by specifying a null connectID, the username is permitted to establish any
number of connections.

This means that a client using fixed connect identifiers to gain exclusive access can lose
such access (have it “stolen” by a different client) during pending reconnect state.

Durable Subscriber Reconnect Conflict

To uniquely identify durable subscriptions the ConnectionFactory username and clientID,
in conjunction with the subscription name parameter provided to javax.jms.Session
createDurableSubscriber are used. A client may create a fault-tolerant connection,
session and a durable subscriber. If the connection fails, the connection enters pending
reconnect state in the broker. During pending reconnect state, no connection is permitted
to create (gain access to) the durable subscriber unless the underlying connectID is
identical to that of the connection in postponed disconnect state.

Message Reliability

Table 9 describes message reliability levels for clients that reconnect to the broker or its
backup after a failure. The reconnect is automatic for fault-tolerant connections, and
application driven for standard connections. This table assumes that clients reconnecting
using standard connections do not resend in-doubt messages upon reconnecting.

Asynchronous message delivery set on the ConnectionFactory allows for a wider delivery
doubt window than possible with asynchronous message production, as the reliability
guarantee is not met until the session is closed. Setting a connection's delivery doubt
window can limit the number of asynchronously produced messages that are in doubt at
any time. See Asynchronous Message Delivery on page 167 for more information.

Note: The only way to guarantee exactly-once delivery is to use a fault-tolerant persistent
MessageProducer and a fault-tolerant MessageConsumer.

Table 9: Message Reliability

Message Producer Message Consumer

Connection
Type

Delivery Mode Standard Connection Fault Tolerant Connection

 Topic Topic (Durable
Subscription)
or Queue

Topic Topic
(Durable
Subscription)
or Queue

Standard
Connection

DISCARDABLE At most once1 At most once1 At most once1 At most once1

PERSISTENT At most once2 At least once1,

2

At most once1 Exactly once1

NON_PERSISTENT At most once1 At most once1 At most once1 At most once1
Aurea Software, Inc. Confidential 186 Copyright © 2013 Aurea, Inc.

Fault-Tolerant Connections
1In the case of a standard connection failure, if the last message sent was in doubt, your application logic may
decide to retry the publication, after creating a new connection, session, and MessageProducer. This
causes the generation of a duplicate message if the broker had received the original message. According to
JMS this is not a redelivery since the message was delivered from a new session. This ambiguity is resolved
for fault-tolerant MessageProducers: PERSISTENT messages are exactly-once; DISCARDABLE and
NON_PERSISTENT messages are dropped in a failure.

2In the case of a standard connection failure, the acknowledgement for the last message may be lost. In this case
the broker will redeliver the message with JMS_REDELIVERY set to true in accordance with the JMS
Specification.

3If a message consuming client reconnects using a standard connection at the same time as a fault-tolerant
publisher is reconnecting, it is possible that the publisher will resend a message that had been delivered to the
previously connected client. According to JMS this is not a redelivery since the message was delivered to a
new session.

NON_PERSISTENT_REPLICATED Delivery
Mode

SonicMQ provides the NON_PERSISTENT_REPLICATED delivery mode for fault-tolerant
deployments. For messages sent with this delivery mode, SonicMQ will protect against
message loss due to broker failures by replicating the messages to the standby broker. This
feature is Fast Forward mode in Sonic’s Continuous Availability Architecture (CAA-FF).

Note: In contrast, if the delivery mode is NON_PERSISTENT, SonicMQ does not replicate
the messages. However, setting the advanced broker property
BROKER_FAULT_TOLERANT_PARAMETERS.FT_REPLICATE_NON_PERSISTENT to true,
upgrades the delivery mode of any messages sent using the NON_PERSISTENT
delivery mode to NON_PERSISTENT_REPLICATED for a fault tolerant deployment. For
more information on setting this and other exposed advanced broker properties,
see the “Configuring MQ Brokers” chapter of the SonicMQ V6.1 Configuration and
Management Guide.

The NON_PERSISTENT_REPLICATED delivery mode also ensures once-and-only-once deliver
to fault-tolerant subscribers (both durable and non-durable), provided that after a failure the
subscriber either successfully resumes its connection at the same broker or fails over to the
standby broker.

This delivery mode provides a more satisfactory level of performance for applications that
do not want to use PERSISTENT messages. If the delivery mode is PERSISTENT and a durable
subscriber consumes the message, SonicMQ replicates the messages to the standby
broker (as with NON_PERSISTENT_REPLICATED) but also persists the messages to the
recovery log (which requires disk I/O).

Fault-Tolerant
Connection

DISCARDABLE At most once At most once At most once At most once

PERSISTENT At most once3 At least once2 At most once Exactly once

NON_PERSISTENT At most once At most once At most once At most once

Table 9: Message Reliability

Message Producer Message Consumer
Aurea Software, Inc. Confidential 187 Copyright © 2013 Aurea, Inc.

Chapter 4: SonicMQ Connections
The NON_PERSISTENT_REPLICATED delivery mode instructs SonicMQ to protect the message
in the event of the following types of failure:

• A client application submits a message to a fault-tolerant broker that is in the ACTIVE
state and is replicating messages to a standby broker. If the active broker fails, the
application fails over to the standby broker. The message is not lost. Also, the
message is not redelivered to its consumers, provided that both the producer and the
consumers use fault-tolerant connections.

• A client application submits a message to a fault-tolerant broker that is working in the
STANDALONE or ACTIVE_SYNC replication state. Later, the messaging state of the
standby broker is synchronized with the active broker. The active broker is now
running in the ACTIVE replication state.

If the active broker, B1, fails, the application fails over to the configured backup broker
standby broker, B1_BU. The message is not lost. Also, the message is not redelivered
to its consumers, provided that both the producer and the consumers use fault-tolerant
connections.

The standby broker B1_BU runs in the STANDALONE replication state until its peer
broker, B1, restarts, establishes a replication connection between B1 and B1_BU,
and starts synchronizing its data to the active broker’s data. When the brokers are fully
synchronized, B1_BU assumes the active role and B1 assumes the standby role.

Important: Time is of the essence — When synchronization is in process, the
messages produced with the NON_PERSISTENT_REPLICATED delivery
mode are not protected from a crash of broker B1_BU. That is, if broker
B1_BU fails while running in the STANDALONE or ACTIVE_SYNC replication
state, the NON_PERSISTENT_REPLICATED messages can be lost or
redelivered (or both) when B1_BU is restarted, because the messages
and their acknowledgements have not been persisted to the recovery
log. In this scenario, applications cannot failover to broker B1 because it
does not have its messages completely synchronized with broker
B1_BU and, therefore, it does not failover and does not accept client
connections.

When an active broker fails and the client connections failover to the
standby broker, it is very important to recover and restart the failed broker
as soon as possible. Otherwise, if the other broker also fails, message
loss or duplication (or both) can occur. See the section “Recovery of a
Broker” in the chapter “Broker Replication” in the Aurea SonicMQ
Deployment Guide for detailed instructions for both recoverable
interruptions and disaster recovery.

When the crash of the active broker is followed by a prompt, successful
restart of the failed broker, and then recovery to the protected state (one
broker in the ACTIVE state and its peer in the STANDBY state),
NON_PERSISTENT_REPLICATED messages are protected and no loss or
duplication of messages occurs.
Aurea Software, Inc. Confidential 188 Copyright © 2013 Aurea, Inc.

Fault-Tolerant Connections
• A client application submits a message to a broker. In this type of failure, the broker
does not have to be configured for replication but it does have to be licensed for
fault-tolerance.

Important: Exactly-once recovery for the broker’s recovery logs must be enabled on
your broker. This feature is enabled by default on every broker but if you
had been advised by your Sonic representative to clear the XONCE
Recovery option on the broker’s Tuning properties, consult with your
Sonic representative to determine whether the setting can be selected
(set to true) at this time.

• A client application experiences a transient network failure. In this type of failure, the
SonicMQ client runtime successfully resumes its connection at the same broker. The
message is not lost. Also, the message is not redelivered to its consumers, provided
that both the producer and the consumers use fault-tolerant connections.

Failures That Cause Message Loss or Duplication

There are severe circumstances that can result in message loss or redelivery/duplication
of NON_PERSISTENT_REPLICATED messages:

• If a broker is restarted when it is running without a standby or the broker's replication
state is not ACTIVE.

• If the broker is running in the ACTIVE state and both the active broker and the standby
broker crash before the applications can failover.

Lost Messages

In these cases, NON_PERSISTENT_REPLICATED messages might be lost once the brokers are
restarted even if client applications resume their connections and sessions without
receiving an exception. Some messages can be lost because they have not been written
to the recovery log.

Redelivered/Duplicated Messages

In these cases, NON_PERSISTENT_REPLICATED messages might be redelivered. This might
happen because when a consumer acknowledges a NON_PERSISTENT_REPLICATED
message, the broker does not record the acknowledgement in its recovery log.

Setting the Default Delivery Mode for a Message
Producer

An application can use the setDeliveryMode(int deliveryMode) method in the
MessageProducer class to set the default delivery mode to NON_PERSISTENT_REPLICATED.
Aurea Software, Inc. Confidential 189 Copyright © 2013 Aurea, Inc.

Chapter 4: SonicMQ Connections
The default delivery mode is used when an application calls a variation of the send() or
publish() methods that do not have the delivery mode as one of their arguments. These
methods are defined in the MessageProducer, QueueSender and TopicPublisher classes.

Note: Enabling asynchronous message delivery on the ConnectionFactory interprets
NON_PERSISTENT_REPLICATED delivery mode as an asynchronous delivery yet
supported by a specified indoubt window and timeout and management of delivery
through the close of the session. See Asynchronous Message Delivery on
page 167 for more information.

Overriding the Default Delivery Mode on a Message

An application can request the NON_PERSISTENT_REPLICATED delivery mode explicitly in
several signatures of send() and publish() methods, thereby overriding the delivery
mode of the message producer for the message that is being sent or published.

Note: While an application can pass the NON_PERSISTENT_REPLICATED delivery mode to
the setJMSDeliveryMode() method in the javax.jms.Message interface, the value
set by this method is used only to return it when the application calls the
getJMSDeliveryMode() method. You can use this setting to restate the selected
delivery mode into the message so that it can be retrieved by the consumer as for
informational use.

Redelivery of NON_PERSISTENT_REPLICATED
Messages

If a message consumer uses a fault-tolerant connection and does not specify the DUPS_OK
acknowledgement mode, SonicMQ guarantees once-and-only-once delivery for the
NON_PERSISTENT_REPLICATED messages in presence of the failures described in
NON_PERSISTENT_REPLICATED Delivery Mode on page 188. This means that no
message are delivered to the consumer more than once.

If the consumer uses the DUPS_OK acknowledgement mode, NON_PERSISTENT_REPLICATED
messages can be redelivered to the consumer after a failure.

Regardless of the acknowledgement mode, NON_PERSISTENT_REPLICATED messages can
be redelivered after any of the failures described in Failures That Cause Message Loss or
Duplication on page 190.

Nondurable Subscribers of
NON_PERSISTENT_REPLICATED Messages

In the case of topic messages, once-and-only-once delivery is guaranteed for
NON_PERSISTENT_REPLICATED messages even if the subscriber is non-durable. That is
different from the behavior of the PERSISTENT messages received by non-durable
subscribers; those messages can be redelivered after a failure.
Aurea Software, Inc. Confidential 190 Copyright © 2013 Aurea, Inc.

Fault-Tolerant Connections
SonicMQ processes NON_PERSISTENT_REPLICATED messages sent to a non-durable
subscriber in a manner that is similar to how it processes PERSISTENT messages sent to a
durable subscriber. (Note that PERSISTENT messages to a non-durable subscriber are
treated as NON_PERSISTENT—they are neither replicated nor logged.)

The main differences are as follows:

• Unlike a PERSISTENT message, a NON_PERSISTENT_REPLICATED message is not written
to the recovery log.

• When the subscriber application closes the subscriber, the subscription is deleted
from the broker and remaining unprocessed messages are dropped.

Clients Resuming Fault Tolerant JMS Sessions on an Unclustered
Broker

When fault tolerant connections are used by message publishers sending
NON_PERSISTENT_REPLICATED messages that are received by non-durable fault-tolerant
subscribers, then once-and-only-once delivery of messages is guaranteed. But action on a
fault tolerant connection might not be broker interruptions or failover, it might be when the
subscriber experiences a temporary network failure. In that case, the client resumes its
JMS session at the same broker without message loss or duplication.

If the subscriber does not resume its session before the reconnect timeout expires, the
subscription is deleted, the unprocessed messages are dropped.

Clients with Fault Tolerant JMS Sessions on Clustered Brokers

When brokers are clustered, it could occur that the message publisher has a fault tolerant
connection on one cluster member, CLUSTERA_B1, while the message consumer has a
fault tolerant connection to a another cluster member, CLUSTERA_B2. If the messages are
published with the NON_PERSISTENT_REPLICATED delivery mode, then once-and-only-once
delivery is guaranteed. That’s the same as the behavior on an unclustered broker.

If broker CLUSTERA_B1 loses its connection to broker CLUSTERA_B2, the new
NON_PERSISTENT_REPLICATED messages are retained at broker CLUSTERA_B1 as
described in the previous section. This does not present a problem if the connection loss is
caused by a temporary network failure, because broker CLUSTERA_B1 only needs to retain
the new messages for a short period of time.

If broker CLUSTERA_B2 is a fault-tolerant replicated broker pair, when CLUSTERA_B2 fails
over to its backup (CLUSTERA_B2_BU), CLUSTERA_B1’s interbroker connection and the
subscriber’s client connection failover to CLUSTERA_B2_BU. Therefore, CLUSTERA_B1
does not need to retain the new messages for a long time.

In situations where CLUSTERA_B1 cannot reconnect to CLUSTERA_B2 (or its peer) for a
long time, retention of the new messages published to the subscriber's topic might present
a problem because writing messages to the database affects CLUSTERA_B1's
performance. It is also possible that the database of broker CLUSTERA_B1 becomes full.
Aurea Software, Inc. Confidential 191 Copyright © 2013 Aurea, Inc.

Chapter 4: SonicMQ Connections
The salient difference between the cluster case and the single broker case is that in the
case of a single broker there is a reconnect timeout that prevents the broker from retaining
new messages for the disconnected subscriber for a long time. In the cluster case, there is
no such timeout. Therefore broker CLUSTERA_B1 retains the subscription and retains new
NON_PERSISTENT_REPLICATED messages published to the subscriber's topic, until it can
reconnect to a broker in the CLUSTERA_B2 replicated pair. At that point, if the subscriber
application has already closed the subscriber, the subscription and its messages are
deleted. If the subscriber is still connected at CLUSTERA_B2, the retained messages are
delivered to the subscriber.

If you know that a broker member and its peer will be unavailable for a long time, remove
that broker from the cluster. That deletes the subscription at CLUSTERA_B1, so that
CLUSTERA_B1 stops retaining new messages published to the subscriber’s topic.

Broker Storage of NON_PERSISTENT_REPLICATED
Messages

Even though NON_PERSISTENT_REPLICATED messages are not written to the recovery log,
they can still incur disk I/O overhead if the broker writes them into its persistent storage.

The broker can write a NON_PERSISTENT_REPLICATED message to persistent storage in one
of the following situations:

• A NON_PERSISTENT_REPLICATED message is a queue message and the in-memory
save extent of its destination queue is full. The broker writes the message to the
database part of the queue. Note that this does not happen if the max size of the queue
is less or equal to the size of its save extent.

• A NON_PERSISTENT_REPLICATED message is a topic message that needs to be
delivered to one or more durable subscribers and some of those subscribers are
disconnected. The broker will store the message in the database. The message is
read back from the broker’s persistent storage when the subscriber connects back.

To avoid that, you can either use non-durable subscription or configure their durable
subscriptions with a very short expiration period so that a subscription is deleted after
the subscriber gets disconnected. That means that all messages published after the
subscription has expired and before the subscriber reconnected are lost.

Note that there is a difference between resuming a fault-tolerant connection and
disconnecting. The latter means that either the application disconnected on its own or
the pending reconnect interval has expired before SonicMQ client runtime attempted
to resume the lost connection.
Aurea Software, Inc. Confidential 192 Copyright © 2013 Aurea, Inc.

Fault-Tolerant Connections
• A NON_PERSISTENT_REPLICATED message is a topic message and the flow-to-disk
feature is in effect. If a subscriber (durable or non-durable) falls behind and its
messages fill up one of the subscriber's in-memory buffers in the broker (see the
SonicMQ Performance Tuning Guide), subsequent messages are stored in the
broker’s persistent storage. They are read back from persistent storage when the
subscriber processes and acknowledges enough messages to make room for more.

• A NON_PERSISTENT_REPLICATED message is a topic message and a fault-tolerant
subscriber of the message is placed in the PENDING_RECONNECT state by the broker
after a failure such as a crash of the active broker or a network failure on the
subscriber's connection. The subscriber is in the PENDING_RECONNECT state at the
broker until the subscriber's application resumes its connection to the broker. While
the subscriber is in the PENDING_RECONNECT state, new NON_PERSISTENT_REPLICATED
messages are stored in an in-memory buffer at the broker (each subscriber has one
such buffer at the broker). Once that buffer becomes full, subsequent
NON_PERSISTENT_REPLICATED messages are stored in the broker’s persistent storage,
and the messages are read back from the database when the subscriber resumes its
connection. This behavior is the same for both durable and non-durable subscribers.

Effect of Broker Restart on
NON_PERSISTENT_REPLICATED Messages

Topic and queue messages in the NON_PERSISTENT_REPLICATED delivery mode stored in
the broker’s persistent storage are processed differently when the broker is restarted:

• Queues — The NON_PERSISTENT_REPLICATED queue messages are deleted from the
broker’s persistent storage during broker restart.

• Topics for Non-Durable Subscribers — The NON_PERSISTENT_REPLICATED topic
messages that were stored in the broker’s persistent storage for non-durable
subscribers either because of the flow-to-disk feature or because the subscriber's
Pending Reconnect buffer became full are also deleted from the database during
broker restart.

• Topics for Durable Subscribers — The NON_PERSISTENT_REPLICATED topic messages
stored in the database for durable subscribers are not deleted from the database
unless the subscription expires. After the broker restart, the messages are delivered
to the subscriber.

NON_PERSISTENT_REPLICATED Messages in
Transactions

A transaction might have producer overrides of the delivery mode such that the transaction
under construction has a mixture of NON_PERSISTENT_REPLICATED, PERSISTENT and
NON_PERSISTENT messages. When fault tolerant brokers and fault tolerant client
connections are not being used, a broker failure loses the transaction in process and the
client session is rolled back.
Aurea Software, Inc. Confidential 193 Copyright © 2013 Aurea, Inc.

Chapter 4: SonicMQ Connections
When fault tolerant brokers and fault tolerant client connections are in use, transactional
behavior on a restart of a standalone broker or failover in a replicated broker pair depends
on whether or not the broker had to write the transaction to a file because the transaction’s
in-memory buffer was filled:

• If the transaction did not fill up its transaction buffer, each message in the transaction
is treated according to its delivery mode meaning that in certain situations, part of the
transaction can be lost, depending on the broker configuration and state:

• When a non-fault tolerant broker, a standalone fault tolerant broker, or both
brokers in a fault tolerant pair simultaneously have to restart, only PERSISTENT
messages will be available.

• When a broker in a fault tolerant pair fails over to its standby, the PERSISTENT
messages and NON_PERSISTENT_REPLICATED messages will be available.

• If the transaction buffer becomes full, all messages in the transaction a kept together
and all of them are replicated; therefore, no messages are lost once the application
has committed the transaction, depending on the broker configuration and state:

• When a non-fault tolerant broker, a standalone fault tolerant broker, or both
brokers in a fault tolerant pair simultaneously have to restart, only the PERSISTENT
messages will be available.

• When a broker in a fault tolerant pair fails over to its standby, the complete
transaction buffer (as well as any messages from committed transactions that
were PERSISTENT or NON_PERSISTENT_REPLICATED) will be available.

Using NON_PERSISTENT_REPLICATED in
acknowledgeAndForward

The ACKNOWLEDGEANDFORWARD feature for queue messages lets an application
atomically acknowledge a received message and forward it to another queue in one
application call.

The application can generally request that the received message is forwarded to another
queue using a delivery mode that is different from the delivery mode that was used when
the message was originally produced.

The valid transitions of delivery mode for non-fault tolerant ACKNOWLEDGEANDFOWARD are:
persistent to persistent, persistent to non-persistent, non-persistent to persistent and
non-persistent to non-persistent.

However, when the forwarding application uses a fault-tolerant client connection,
change is not permitted. The original delivery mode must be used as the forwarding
delivery mode. The valid modes are:

• PERSISTENT > PERSISTENT

• NON_PERSISTENT > NON_PERSISTENT

• NON_PERSISTENT_REPLICATED > NON_PERSISTENT_REPLICATED
Aurea Software, Inc. Confidential 194 Copyright © 2013 Aurea, Inc.

Fault-Tolerant Connections
Using NON_PERSISTENT_REPLICATED Delivery
Mode on Non-Fault Tolerant Connections

If the NON_PERSISTENT_REPLICATED delivery mode is used on a non-fault-tolerant
connection, the SonicMQ client runtime code cannot guarantee once-and-only-once
delivery. Specifically, if the message producer receives an exception as a result of some
failure while trying to send or publish a NON_PERSISTENT_REPLICATED message, there is an
uncertainty regarding whether or not the broker received the message. If the application
reconnects to the broker and resubmits the message, the consumer(s) of the message may
receive it twice (the JMSUndelivered flag will be set to false).

This is a specified behavior for the PERSISTENT messages in the JMS standard.

The above behavior also applies when where an application attempts to create a
fault-tolerant connection to a broker that is not licensed for fault tolerance and then uses
the NON_PERSISTENT_REPLICATED delivery mode.

If NON_PERSISTENT_REPLICATED messages are being delivered to a non-fault-tolerant
consumer and a failure takes place, the consumer has to manually re-connect to the broker.
In this situation, there is an uncertainty regarding the last message that was consumed prior
to the failure. That message may be redelivered by SonicMQ to the consumer (the
JMSRedelivered flag is set to true). This is a specified behavior for the PERSISTENT
messages in the JMS standard.

Modifying the Chat Example for
Fault-Tolerance

This section describes how to modify the Chat sample provided with SonicMQ to use
fault-tolerant connections.

To modify the Chat sample:

1. Create a directory
MQ2013_install_root/samples/TopicPubSub/Chat/ChatFT.

2. Create a copy of the file
MQ2013_install_root/samples/TopicPubSub/Chat/Chat.java and paste
it in the directory you just created.

3. Set the file to be write enabled.

4. Open the copied file Chat.java in a text editor or Java IDE.
Aurea Software, Inc. Confidential 195 Copyright © 2013 Aurea, Inc.

Chapter 4: SonicMQ Connections
5. In the body of the chatter() method, replace the first try block with the following:

try

{

javax.jms.ConnectionFactory factory;

factory = (new progress.message.jclient.ConnectionFactory
(broker));

// Tell the ConnectionFactory to create a fault-tolerant
connection

((progress.message.jclient.ConnectionFactory)factory).

setFaultTolerant(new Boolean(true));

// Increase the default connect timeout to 90 seconds

((progress.message.jclient.ConnectionFactory)factory).

setInitialConnectTimeout(new Integer(90));

// If the connection fails, keep retrying the connection
indefinitely

((progress.message.jclient.ConnectionFactory)factory).

setFaultTolerantReconnectTimeout(new Integer(0));

connect = factory.createConnection (username, password);

// Set the fault-tolerant connection's
ConnectionStateChangeListener

((progress.message.jclient.Connection)connect).

setConnectionStateChangeListener(new
ConnectionStateMonitor());

pubSession =

connect.createSession(false,javax.jms.Session.AUTO_ACKNOWLEDGE
);

subSession =

connect.createSession(false,javax.jms.Session.AUTO_ACKNOWLEDGE
);

}

Aurea Software, Inc. Confidential 196 Copyright © 2013 Aurea, Inc.

Fault-Tolerant Connections
6. Near the end of the file, after the printUsage() method body, insert the following
internal class definition:

class ConnectionStateMonitor

implements
progress.message.jclient.ConnectionStateChangeListener

{

public void connectionStateChanged(int status)

{

System.out.println("++++++++++++++++\n");

// Check status and write appropriate message to the console

switch (status)

{

case progress.message.jclient.Constants.RECONNECTING:

System.out.println("SYSTEM: Connection is inactive. " +

"Trying to reconnect. Please wait."); break;

case progress.message.jclient.Constants.ACTIVE:

System.out.println("SYSTEM: Connection is active" +

" and operating normally."); break;

case progress.message.jclient.Constants.FAILED:

System.out.println("SYSTEM: Connection has failed." +

" Cannot reconnect."); break;

case progress.message.jclient.Constants.CLOSED:

System.out.println("SYSTEM: Connection is closed.");

}

// Write the reconnect and standby URLs to the console

String[] brokerURLs =
((progress.message.jclient.Connection)connect).

getBrokerReconnectURLs();

String[] standbyURLs =
((progress.message.jclient.Connection)connect).

getStandbyBrokerReconnectURLs();

if (brokerURLs == null)

System.out.println("SYSTEM: No broker reconnect URLs
provided.");
Aurea Software, Inc. Confidential 197 Copyright © 2013 Aurea, Inc.

Chapter 4: SonicMQ Connections
if (brokerURLs != null){

System.out.println("SYSTEM: The broker reconnect URLs are as
follows:");

for (int i = 0; i < brokerURLs.length; ++i){

System.out.println("Reconnect URL[" + i + "] is " +
brokerURLs[i]);

}

}

if (standbyURLs == null)

System.out.println("SYSTEM: No standby broker URLs provided.");

if (standbyURLs != null && standbyURLs.length > 0){

System.out.println("SYSTEM: The standby broker URLs are as
follows:");

for (int i = 0; i < standbyURLs.length; ++i){

System.out.println("Standby URL[" + i + "] is " +
standbyURLs[i]);

}

}

}

}

7. Save the modified file.

To compile the edited sample:

1. Open a console window to the ChatFT directory.

2. Enter ..\..\..\SonicMQ to run the script file that sets up the SonicMQ variables and
environment.

3. Locate or install a Java SDK and the compiler, javac.exe.

4. Enter the path to the Java compiler, the SonicMQ classpath and the file name, in a
form similar to the following:

c:\jdk\bin\javac -classpath "%SONICMQ_CLASSPATH%" Chat.java

5. Resolve any compile time errors.
Aurea Software, Inc. Confidential 198 Copyright © 2013 Aurea, Inc.

Fault-Tolerant Connections
Running the Modified Chat Example

Now that you have modified, saved, and compiled the Chat example, you can run through
a scenario that demonstrates some of the key differences between fault-tolerant
connections and standard connections.

To run the modified Chat example, do the following:

1. Make sure the broker is running. If the broker is not running, start it. Select:

Start > Programs > Aurea > Sonic 2013 > Start DomainManager

2. In a console window at the ChatFT directory, enter:

..\..\..\SonicMQ Chat -b localhost:2506 -u SALES

This step starts a JMS client that uses a fault-tolerant connection.

3. Open another console window to the Chat directory and enter:

..\..\SonicMQ Chat -b localhost:2506 -u MARKETING

This step starts a JMS client that uses a standard connection.

Both JMS clients will receive messages posted to the jms.samples.chat topic.

1. In the ChatFT console window, type some text and press ENTER.

The ChatFT console window and the Chat console window both display the text you
entered, preceded by:
SALES:

2. In the ChatFT console window, type some text and press ENTER.

The Chat console window and the ChatFT console window both display the text you
entered, preceded by:
MARKETING:

3. In the SonicMQ Container1 console window (in which the broker is running), enter
CTRL-C.

This causes the broker to shut down and close all active connections. You are
prompted whether you want to terminate the batch job.

4. In the SonicMQ Container1 console window, enter Y to terminate the batch job.

The following output is displayed in the ChatFT console window:

++++++++++++++++

SYSTEM: Connection is inactive. Trying to reconnect. Please
wait.

SYSTEM: The broker reconnect URLs are as follows:

Reconnect URL[0] is tcp://localhost:2506

SYSTEM: No standby broker URLs provided.
Aurea Software, Inc. Confidential 199 Copyright © 2013 Aurea, Inc.

Chapter 4: SonicMQ Connections
This output is displayed because the client runtime calls the
connectionStateChanged(int state) method when it detects a change in the state
of the connection. Because this example sets the fault tolerant reconnect timeout to
try indefinitely, this client will continue to try and reconnect until you explicitly shutdown
the client or until the connection is resumed. Because the default broker is not
configured with a backup broker, no standby broker URLs are listed.

5. In the Chat console window, type some text and press ENTER.

The following exception is displayed:

javax.jms.IllegalStateException: The session is closed.

 at progress.message.jimpl.Session.GsB_(Unknown Source)

 at
progress.message.jimpl.Session.createTextMessage(Unknown
Source)

 at Chat.chatter(Chat.java:94)

 at Chat.main(Chat.java:225)

This occurs because the session was closed when the standard connection to the
broker was closed.

6. In the ChatFT console window, type some text and press ENTER.

Notice that the client application appears to block. This behavior occurs because all
client operations are suspended when the connection is unavailable. Also notice that
no exception is displayed.

7. Restart the broker by selecting:

Start > Programs > Aurea > Sonic 2013 > Start DomainManager

When the broker is restarted, the fault-tolerant connection is resumed. This causes the
client runtime to call the connectionStateChanged(int state) method again,
resulting in the following output:

++++++++++++++++

SYSTEM: Connection is active and operating normally.

SYSTEM: The broker reconnect URLs are as follows:

Reconnect URL[0] is tcp://localhost:2506

SYSTEM: No standby broker URLs provided.

The ChatFT console window also displays the text you entered while the connection
was unavailable, preceded by:
SALES:

You have completed this example. You can experiment further, or you can close the ChatFT
and Chat console windows.
Aurea Software, Inc. Confidential 200 Copyright © 2013 Aurea, Inc.

Starting, Stopping, and Closing Connections
Starting, Stopping, and Closing Connections
Connections require an explicit start command to begin the delivery of messages. All
sessions within a connection respond concurrently to the connection start, stop, and
close events. You do not need to stop or start connections in order to publish or send
messages.

Starting a Connection

To start delivery of incoming messages through a connection, use the connect.start()
method. If you stop delivery, messages are still saved for the connection. Under a restart,
delivery begins with the oldest unacknowledged message. Starting an already started
session is ignored. Use the following syntax to start delivery through a connection:

connect.start()

Stopping a Connection

To stop delivery of incoming messages through a connection, use the connect.stop()
method. After stopping, no messages are delivered to any message consumers under that
connection. If synchronous receivers are used, they will block. A stopped connection can
still send or publish messages. Stopping an already stopped session is ignored. Use the
following syntax to stop delivery through a connection:

connect.stop()

When a connection is stopped, that connection is in effect paused. The message producers
continue to perform their functions. The consumers, however, are not active until the
connection restarts. When the stop() method is called, the stop will wait until all the
message listeners have returned before it returns. MessageConsumers that are active can
receive null messages if they are using receive(timeout) or receiveNoWait().

Closing a Connection

To close a connection, use the connect.close() method.

When a connection is closed, all message processing within the connection’s one or more
sessions is terminated. If a message is available at the time of the close, the message (or
a NULL) can be returned, but the message consumer might get exceptions by trying to use
facilities within the closed connection.

When a transacted session is closed, the transaction in aurea is marked for rollback. This
is true whether the shutdown was orderly or unplanned, such as a broker or network failure.

The message objects can be used in a closed connection with the exception of the
message’s acknowledge methods.

See Chapter 5, SonicMQ Client Sessions on page 205 for information about coding
connections and sessions and handling exceptions on connections.
Aurea Software, Inc. Confidential 201 Copyright © 2013 Aurea, Inc.

Chapter 4: SonicMQ Connections
Using Multiple Connections
Sometimes it may be advantageous to use multiple connections in an application, even
though the ordering of messages is only assured within a session (a single thread of
execution). The sheer volume of information flowing through the connection might warrant
multiple connections rather than multiple sessions. Figure 44 shows two connections to a
SonicMQ broker, each with two sessions.

Figure 44: Multiple Connections in a Client Application

Communication Layer
The SonicMQ broker works in concert with the network layer to provide asynchronous
message communications between client applications. As shown in Figure 45, a client can
send and receive messages through the SonicMQ API and interfaces to communicate on
network connection to a broker. Messages might be stored in a message store as an
optional service specified by the message producer.

SonicMQ
Broker

Client Application

C
O
N
N
E
C
T
I
O
N

S
E
S
S
I
O
N

S
E
S
S
I
O
N

C
O
N
N
E
C
T
I
O
N

S
E
S
S
I
O
N

S
E
S
S
I
O
N

Aurea Software, Inc. Confidential 202 Copyright © 2013 Aurea, Inc.

Communication Layer
Figure 45: Client-Broker-Client Communications

The connection layer, as shown in Figure 46, involves getting a ConnectionFactory, then
creating a Connection, and finally creating a Session. A Session holds MessageProducer
and MessageConsumer objects.

Figure 46: Sessions in Connections from Connection Factories

Each instance of a MessageConsumer is dedicated to only one of the messaging models:

• Point-to-point (PTP) — Messaging is one-to-one because only one consumer will get
the message. Messages are placed on queues where they endure until a consumer
takes delivery and acknowledges receipt.

• Publish and Subscribe (Pub/Sub) — Messaging is one-to-many or broadcast
because there could be any number (between zero and many) of consumers for a
given topic who will each receive the one message that was sent. In addition, a
consumer can be a durable subscriber, and SonicMQ will save messages until the
subscriber reconnects. If no consumers express an interest in a message topic, the
message is discarded.

Broker

Network

API

Client

API

Client

ConnectionFactory

Connection

Session

MessageProducer

MessageConsumer
Aurea Software, Inc. Confidential 203 Copyright © 2013 Aurea, Inc.

Chapter 4: SonicMQ Connections
Aurea Software, Inc. Confidential 204 Copyright © 2013 Aurea, Inc.

5
SonicMQ Client Sessions

This chapter explains the programming concepts and actions required to establish and
maintain SonicMQ client sessions. This chapter contains the following sections:

• Overview of Client Sessions on page 205

• Session Objects on page 212

• Flow Control on page 220

• Flow to Disk on page 223

• Using Sessions and Consumers on page 225

• JMS Messaging Domains on page 226

• Integration with Application Servers on page 227

Overview of Client Sessions
The SonicMQ Java client provides a lightweight platform that can access the messaging
features provided by the SonicMQ brokers. In the JMS programming model, a programmer
creates JMS connections that establish the application’s identity and specify how the
connection with the broker will be maintained. Within each connection, one or more
sessions are established. Each session is used for a unique delivery thread for messages
that are delivered to and sent from the client application. This chapter explains the
programming required to establish and maintain client connections to brokers through
sessions.

A JMS Session object represents a single thread of activity. All actual messaging is done
through a Session object. A Session is a factory for MessageConsumer and
MessageProducer objects, each of which remains associated with the Session throughout
its lifespan. A Session is associated with the Connection object that creates it.
Aurea Software, Inc. Confidential 205 Copyright © 2013 Aurea, Inc.

Chapter 5: SonicMQ Client Sessions
A Connection provides a createSession() method for creating a Session. This method
can be called multiple times to create multiple Session objects, each of which remains
associated with the Connection throughout its lifespan. The signature of the
createSession() method is as follows:

javax.jms.Session createSession(boolean transacted, int acknowledgeMode)

where:

• transacted — [true | false]

If true, the session will be transacted.

• acknowledgeMode — [AUTO_ACKNOWLEDGE | CLIENT_ACKNOWLEDGE |
SINGLE_MESSAGE_ACKNOWLEDGE | DUPS_OK_ACKNOWLEDGE]

Indicates whether the client will acknowledge any messages it receives.
AUTO_ACKNOWLEDGE, CLIENT_ACKNOWLEDGE, and DUPS_OK_ACKNOWLEDGE are defined in
javax.jms.Session. SINGLE_MESSAGE_ACKNOWLEDGE is defined in
progress.message.jclient.Session.

The parameters of a Session are qualified so that when the Session is transacted, the
acknowledgementMode setting has no effect, because the transaction implicitly handles
acknowledgement. Similarly, acknowledgementMode has no effect when a Session is only
producing messages.

Naming Sessions

A named session can help an administrator identify sessions. Session names do not need
to be unique—they are only information labels. The name is set when the session is
created, and cannot be changed.

The additional createSession() methods enable you to associate a name with a session
that will be exposed in session information, as in the Manage > Broker > Connections panel
in the Sonic Management Console.

The signature of this createSession() method is as follows:

progress.message.jclient.Connection.createSession
(boolean transacted, int acknowledgeMode, String sessionName)

where:

• transacted — [true | false]

If true, the session will be transacted.

• acknowledgeMode — [AUTO_ACKNOWLEDGE | CLIENT_ACKNOWLEDGE |
SINGLE_MESSAGE_ACKNOWLEDGE | DUPS_OK_ACKNOWLEDGE]

• sessionName — A String that contains characters that are valid for ClientID. See
Table 4.

The value can be null or an empty String—in which case, the behavior is the same as
the standard API without sessionName.
Aurea Software, Inc. Confidential 206 Copyright © 2013 Aurea, Inc.

Overview of Client Sessions
To retrieve a session’s name, use:

String progress.message.jclient.Session.getSessionName()

The following code excerpt creates a session named SendUpdates, and then displays the
name of the resulting session:

javax.jms.Connection conn;
javax.jms.Session sess;
conn = …obtain connection from connection factory…

sess = ((progress.message.jclient.Connection)conn).createSession(false,
javax.jms.Session.AUTO_ACKNOWLEDGE, "SendUpdates");

System.out.println("Session name: " +
((progress.message.jclient.Session)sess).getSessionName());

Note: Corresponding TopicSession, QueueSession, and XA methods that enable named
sessions are defined in the API.

Acknowledgement Mode

Communication between the broker and the message consumer involves an indication of
receipt of the message. One of the following acknowledgement modes is enforced for all
messages in a session:

• AUTO_ACKNOWLEDGE — The session automatically acknowledges the client’s receipt of
a message before the next call to receive (synchronous mode) or when the session
MessageListener successfully returns (asynchronous mode). In the event of a
failure, the last message might be redelivered.

• CLIENT_ACKNOWLEDGE — An explicit acknowledge() on a message acknowledges the
receipt of all messages that have been produced and consumed by the session that
gives the acknowledgement. In the event of a failure, all unacknowledged messages
might be redelivered.

• SINGLE_MESSAGE_ACKNOWLEDGE — An explicit acknowledge() on a message
acknowledges only the current message and no preceding messages. In the event of
a failure, all unacknowledged messages might be redelivered. This mode is a
SonicMQ extension to the JMS standard.

• DUPS_OK_ACKNOWLEDGE — The session “lazily” acknowledges the delivery of messages
to consumers, possibly allowing multiple deliveries of messages after a system
outage.

Warning: While acknowledgement sets standards for delivery from the client to the
broker, there is no reply to the sending application. If an application requires a
reply to the sender, use the JMSReplyTo header field to indicate the request and
program your application to respond to this header field. The requestor can also
append a correlation identifier that will ensure that the reply matches its request.
Aurea Software, Inc. Confidential 207 Copyright © 2013 Aurea, Inc.

Chapter 5: SonicMQ Client Sessions
Recover

A client might build up a large number of unacknowledged messages while attempting to
process them. A session’s recover() method is used to stop a session and restart it with
its first unacknowledged message.

A recover() action notification tells SonicMQ to stop message delivery in the session, set
the redelivered flag on unacknowledged messages it will redeliver under the recovery,
and then resume delivery of messages, possibly in a different order than originally
delivered.

The need for the recover() method is most apparent when the acknowledgement mode
is CLIENT_ACKNOWLEDGE or SINGLE_MESSAGE_ACKNOWLEDGE.

Limiting Redelivery from Queues

An application could get into a loop where it repeatedly receives a message that causes
the application to fail and rollback the transaction, and then the same message is
redelivered. An infinite redelivery loop is sometimes referred to as a “poison message
scenario.”

Point-to-point consumer clients that want to constrain redelivery attempts can limit the
number of deliveries of a message to the consumer by specifying a parameter on the
ConnectionFactory. Messages that have exceeded the redelivery limit and have not been
acknowledged will be processed according to properties specified in the message or will be
discarded. If the message property JMS_SonicMQ_preserveUndelivered is set to true, the
message will be placed on the SonicMQ.DeadMessage queue (or an alternate destination
specified by the JMS_SonicMQ_destinationUndelivered property), and the message
property JMS_SonicMQ_undeliveredReasonCode will be set to the error code
progress.message.jclient.Constants.UNDELIVERED_DELIVERY_LIMIT_EXCEEDED. If the
property JMS_SonicMQ_notifyUndelivered is set to true, a notification will be sent. If the
'preserveUndelivered' property is not set, the message will be discarded.

See Handling Undelivered Messages on page 353 and Specifying a Destination for
Undelivered Messages on page 356 for more information.

Note: Alternatively, JMS applications can perform detection on their own by getting and
acting on the value of the JMSXDeliveryCount property on each message.
Aurea Software, Inc. Confidential 208 Copyright © 2013 Aurea, Inc.

Overview of Client Sessions
The circumstances under which a message can be redelivered to the consumer depend on
the session’s acknowledgement mode:

• AUTO_ACKNOWLEDGE or DUPS_OK_ACKNOWLEDGE — Nontransacted sessions
that choose AUTO_ACKNOWLEDGE or DUPS_OK_ACKNOWLEDGE acknowledgement have
messages redelivered to a consumer when the application's onMessage() method
throws an exception. The client runtime catches the exception, and then calls
onMessage() again. Exceptions are caught and reported to the Connection's
ExceptionListener. Setting a limit to redelivery attempts limits the redelivery count.

• SINGLE_MESSAGE_ACKNOWLEDGE or CLIENT_ACKNOWLEDGE — For
nontransacted sessions that choose SINGLE_MESSAGE_ACKNOWLEDGE or
CLIENT_ACKNOWLEDGE acknowledgement, messages are redelivered when the
application calls Session.recover().

• TRANSACTED — Messages are redelivered when an application rolls back the
transaction.

The JMS defined property JMSXDeliveryCount uses an int to specify the number of
delivery attempts for a message. The value of this property is incremented every time a
message is given to a consumer.

Delivery counters are maintained in the client runtime for messages waiting to be delivered
to a consumer object. Applications for which redelivery limit detection is effective are those
that create long-lived Consumers: in other words., ConnectionConsumers, or
MessageConsumers that are created once and reused. If a consumer is closed and
recreated, the counter for each message sent to the consumer is reset to 0.

Setting Maximum Delivery Count

By setting the value of the maximum delivery count, you can specify:

• 0, the default value, which means that there is no redelivery limit

• 1 or more, which means to deliver and then redeliver the specified number of times

For more information about setting and getting the maximum delivery count for a PTP
receiver:

• As set programmatically for a Point-to-point receiver on a ConnectionFactory,
see This option cannot be set on Connection Factories that are defined as
Administered Objects. on page 149.

• As set administratively in a JMS Administered Object, see the “JMS Administered
Objects Tool” chapter in the Aurea SonicMQ Configuration and Management Guide.
Aurea Software, Inc. Confidential 209 Copyright © 2013 Aurea, Inc.

Chapter 5: SonicMQ Client Sessions
Explicit Acknowledgement

The Message interface provides an acknowledge() method, which explicitly acknowledges
a message. However, the behavior of this method depends on how the Session was
created.

When the Session acknowledgement mode is:

• AUTO_ACKNOWLEDGE, the method is ignored.

• CLIENT_ACKNOWLEDGE, the method explicitly acknowledges all unacknowledged
messages received so far by the session.

• DUPS_OK_ACKNOWLEDGE, the method is ignored.

• SINGLE_MESSAGE_ACKNOWLEDGE, the method explicitly acknowledges the current
message.

When the Session is transacted, the method is ignored.

Transacted Sessions

When a Session is transacted, that Session will combine a group of one or more
messages with client-to-broker ACID properties: Atomic, Consistent, Isolated, and
Durable.

When a Session is transacted, message input and message output are staged on the
broker system but not completed until you call the method to complete the transaction.
Completion of a transaction, determined by your code, does one of the following:

• Commit — The series of messages is sent to consumers.

• RollBack — The series of messages (if any) is destroyed.

The completion of a Session’s current transaction automatically begins the next
transaction. A transacted Session impacts producers and consumers in the ways
described in Table 10.

When a rollback is done in a session that is both sending and receiving, its produced
messages are destroyed and its consumed messages are automatically recovered.

Table 10: Transacted Session Events by Message Role

Role commit() rollback()

Producer Delivers the series of messages
staged since the last call.

Disposes of the series of produced
messages staged since the last
call.

Consumer Acknowledges the series of
messages received since the last
call.

Redelivers the series of received
messages retained since the last
call.
Aurea Software, Inc. Confidential 210 Copyright © 2013 Aurea, Inc.

Overview of Client Sessions
Rollbacks can be either explicit or implicit. Explicit rollbacks occur when the client calls the
rollback() method. Implicit rollbacks occur when either:

• The session or connection are closed without finishing the transaction

• The application, connection, or broker experience failure

To check whether a session is transacted, use the getTransacted() method. The return
value is true if the session is in transacted mode.

A transacted session only completes successfully when an explicit commit() is invoked.

Broker-managed Timeouts on Transacted Sessions

In an implementation, an undetected hang occurring in a session thread can lead to
unexpected behavior. A message that is staged as part of a transaction is indefinitely
invisible. For message consumers reading from a queue, the message is neither committed
so that it can be further processed or released so that it can be put back on its queue. For
message producers, the message is not accessible to a receiver so that it might be further
processed.

A SonicMQ broker can use a broker configuration property to indicate that it will not tolerate
transacted messages that have been in process more than the specified number of
minutes. If the time is exceeded, the transaction is forced to roll back and the transacted
session is then closed. This property is the transaction Idle Timeout property. You can
configure this property from the Sonic Management Console by selecting Broker
Properties and then selecting the Tuning tab. The Idle Timeout property is in the
Transaction section.

The timeout interval can be 0 (an indicator to never idle-out a transaction in process) or any
positive integer value that represents the number of minutes of inactivity before the broker
managed timeout is enforced. As you have no way of knowing the broker’s rules, you
should take best efforts to complete transactions as soon as possible.

Without broker-managed timeouts, the transaction will still rollback when the application
disconnects or shuts down.

Distributed Transactions

When transactions are contained within a session, the transaction is on a single
communication with a broker. The control of the transaction is entirely local.

More sophisticated transactions arise where two sessions enclose the complete
transaction. In such cases, applications can implement X/Open’s XA protocol to enable
transaction identification and transaction demarcation. These global transactions can be
further abstracted by interfacing with a transaction manager.

Distributed transactions are discussed in Chapter 14, Distributed Transactions Using
XA ResourcSes on page 423.
Aurea Software, Inc. Confidential 211 Copyright © 2013 Aurea, Inc.

Chapter 5: SonicMQ Client Sessions
Duplicate Message Detection

The broker can be set up to commit transactions such that they index a universally unique,
32-character identifier (UUID) supplied by the sender. You should make this UUID a
meaningful name within your application, for example, order number, customer number,
authorization number, etc. The sender then uses a commit method to commit the
transacted messages (unless a transaction identifier previously sent is still unexpired).
Otherwise a rollback of the transaction is forced and
javax.jms.TransactionalRolledBackException is thrown by the commit method. The
signature of this type of commit is:

Session.commit(String transactionID, long timeToLive)

where transactionID is a UUID and timeToLive is the intended lifespan of the indexed
identifier in milliseconds. If you omit the timeToLive, the target broker’s advanced property
DUPLICATE_DETECTION_PARAMETERS.INDEXED_TXN_DEFAULT_LIFESPAN sets the lifespan of
the indexed identifier. You can configure advanced properties on a broker from the Sonic
Management Console by selecting the Broker Properties and, under the Advanced tab,
clicking Edit in the PROPERTIES section.

You can alternatively use a hashcode calculated over the message payload instead of a
UUID for the transactionID. You must ensure that the hashcode is unique for each unique
transaction being tracked within the transaction age limit you have set.

See Duplicate Message Detection Overview on page 346 for more information about
detecting duplicate messages.

Session Objects
The primary session objects allow creation of the destinations, producers, consumers, and
messages that are used in the session, as shown in Figure 47.

Figure 47: Primary Session Objects

Figure 48 shows the types of message objects that are created from session methods. The
message types are common and extended into both JMS domains.

The XMLMessage type is unique to SonicMQ and is an extension of the TextMessage type.
The MultipartMessage type is unique to SonicMQ and is an extension of the Message type.

MessageProducer

MessageConsumer

ConnectionFactory

Connection

Session

MessageListener

Destination
Aurea Software, Inc. Confidential 212 Copyright © 2013 Aurea, Inc.

Session Objects
Figure 48: Types of SonicMQ Message Objects

Creating a Destination

Destinations are administered objects that can be controlled by an administrator and can
be retrieved through JNDI or other object storage mechanisms.

See “JMS Administered Objects Tool” in the Aurea SonicMQ Configuration and
Management Guide to learn how the JMS Administered Object tool in the Sonic
Management Console allows you to create destinations in both JNDI and file stores.

Important: Security enabled brokers can deny access to destinations. See the chapter
“Security Considerations in System Design:” in the SonicMQ V6.1
Deployment Guide for information about access control.

The destination object created can be a queue or a topic.

Destination Objects

There are two destination creation methods:

Point-to-point: createQueue
javax.jms.Queue queue = session.createQueue(queueName)

where:

queueName is a String name. Its meaning is evaluated from the destination name
syntax you use. When the queueName is JMS destination, a queue by that name must
exist on the broker. If security is enabled on the broker, access control might deny the
user from reading or writing to a queue.

Message

BytesMessage

MapMessage

ObjectMessage

StreamMessage

TextMessage

MultiPartMessage

MessagePart

XMLMessage

Part
Aurea Software, Inc. Confidential 213 Copyright © 2013 Aurea, Inc.

Chapter 5: SonicMQ Client Sessions
Publish and Subscribe: createTopic
javax.jms.Topic topic = session.createTopic(topicName)

where:

topicName is a String name. Its meaning is evaluated from the destination name
syntax you use. If security is defined for topics, the user might be constrained from
reading or writing at a topic content node. See Chapter 13, Hierarchical Name Spaces
on page 411 for topic name patterns for subscriptions.

Destination Name Syntax

The syntax of a destination name allows for patterns of JMS destination names and for
patterns for routings to remote nodes and URLs:

• Hierarchical structure that enables the use of template characters, as described in
Chapter 13, Hierarchical Name Spaces on page 411.

• Node-qualified names that enable the use of template characters. These names
define access to routing definitions and that set permissions to route to specified JMS
destinations or URLs.

Table 11 shows the general syntax for queues (Q), topics (T), routing nodes (N), and HTTP
URLs (U).

The name you use in the createQueue or createTopic method is evaluated from its syntax
to have one of several meanings.

Table 11: Patterns in Destination Names

Name Description create Queue create Topic
Either createQueue

or createTopic

Destination name Q T http://U

Destination name with hierarchical
structures

Q1.2.3.4 T1.2.3.4 http://a.b.c

Destination name with hierarchical
structures and template characters

- T1.2.*.#

(valid for
subscribers
only)

-

Node-qualified destination name N::Q N::T N::U

Node-qualified destination name
with template characters

- N::#

(valid for
subscribers
only)

-

Aurea Software, Inc. Confidential 214 Copyright © 2013 Aurea, Inc.

Session Objects
If you previously used the X-HTTP-DestinationURL technique, you made a construct similar
to the following:

msg.setStringProperty(“X-HTTP-DestinationURL”,”http://destinationURL”);
sender.send(session.createQueue(“sonic.http::foo”),msg);

Where foo is a placeholder that never gets evaluated. When the default routing sonic.http
is called for routing, the destination URL was overwritten in the routing definition.

This technique is made obsolete by the ability to supply the URL in the createQueue queue
name or createTopic topic name (which you use for sending to a URL is not important):

sender.send(session.createQueue(“sonic.http::http://destinationURL”),msg);

Effects of Access Control

User names in clients that initiate producer or consumer actions are subject to the broker’s
authorization policy when the broker has enabled security.

Propagation of ACL Changes in the Broker’s Authorization Policy

When administrators adjust Access Control Lists (ACLs), the revised ACLs generally
propagate to the broker but do not always propagate to a user’s client sessions.

Producer actions reconfirm their access permission at each send/publish:

• Clients denied publish/send actions discover when they are granted permission.

• Clients granted publish/send actions discover when they are denied permission.

Consumer actions have different behavior dependent on the direction of the change:

• Clients denied subscribe/receive actions discover when they are granted permission.

• However, clients that were granted subscribe/receive actions will not dynamically
discover when they are subsequently denied permission in the active session. The
client must reconnect (stop and restart) to become aware of this change in permission.

Node-qualified destination name
with hierarchical structures

N::Q.Q.Q N::T.T.T N::http://a.b.c

Node-qualified destination name
with hierarchical structures and
template characters

- N::T.*.#

(valid for
subscribers
only)

-

Table 11: Patterns in Destination Names

Name Description create Queue create Topic
Either createQueue

or createTopic
Aurea Software, Inc. Confidential 215 Copyright © 2013 Aurea, Inc.

Chapter 5: SonicMQ Client Sessions
Rechecking ACLs on Messages held for Durable Subscribers

When a a message is delivered to a disconnected durable subscription, the ACL is checked
at the time the message is held for the subscription. When the durable subscriber
reconnects, the authorization is not rechecked at the message restoration. If the
subscriber’s authorization had changed during the disconnected period, the message
would still be delivered.

Because some deployments might not want that behavior, you can set the broker advanced
property BROKER_SECURITY_PARAMETERS.ENABLE_ACL_CHECK_AT_RESTORE to true, to require
that access control is rechecked upon restoration.

Temporary Queues

A TemporaryQueue object is a unique Queue object created for the duration of a Connection.
It is a system-defined queue that can be consumed only by the Connection that created it.
A TemporaryQueue object can be created at either the Session or QueueSession level:

Session.createTemporaryQueue()
QueueSession.createTemporaryQueue()

Creating it at the Session level allows to the TemporaryQueue to participate in transactions
with objects from the Pub/Sub domain. If it is created at the QueueSession, it will only be
able participate in transactions with objects from the PTP domain.

Unique temporary queue names are generated internally by SonicMQ with values that do
not define a use or a queue. A typical temporary queue name is shown below (as one line):

$ISYS.USERS.TemporaryQueues.Administrator.$TMPAPPID$7$$CONNECTION$.*.*.11
332587362311944962118NodeA

Temporary Queues Can Have An Embedded Name Tag

SonicMQ provides metrics on temporary queues. In order to filter relevant temporary
queues, an overload of the Session.createTemporaryQueue() method lets you supply a
customID String.

Session.createTemporaryQueue(String customID);

This method embeds the user-supplied customID at some position in the temporary queue
name—there is no guarantee exactly where in the name. For example the following code:

mySession.createTemporaryQueue("CreditCheckReplyQueue");

creates a temporary queue with a name similar to the following (as one line):

$ISYS.USERS.TemporaryQueues.Administrator.$TMPAPPID$3$$CONNECTION$.*.*.49
1974464CreditCheckReplyQueue2307944962118NodeA

Notice that the customID is embedded in the middle of the temporary queue name.

Important: Limited Length of Temporary Queue Name — Temporary queue names are
restricted to 256 characters. As temporary queue names without a CustomID
are rather long, keep your assigned custom identifier brief.
Aurea Software, Inc. Confidential 216 Copyright © 2013 Aurea, Inc.

Session Objects
See the “Instance Metrics” section of the “Monitoring the Sonic Management Environment”
chapter of the Aurea SonicMQ Configuration and Management Guide to see how metrics
are set on temporary queues.

Temporary destinations (TemporaryTopic or TemporaryQueue) can be created for
request-and-reply mechanisms. See Reply-to Mechanisms on page 279 for more
information.

Using a Lookup for Destinations

While topics and queues are administered objects, there are advantages to programmatic
lookup of defined destinations.

SonicMQ lets you store administered objects in some object store—JNDI or a simple file
store—and then reference the object indirectly (by name) in some context.

See “Lookup Using the Sonic JNDI SPI” on page 154 for more information.

Creating a MessageProducer

A MessageProducer sends messages to one or more destinations.

You create a MessageProducer object by calling a Session object’s createProducer()
method. The signature for this method is:

public java.jms.MessageProducer createProducer(java.jms.Destination
destination)

throws JMSException

Queue and Topic both inherit from Destination, so they are valid parameters. If you provide
a Destination, the returned MessageProducer uses the Destination as its default. If you
use null as the Destination, the returned MessageProducer is not tied to any particular
Destination.

Creating a MessageConsumer

A MessageConsumer receives messages from a single destination.

You create a MessageConsumer object by calling one of the Session object’s
createConsumer() methods:

• public javax.jms.MessageConsumer
createConsumer(javax.jms.Destination destination)

throws JMSException

• public MessageConsumer
createConsumer(javax.jms.Destination destination,

java.lang.String messageSelector)
throws JMSException
Aurea Software, Inc. Confidential 217 Copyright © 2013 Aurea, Inc.

Chapter 5: SonicMQ Client Sessions
• public MessageConsumer
createConsumer(javax.jms.Destination destination,

java.lang.String messageSelector,
boolean NoLocal)

throws JMSException

Since both Queue and Topic inherit from Destination, either is a valid Destination.

The MessageConsumer object returned by these methods is dedicated to the Destination
you provide. If the MessageConsumer is created with a Queue, it honor the JMS semantics for
the P2P messaging model; if a Topic, the Pub/Sub messaging model.

If you want to create a MessageConsumer that is durable subscriber to a Topic, you call one
of the Session object’s createDurableSubscriber() methods:

• public javax.jms.TopicSubscriber
createDurableSubscriber(javax.jms.Topic,

java.lang.String name)
throws JMSException

• public javax.jms.TopicSubscriber
createDurableSubscriber(javax.jms.Topic,

java.lang.String name)
java.lang.String messageSelector,
boolean NoLocal)

throws JMSException

Since TopicSubscriber inherits from MessageConsumer, you can assign the returned
TopicSubscriber to a MessageConsumer reference; this allows you to use the
MessageConsumer interface to manipulate the object, rather than using the
TopicSubscriber interface, which might be deprecated in future JMS versions.

Creating a Message

The message type is created from a Session method in the general form:

javax.jms.[type]Message msg = sendSession.create[type]Message()

where type is the JMS message type:

• javax.jms.TextMessage msg = sendSession.createTextMessage()

• javax.jms.BytesMessage msg = sendSession.createBytesMessage()

• javax.jms.MapMessage msg = sendSession.createMapMessage()

• javax.jms.Message msg = sendSession.createMessage()

• javax.jms.ObjectMessage msg = sendSession.createObjectMessage(
)

• javax.jms.StreamMessage msg = sendSession.createStreamMessage(
)

Aurea Software, Inc. Confidential 218 Copyright © 2013 Aurea, Inc.

Session Objects
The XMLMessage and MultipartMessage types are SonicMQ extensions to the JMS
standard. You cannot create them from a javax.jms.Session, because the required
methods are not defined for that interface. However, you can cast the javax.jms.Session
to a progress.message.jclient.Session first, as shown:

progress.message.jclient.Session pSendSession;
progress.message.jclient.XMLMessage xMsg;
progress.message.jclient.MultipartMessage multipartMsg;

pSendSession = (progress.message.jclient.Session)sendSession;
xMsg = xSendSession.createXMLMessage();
mutipartMsg = xSendSession.createMultipartMessage();

See Chapter 6, Messages on page 231 for information about message interfaces, structure,
and fields.

Closing a Session

Each session should only have a single thread of execution. The close() method is the
only Session method that can be called while some other session method is being
executed in another thread.

Closing a CLIENT_ACKNOWLEDGE session does not force an acknowledge() to occur.
Attempts to use a closed connection’s session objects throws an IllegalStateException.
Starting a started connection or closing a closed connection has no effect and does not
throw an exception.

The Message objects can be used in a closed session (with the exception of the message’s
acknowledge() method).

When the connection closes, its sessions are implicitly closed.

Note: Close Timeout under Asynchronous Message Delivery — Asynchronous
message delivery can be set in the connection factory to provide performance
improvements, particularly for replicating brokers. When asynchronous delivery
mode is enabled, some messages in client buffers might not have been delivered
to (or acknowledged by) the broker. When messages are pending delivery and
close is called, producers that are flow controlled or clients with a backlog of
messages, close could take a while. Applications unwilling to wait can configure a
close timeout. See Asynchronous Message Delivery on page 167 and Close
Behavior on page 170 for more information.
Aurea Software, Inc. Confidential 219 Copyright © 2013 Aurea, Inc.

Chapter 5: SonicMQ Client Sessions
Flow Control
The asynchronous benefits of SonicMQ are not limited to simply receiving without blocking.
They also include:

• Send and receive buffers that stage messages in transit between a client application
and a broker

• An optimized persistence mechanism to maximize broker performance for guaranteed
message delivery

• Concurrent Transacted Cache technology that uses in-memory cache and
high-speed log files to increase throughput for short-duration persistent messages

• Queues defined with specified amounts of memory and disk space reserved for the
queue content

Any of these resources might be offered more data than can be managed. If flow control is
active, SonicMQ will throttle back the message flow from the producer, allowing the next
message to flow into the buffers only when space is available.

In Pub/Sub and PTP you can disable flow control so that when resources are nearly
exhausted, SonicMQ can, under programmatic control, throw exceptions until flow control
conditions are cleared.

When flow control is active, the messages might be sent to consumers at a rate that is
faster than that at which the messages are actually consumed. When the buffers that store
unprocessed messages approach the flow control threshold, flow control can stop new
additions until the buffers fall below a threshold level.

The back pressure from slower consumption might start to impact the buffers for queues or
durable subscriptions. When system or queue capacities are filled with messages in
process, flow control is activated against producers. The message acceptance rate drops,
which eventually results in back pressure at the producers, causing them to either tolerate
the slowdowns or, with flow control disabled, to throw an exception so that you can handle
the situation. For example, you can catch the exception and have the application wait some
period of time before resending.

To avoid the invocation of flow control you can:

• Optimize application processing on incoming messages.

• Adjust the consumer buffer (on the broker side).

• Increase the size of queues.
Aurea Software, Inc. Confidential 220 Copyright © 2013 Aurea, Inc.

Flow Control
• Decrease the message expiration time of messages.

• Set the DeliveryMode on messages to DISCARDABLE.

Note: Messages sent to a queue will only expire after they have been placed on the
queue, so expiration detection can only result from:

Dequeue operations by receivers.

Processing by the queue cleanup thread.

Browsing the queue does not detect expiration.

Using Client Persistence and Wait Time When Flow
Controlled

Clients using persistent client functionality can configure the persistent client to write
messages to the local store when a message producer is flow-controlled. Then, when
producer flow control is no longer in effect, persisted messages flow to the broker in order
while the message producer continues to add messages to the local store. When the local
store is cleared, messages flow directly from the producer to the broker. The application
sender can set the wait time before messages paused by flow control are written to the local
store.

The persistent client controls the rate of accepting messages into the store relative to the
rate of sending stored messages out of the local store to the broker in an effort to drain the
backlog of messages. The sender experiences a slower producer rate while messages are
being restored. However, it is possible for messages to accumulate in the store faster than
they can be sent to the broker. If this occurs, the local store size might be exceeded in
which case the sender gets an exception.

Flow Control Management Notifications

SonicMQ can provide administrative notification when flow control is preventing a
MessageProducer from producing messages over a significant period of time. These
notifications contain information that identifies problems—such as a very slow subscriber
or a queue that is not being serviced by receivers—and corrective action taken.

Flow control is triggered on a regular basis when a broker is under load, perhaps several
times every second. These intermittent conditions are usually transient and unremarkable.
However, when flow control blocking is sustained, an application producer session can be
prevented from producing messages for a significant period of time.

Monitoring Intervals

The monitoring interval is a property of the ConnectionFactory that is set before
connections are created. You set the monitoring level by calling
ConnectionFactory.setMonitorInterval(java.lang.Integer interval), where
interval takes a value as follows:
Aurea Software, Inc. Confidential 221 Copyright © 2013 Aurea, Inc.

Chapter 5: SonicMQ Client Sessions
• progress.message.jclient.Constants.MONITOR_INTERVAL_USE_BROKER_SE
TTING (-1) - the Client Default Monitor Interval defined on broker or cluster is used.
Supported only for clients and brokers using SonicMQ 2013 or later, where this is the
default.

• 0 - Flow control notifications are disabled. The default for clients prior to SonicMQ
2013.

• >=1 - Flow control monitoring interval in seconds.

The monitoring interval is determined when a connection is established and applies to all
sessions created by that connection. It cannot be modified during the lifetime of the
connection.

The value found in the factory when a connection is created applies to any sessions created
by that connection, and cannot be subsequently modified. The property defines the
duration of the monitoring interval in seconds, where 0 indicates that flow control monitoring
is disabled for all sessions on the connection.

Since flow control pause notifications are generated after the session has been blocked for
one full monitoring interval, it might take as long as another monitoring interval from the
time the session became blocked before a notification is generated.

The block-detection logic monitors whether one or more produced messages remain
blocked in the client buffers due to flow control. The logic does not monitor conditions where
the client is unable to send a message due to network congestion or other load-related
factors.

If a producer session remains blocked over multiple monitoring intervals, a flow control
pause notification is generated at the end of each monitoring interval as long as the
producer session remains blocked. When the session becomes unblocked, a flow control
resume notification is generated.

Pub/Sub

In Pub/Sub messaging, when a block is sustained throughout a monitoring interval, an
administrative notification is generated that identifies:

• Username and ConnectID of the blocked producer session

• Username, ConnectID, and Topic of any non-durable subscriber that is blocking the
producer session

• Username, JMS ClientID, and JMS subscriber name of any durable subscriber that is
blocking the producer session

When the block is relieved, another administrative notification is generated identifying the
Username and ConnectID of the now-unblocked producer session.

PTP

In PTP messaging, when a block is sustained throughout a monitoring interval, an
administrative notification is generated that identifies:

• Username and ConnectID of the blocked producer session
Aurea Software, Inc. Confidential 222 Copyright © 2013 Aurea, Inc.

Flow to Disk
• Name of queue that is blocking the producer session or routing queue

When the block is relieved, another administrative notification is generated identifying the
Username and ConnectID of the now-unblocked producer session.

Notification Interface

Notifications are collected and displayed in the Sonic Management Console and delivered
to any management client that has registered an appropriate notification listener (see the
Aurea SonicMQ Administrative Programming Guide for more information). This interface
has a callback that handles all notification types.

To view flow control notifications in the Sonic Management Console, select the Containers
node in the Manage view. Under the container instance node, right-click the broker instance
where you want to view the notifications. In the window that opens, select the flow control
events under the Applications node. See the Aurea SonicMQ Configuration and
Management Guide for more information about viewing flow control notifications in the
Sonic Management Console.

Disabling Flow Control

You can disable flow control so that applications can catch the exceptions thrown when
messages sent cause flow problems on the broker. To disable flow control, call the
Session.setFlowControlDisabled(boolean disabled) method where TRUE indicates that
flow control will not be active in the session.

Flow to Disk
If flow control is active, MessageProducers may block, waiting for MessageConsumers to
process messages that have accumulated in in-memory buffers. The flow-to-disk feature
relieves this problem by temporarily writing messages to disk, allowing message production
to continue despite slow message consumption. This feature is designed for Pub/Sub
messaging, in which one slow consumer might hold up message production for other
consumers.

For a detailed description of flow-to-disk functionality, see the Aurea SonicMQ
Performance Tuning Guide.

An administrator can enable this feature for all clients connected to a broker by setting a
broker configuration parameter (FLOW_TO_DISK). As an application programmer, you can
explicitly override the broker setting.

To override this setting for all Sessions, call the following method:

ConnectionFactory.setFlowToDisk(Integer flowSetting)

where flowSetting is an Integer set to one of the following values:
Aurea Software, Inc. Confidential 223 Copyright © 2013 Aurea, Inc.

Chapter 5: SonicMQ Client Sessions
• progress.message.jclient.Constants.FLOW_TO_DISK_USE_BROKER_SETTING (the
default) — Specifies that the broker setting of FLOW_TO_DISK will be used for the
consumer.

• progress.message.jclient.Constants.FLOW_TO_DISK_ON — Specifies that
FLOW_TO_DISK is on for the consumer regardless of the broker setting.

• progress.message.jclient.Constants.FLOW_TO_DISK_OFF — Specifies that
FLOW_TO_DISK is off for the consumer regardless of the broker setting.
Aurea Software, Inc. Confidential 224 Copyright © 2013 Aurea, Inc.

Using Sessions and Consumers
To override this setting for a single Session, call the following method:

Session.setFlowToDisk(int flowSetting)

where the allowable values for flowSetting are the same as for the
ConnectionFactory.setFlowToDisk() method, except that parameters are passed as
ints, not Integers.

Only a subscriber can meaningfully set the FLOW_TO_DISK setting. If a session exclusively
produces messages, calling the Session.setFlowToDisk() method will have no effect.

Using Sessions and Consumers
There are many advantages to using multiple connections and multiple sessions in an
application even though the ordering of messages is only assured within a session (a single
thread of execution).

Multiple Sessions on a Connection

Using multiple sessions gives up the benefits of serialized operations on a single thread of
execution. Multiple sessions are best suited for alternate or supporting functions within an
application. Figure 49 shows multiple sessions using two sessions and only one
connection. As the connection is associated with a messaging domain—PTP or
Pub/Sub—multiple sessions are constrained to the connection’s domain.

Figure 49: Multiple Sessions on a Connection

Creating Session Objects and the Listeners

The sections Creating and Monitoring a Connection on page 161 and Handling Exceptions
on the Connection on page 162 provide information and examples of setting up
connections. Once you have a connection, you can create session objects and listeners.

SonicMQ
Broker

Client Application

C
O
N
N
E
C
T
I
O
N

S
E
S
S
I
O
N

S
E
S
S
I
O
N

Aurea Software, Inc. Confidential 225 Copyright © 2013 Aurea, Inc.

Chapter 5: SonicMQ Client Sessions
In ReliableChat: Create Session Objects and Listeners on page 226, a continuation of the
ReliableChat sample shown in the section Creating and Monitoring a Connection on
page 161, two sessions are created: one session to work with the standard input and send
functions, and the other to work with the message listener and the messages it delivers for
consumption. Each session declares its acknowledgement mode then sets up the
destination and the publisher or subscriber. The message listener is activated against the
consumer destination.

ReliableChat: Create Session Objects and Listeners

pubSession =
connect.createSession(false,javax.jms.Session.CLIENT_ACKNOWLEDGE);
subSession =
connect.createSession(false,javax.jms.Session.CLIENT_ACKNOWLEDGE);
javax.jms.Topic topic = pubSession.createTopic (APP_TOPIC);
javax.jms.MessageConsumer subscriber =
subSession.createDurableSubscriber(topic,
"SampleSubscription");
subscriber.setMessageListener(this);
publisher = pubSession.createProducer(topic);
// Register this class as the exception listener for any problems.
connect.setExceptionListener((javax.jms.ExceptionListener) this);

Starting the Connection

When all the session objects and settings are established, the ReliableChat connection is
started:

connect.start();

Messages are composed and sent by the publisher session. Messages are delivered and
consumed by the subscriber session. See Connections on page 160 for information about
setting up and working with connections.

JMS Messaging Domains
The JMS messaging domains are primarily differentiated by messaging behaviors. The
programming functionality for the domains is similar, as shown in the interfaces and
methods in Table 12.
Aurea Software, Inc. Confidential 226 Copyright © 2013 Aurea, Inc.

Integration with Application Servers

Integration with Application Servers
Application servers are capable of handling multiple sessions concurrently, offering high
availability of the application. By creating and maintaining a server session pool, the
session thread wrapped in each server session can be started, used, then stopped and
returned to the pool when it has completed its work.

Connection Consumer

An application server creates a ConnectionConsumer to asynchronously receive messages
and pass them to a ServerSessionPool where the messages are assigned to server
sessions.

Table 12: Connected Session Functionality Common to PTP and Pub/Sub

javax.jms Interface Functionality in Either Domain

ConnectionFactory • Allows administrative control of communication resources

• Creates one or more Connections

Connection • Creates one or more Sessions

• Supports concurrent use

• Lets applications specify name-password for client authentication

• Allows unique client identifiers

• Provides ConnectionMetaData

• Supports an ExceptionListener

• Provides start() and stop() methods

• Provides a close() method for connections

Session • Serves as a factory for MessageProducers and MessageConsumers

• Sessions and Destinations are used to create multiple
MessageProducers and MessageConsumers

• Serves as a factory for TemporaryDestinations

• Creates Destination objects with dynamic names

• Serves as a factory for Messages

• Supports serial order of messages consumed and produced

• Retains consumed messages until acknowledged

• Serializes execution of registered MessageListeners

• Provides a close() method for sessions
Aurea Software, Inc. Confidential 227 Copyright © 2013 Aurea, Inc.

Chapter 5: SonicMQ Client Sessions
The ConnectionConsumer receives messages through the connection for the destination it
specified, filtering the preferred messages through its message selector, then distributes
the message to sessions, as shown in Figure 50. This behavior enables the consumer’s
messages to be processed concurrently by several sessions.

Figure 50: ServerSession Pool and Connection Consumer

The create method for the ConnectionConsumer indicates the ServerSessionPool that is an
object implemented by an application server to provide a pool of ServerSessions for
processing the messages of the ConnectionConsumer.

You create a ConnectionConsumer object by calling the Connection object’s
createConnectionConsumer() or createDurableConnectionConsumer() methods:

• public javax.jms.ConnectionConsumer
createConnectionConsumer(javax.jms.Destination

destination,
java.lang.String

messageSelector,
javax.jms.ServerSessionPool

sessionPool,
int maxMessages)

throws JMSException

• public javax.jms.ConnectionConsumer
createDurableConnectionConsumer(javax.jms.Topic topic,

java.lang.String
subscriptionName,

java.lang.String
messageSelector,

javax.jms.ServerSessionPool
sessionPool,

int maxMessages)
throws JMSException

Application Server

SonicMQ
Broker

messageSelector

queue

Application

JMS Runtime

Server Session Pool

Connection
Consumer

C
O
N
N
E
C
T
I
O
N

getServerSession

getSession

start ()
Aurea Software, Inc. Confidential 228 Copyright © 2013 Aurea, Inc.

Integration with Application Servers
where:

• destination is the Queue or Topic to access

• topic is the Topic to access

• messageSelector is the String with the message selector definition

• sessionPool is the ServerSessionPool to associate with this connection consumer

• subscriptionName is the name of the durable subscription

• maxMessages is the maximum number of messages that can be assigned to a server
session at one time

Server Session

A connection consumer executes a getServerSession() method to return a
ServerSession from the pool. A ServerSession is an application server object that
associates a thread with a JMS session. It offers two methods, getSession() to return the
ServerSession's JMS session, and start() to start the execution of the ServerSession
thread that results in the execution of the JMS Session's run() method.

Figure 51: Server Session for a Connection Consumer to a Queue

A ServerSession wraps a Session and associates a MessageListener As shown in
Figure 51, the ServerSession is sent a message obtained by the ConnectionConsumer. The
Session wrapped by the ServerSession is then started so that it can perform its
onMessage() work.

The ServerSession will register some object it provides as the ServerSession's thread run
object. The ServerSession's start method will call the thread's start() method, which will
start the new thread, and from it, call the run method of the ServerSession's run object.
This object will do some housekeeping and then call the Session's run method. When
run() returns, the ServerSession's run object can return the ServerSession to the
ServerSessionPool, and the cycle starts again.

Message Driven Beans

Connection consumers and server session pools are expert facilities that provide a way to
send nonblocking and asynchronous messages to application servers. This functionality is
facilitated in Enterprise JavaBeans (EJB) through Message Driven Beans (MDB) of J2EE
derived from the interface javax.ejb.MessageDrivenBean, which is in turn derived from the
javax.jms.MessageListener. The onMessage() method inherited from the
javax.jms.MessageListener interface has the sole parameter javax.jms.Message.

ServerSession

Session

Message Listener

start ()

message

onMessage
Aurea Software, Inc. Confidential 229 Copyright © 2013 Aurea, Inc.

Chapter 5: SonicMQ Client Sessions
After the container accesses a bean from a pool of available instances, the received
message is passed to the onMessage() method of the MDB instance. When the
onMessage() method completes, the bean is returned to the pool of available instances.

Shared Subscriptions

SonicMQ allows shared subscriptions for topics across multiple application servers. Server
session pools can be used in combination with shared subscriptions to allow round-robin
delivery between application servers, which, in turn, allows round-robin between members
of the server session pool.

XA Resources

Distributed transactions, discussed in Chapter 14, Distributed Transactions Using
XA ResourcSes on page 423, require XAResources so that they can integrate with a
Transaction Manager and application servers.

Figure 52 describes SonicMQ XA interface objects.

Figure 52: SonicMQ Implementation of the XA Interfaces

The connections and sessions for XA interfaces are similar relationships to those in the
standard interface. Some examples of object relationships are:

• The XASession is created by the XAConnection.

• The XASession inherits from the Session.

XAConnect i on

XASessi on

XAConnect i onFact or y

Sessi on

Connect i onConnect i onFact or y

XAResour ce
Aurea Software, Inc. Confidential 230 Copyright © 2013 Aurea, Inc.

6
Messages

This chapter provides information about creating and handling messages in SonicMQ, and
contains the following sections:

• About Messages on page 231

• Message Type on page 232

• Working With Messages That Have Multiple Parts on page 238

• Message Structure on page 248

• Message Header Fields on page 249

• Message Properties on page 253

• Message Body on page 260

About Messages
A SonicMQ message is a package of bytes that encapsulates the message body as a
payload and then exposes metadata that identify, at a minimum, the message and its
timestamp, destination, and priority. The instanceof the object identifies the type of JMS
message.

When a text message is published, it might be coded as shown:

private void jmsPublish (String aMessage)
javax.jms.TextMessage msg = session.createTextMessage();
msg.setText(user + ": " + aMessage);
publisher.publish(msg);
Aurea Software, Inc. Confidential 231 Copyright © 2013 Aurea, Inc.

Chapter 6: Messages
When a message is received it might be through an asynchronous listener, coded as
shown:

// Handle an asynchronously received message
public void onMessage(javax.jms.Message aMessage)
{
...
// Cast the message as a text message.
javax.jms.TextMessage textMessage = (javax.jms.TextMessage) aMessage;
// Read a single String from the text message, print to stdout.
String string = textMessage.getText();
...
}

Message Type
The JMS specification defines five types of messages, all derived from the Message
interface, which also defines message headers and the acknowledge() method used by
all JMS messages. SonicMQ provides an XMLMessage type as an extension of the JMS
TextMessage. Figure 53 lists the SonicMQ message types.

Figure 53: SonicMQ Message Types

The message types are defined as follows:

• Message — The root interface of all JMS messages can be used for a bodyless
message. All the standard message metadata is available—the header fields and the
properties.

• BytesMessage — The body is a stream of uninterpreted bytes. This message type
exists to support cases where the contents of the message will be shared with
applications that cannot read Java types or 16-bit Unicode encodings. It is also useful
when the information to send already exists in binary form.

Message

BytesMessage

MapMessage

ObjectMessage

StreamMessage

TextMessage

MultiPartMessage

MessagePart

XMLMessage

Part
Aurea Software, Inc. Confidential 232 Copyright © 2013 Aurea, Inc.

Message Type
• MapMessage — The body is a set of name-value pairs where names are strings and
values are Java primitive types. The entries can be accessed sequentially or randomly
by name. An example of MapMessage usage is a message describing a new product,
which includes the price, weight, and description; the names in the MapMessage
correlate to columns in a database table in which the consumer stores the information.

• ObjectMessage — The body contains a serializable Java object. An ObjectMessage
is useful when both JMS clients are Java applications or applets with access to the
same class definition.

• StreamMessage — The body is a stream of Java unkeyed primitive values that is
filled and accessed sequentially. Since a StreamMessage contains only raw data and
no keys, it takes up less space than an equivalent MapMessage.

• TextMessage — The body is a java.lang.String or String. Use a TextMessage
when the message content does not require any particular structure, for example,
when the message body is simply printed or copied by the consumer.

• XMLMessage — The body is a TextMessage with XML tags that can be parsed as a
valid XML DOM tree or evaluated through SAX.

• MultipartMessage — The body is composed of one or more parts. There are methods
to add, delete, and get the constituent parts. The parts might be MessageParts,
javax.jms.Message implementations in addition to primitive types such as XML,
HTML, or any type in MIME format such as text/xml.

Note: Large message support through recoverable file channels can use any type of
message as the header message. The file transfer is performed through the
untyped file channel. See Chapter 11, Recoverable File Channels on page 369

Creating a Message

Create a message type from a session method in the form:

javax.jms.[type]Message msg = session.create[type]Message()

Use the following session methods to create the different message types:

• javax.jms.Message msg = session.createMessage()

• javax.jms.BytesMessage msg = session.createBytesMessage()

• javax.jms.MapMessage msg = session.createMapMessage()

• javax.jms.ObjectMessage msg = session.createObjectMessage()

• javax.jms.StreamMessage msg = session.createStreamMessage()

• javax.jms.TextMessage msg = session.createTextMessage()

The MultipartMessage type, described on page Composition of a MultipartMessage on
page 238, extends the Message type. The XMLMessage type, described in the following
section, extends the TextMessage type.
Aurea Software, Inc. Confidential 233 Copyright © 2013 Aurea, Inc.

Chapter 6: Messages
Working with XML Messages

TextMessage inherits methods from Message and adds a text message body. XMLMessage
then parses XML text through an implementation of JAXP classes.

The Apache Xerces parser is loaded by default but any XML conformant parser can be set
as the preferred parser. The Apache Xerces parser supports the XML 1.0 recommendation
and contains advanced parser functionality such as XML Schema, DOM Level 2 version
1.0 and SAX Version 2 in addition to supporting DOM Level 1 and SAX version 1 APIs.

JAXP Support

The Java API for XML Parsing (JAXP) is the JavaSoft standard for a Java application to
access an XML-conformant parser. An application can swap XML parsers to move
between high performance and memory conservation without changing application code.

To use a different compliant SAX or DOM parser, pass the system property in a command
line as shown in these command line examples:

• java –Djavax.xml.parsers.SAXParserFactory=
org.apache.crimson.jaxp.SAXParserFactoryImpl myApp

• java –Djavax.xml.parsers.DocumentBuilderFactory=
org.apache.crimson.jaxp.DocmentBuilderFactoryImpl myApp

JAXP Interfaces

JAXP provides the following interfaces:

• DocumentBuilder — The Document Builder defines the API to obtain DOM
Document instances from an XML document. Using this class, you can get a
org.w3c.dom.Document from XML tagged text. An instance of this class is obtained
from the DocumentBuilderFactory.newDocumentBuilder method. Then XML can be
DOM parsed from a variety of input sources including InputStreams, files, URLs, and
SAX InputSources.

• DocumentBuilderFactory — The Document Builder Factory defines a factory API
that lets applications get a parser that produces DOM object trees from XML
documents. The system property that controls the Factory implementation to create is
javax.xml.parsers.DocumentBuilderFactory. The property names a class that is a
concrete subclass of this abstract class. If none is defined, the default is used. When
an application has a reference to a DocumentBuilderFactory it can use the factory to
configure and obtain parser instances.

• SAXParser — The SAXParser defines the API that wraps an org.xml.sax.Parser
implementation class. Using this class allows an application to parse content using the
SAX API. An instance of this class can be obtained from the
SAXParserFactory.newSAXParser method. When an instance of this class is obtained,
XML can be parsed from a variety of input sources. Then XML can be SAX parsed
from input sources including InputStreams, files, URLs, and SAX InputSources.
Aurea Software, Inc. Confidential 234 Copyright © 2013 Aurea, Inc.

Message Type
• SAXParserFactory — The SAX Parser Factory defines a factory API that lets
applications configure and obtain a SAX-based parser to parse XML documents. The
system property that controls which Factory implementation to create is
javax.xml.parsers.SAXParserFactory. The property names a class that is a
concrete subclass of this abstract class. If none is defined, the default is used. When
an application has a reference to a SAXParserFactory, it can use the factory to
configure and obtain parser instances.

Table 13 describes the methods you can use to parse XML messages.

Table 13: Methods for XML Parsing

Method Description

void
setDocument(org.w3c.dom.Document aDoc)

Takes the org.w3c.dom.Document aDoc and
stores it as the internal document for this
message.

void
setNamespaceAware(boolean aware)

Set whether or not the underlying
javax.xml.parsers.DocumentBuilderFactory
used to generate org.w3c.dom.Document
returned by XMLMessage.getDocument() is
namespace aware.

boolean
isNamespaceAware()

Tests whether the underlying
javax.xml.parsers.DocumentBuilderFactory
used when getDocument() is called is
namespace aware.

org.w3c.dom.Document
getDocument()

Returns an org.w3c.dom.Document object
created from the XMLMessage content that can
be accessed by DOM-tree functionality.

void
setDocumentBuilderFactory(java.lang.String
classname)

Sets the class name for the implementation of
JAXP1.1 DocumentBuilderFactory interface to
override the default Apache Xerces parser.

void
setSAXParserFactory(java.lang.String classname)

Sets the class name for the implementation of
JAXP1.1 SAXParserFactory interface to
override the default Apache Xerces parser.

java.lang.String
getDocumentBuilderFactory()

Gets the class name for the implementation of
JAXP1.1 DocumentBuilderFactory interface.

java.lang.String
getSAXParserFactory()

Gets the class name for the implementation of
JAXP1.1 SAXParserFactory interface.

org.xml.sax.InputSource
getSAXInputSource()

Returns an org.xml.sax.InputSource object
created from the XMLMessage contents.
Aurea Software, Inc. Confidential 235 Copyright © 2013 Aurea, Inc.

Chapter 6: Messages
DOM Support

The Document Object Model (DOM) provides a tree of objects with interfaces for traversing
the tree and writing and XML version of it. XMLDOMChat: DOM Support on page 236,
excerpted from the XMLDOMChat sample application, provides an example of DOM support.

XMLDOMChat: DOM Support

public void onMessage(javax.jms.Message aMessage)
{
try
{
// Test the message type.
if (aMessage instanceof progress.message.jclient.XMLMessage)
{
// Cast the message as a XML message.
progress.message.jclient.XMLMessage xmlMessage =
(progress.message.jclient.XMLMessage) aMessage;
// Get the XML document associated with this message.
org.w3c.dom.Document doc = xmlMessage.getDocument();
// Get the sender and content from the message.
org.w3c.dom.NodeList nodes = null;
nodes = doc.getElementsByTagName("sender");
String sender = (nodes.getLength() > 0) ?
nodes.item(0).getFirstChild().getNodeValue() : "unknown";
nodes = doc.getElementsByTagName("content");
String content = (nodes.getLength() > 0) ?
nodes.item(0).getFirstChild().getNodeValue() : null;
// Show the message
System.out.println("[XML from '" + sender + "'] " + content);
// Show the message as a tree
printDocNodes(doc.getDocumentElement(),0);
System.out.println();
}
else
{
// Cast the message as a text message and display it.
javax.jms.TextMessage textMessage = (javax.jms.TextMessage) aMessage;
System.out.println("[TextMessage] " + textMessage.getText());
}
}
catch...

SAX Support

SAX (Simple API for XML) provides an event-driven mechanism for parsing XML which is
optimized for parsing large XML documents. This is the protocol that most servlets and
network-oriented programs use to transmit and receive XML documents because of its
speed in a modest memory footprint.

However, the SAX protocol requires more program logic than the Document Object Model
(DOM). As an event-driven model, SAX is more obscure—you provide the callback
methods and the parser invokes them as it reads the XML data. Also, you cannot reposition
in or rearrange the document as it is interpreted in a serial data stream.
Aurea Software, Inc. Confidential 236 Copyright © 2013 Aurea, Inc.

Message Type
If your application calls for modifying and displaying an XML document, the DOM is better
suited to that task.

The XMLSAXChat sample excerpt in XMLSAXChat: SAX Support on page 237 shows how a
publisher sends an XML message and the subscriber calls getSAXInputSource() on the
message. That method returns an org.xml.sax.InputSource (rather than the
org.w3c.dom.Document returned in the XMLDOMChat sample). Event parsing is done on the
XML message and the message is printed out to the screen.

XMLSAXChat: SAX Support

public void onMessage(javax.jms.Message aMessage)
{
try
{
// Test the message type.
if (aMessage instanceof progress.message.jclient.XMLMessage)
{
// Cast the message as a XML message.
progress.message.jclient.XMLMessage xmlMessage =
(progress.message.jclient.XMLMessage) aMessage;
// Get the XML SAXInputSource associated with this message.
org.xml.sax.InputSource is = xmlMessage.getSAXInputSource();
if (System.getProperty("javax.xml.parsers.SAXParserFactory") == null) {
//make the default be xerces by setting the System property to point to
xerces.
java.util.Properties props = System.getProperties();
props.put("javax.xml.parsers.SAXParserFactory",
"org.apache.xerces.jaxp.SAXParserFactoryImpl");
System.setProperties(props);
}
javax.xml.parsers.SAXParserFactory plugfactory =
javax.xml.parsers.SAXParserFactory.newInstance();
// Load the parser specified in system property.
javax.xml.parsers.SAXParser saxParser = plugfactory.newSAXParser();
org.xml.sax.Parser sp = saxParser.getParser();
sp.setDocumentHandler(this);
sp.setErrorHandler(this);
sp.parse(is);
}
else
{
// Cast the message as a text message and display it.
javax.jms.TextMessage textMessage = (javax.jms.TextMessage) aMessage;
System.out.println("[TextMessage] " + textMessage.getText());
}
}
catch ...
Aurea Software, Inc. Confidential 237 Copyright © 2013 Aurea, Inc.

Chapter 6: Messages
Working With Messages That Have Multiple Parts
Many applications—especially those dealing with document-centric business messaging
like SOAP 1.1 with Attachments—focus on documents that have multiple parts, each of
which might be differentiated by standard MIME content typing. The JMS specification does
not consider messages that contain other messages. SonicMQ uses the DataHandlers in
the Java Activation Framework to provide an interface that allows an application to get and
set the parts of the message as different types. SonicMQ lets you treat existing JMS
messages as parts of a multipart message and even to include one multipart message
inside another.

Composition of a MultipartMessage

The structure of a MultipartMessage is a wrapper surrounding a series of Parts, as shown
in Figure 54.

Figure 54: MultipartMessage Wraps Parts That Have Header and Content

Each MultipartMessage can have JMS properties and zero or more parts. Each part has
content and a header that declares at least the part’s content type.

MultipartMessages, their headers, and their parts are interfaces:

• progress.message.jclient.MultipartMessage

• progress.message.jclient.Part

• progress.message.jclient.Header

MultipartMessage Type

The MultipartMessage type is a subclass JMS Message and follows the JMS semantics for
interactions with sessions, producers and consumers. A MultipartMessage is limited to 10
megabytes, must be completely created on the producer, and must be sent to the broker
as a single logical transfer.

MultipartMessage

Part

Header

Content
Aurea Software, Inc. Confidential 238 Copyright © 2013 Aurea, Inc.

Working With Messages That Have Multiple Parts
Producing a MultipartMessage

To produce a MultipartMessage, create the parts and add them to an instance of a
MultipartMessage.The following example describes sending objects as message parts.

When wrapping a message in a MultipartMessage the entire message is wrapped,
including the message header and properties. This process provides a technique for
handling undeliverable or indoubt messages. If a message needs to be re-routed, it can
packaged in a MultipartMessage with the problem message as a Part and routed to a
special destination for analysis and processing. The following code excerpts are from the
MultipartMessage sample application, describing the assembly of a multipart message
from five distinct parts:

• part1 is a TEXTMESSAGE:

javax.jms.TextMessage msg1 = session.createTextMessage();
msg1.setText(" this is a JMS TextMessage ");
Part part1 = mm.createMessagePart(msg1);
part1.getHeader().setContentId("CONTENTID1");

• part2 is a byte[]:

String str2 = "This string is sending as a byte array";
DataHandler dh = new DataHandler (str2.getBytes(), "myBytes");
Part part2 = mm.createPart(dh);
part2.getHeader().setContentId("CONTENTID2");

• part3 contains simple text:

String str1 = "a simple text string to put in part 3";
dh = new DataHandler (str1, "text/plain");
Part part3 = mm.createPart(dh);
part3.getHeader().setContentId("CONTENTID3");

• part4 accesses a file:

FileDataSource fds = new FileDataSource("Readme.txt");
dh = new DataHandler (fds);
Part part4 = mm.createPart(dh);
part4.getHeader().setContentId("CONTENTID4");
System.out.println("sending part4..a Readme file");

• part5 is a Web site address:

java.net.URL url = new java.net.URL("http://www.cnn.com");
dh = new DataHandler (url);
Part part5 = mm.createPart(dh);

• The parts are added to the MULTIPARTMESSAGE and then sent:

mm.addPart(part1);
mm.addPart(part2);
mm.addPart(part3);
mm.addPart(part4);
mm.addPart(part5);
sender.send(mm);
Aurea Software, Inc. Confidential 239 Copyright © 2013 Aurea, Inc.

Chapter 6: Messages
The producer methods in the MultipartMessage interface are listed in Table 14.

Consuming a Multipart Message

A MultipartMessage is held by brokers and routed over routing nodes with the same
integrity as any other javax.jms.Message. A client receiving the MultipartMessage can
recover the original message from the Part. An original message that is copied into a part
has its own, original header fields and properties.

Note: When a message is in read-only mode—after it has arrived at a
MessageListener—the set methods on the Part and Header return errors.

Receiving a MultipartMessage is the same as any other JMS message. Consuming the
message is done with standard MessageListeners or calls to receive().

Table 14: Producer Methods in the MultipartMessage Interface

Method Description

Part
createPart()

Creates an empty part.

Part
createPart(javax.activation.DataHandler handler)

Creates a Part from a
DataHandler where handler is
the data

Part
createPart(java.lang.Object object,
java.lang.String type)

Creates a part where type is the
ContentType associated with the
content.

Part
createMessagePart(Message message)

Creates a part whose content is a
Message where message is the
content of the part.

void
addPart(Part part)

Adds part to the multipart at the
end of the message.

void
addPartAt(Part part, int index)

Adds part to the multipart at
position index.

void
removePart(java.lang.String cid)

Removes part with content-ID cid
from the MultipartMessage.

void
removePart(int index)

Removes part index from the
MultipartMessage.
Aurea Software, Inc. Confidential 240 Copyright © 2013 Aurea, Inc.

Working With Messages That Have Multiple Parts
In the MultipartMessage sample where onMessage delivers an instanceof
MultipartMessage, it then passes it through its unpackMM pattern to determine how many
parts the message contains. The sample application then iterates through the handling of
each part, as shown:

private void unpackMM(javax.jms.Message aMessage, int depth)
{
int n = depth;
...
try
{
indent(n); System.out.println ("Extend_type property = " +
aMessage.getStringProperty(Constants.EXTENDED_TYPE));
MultipartMessage mm = (MultipartMessage)aMessage;
int partCount = mm.getPartCount();

indent(n);
for (int i = 0; i < partCount; i++)
{
Part part = mm.getPart(i);

Each part is evaluated to see if it should be treated as a JMS message part or evaluated
as a MIME content type:

if (mm.isMessagePart(i))
{
javax.jms.Message msg = mm.getMessageFromPart(i);
if (msg instanceof MultipartMessage)
unpackMM(msg, ++depth);
else
unpackJMSMessage(msg, n);
}
else
{
unpackPart(part, n);
}
}

The methods for the MultipartMessage consumer are listed in Table 15.

Table 15: Consumer Methods in MultipartMessage Interface

Method Description

java.lang.String
getProfileName()

Return the extended type or profile that was used to
create this message

boolean
doesPartExist(java.lang.String cid)

Tests whether a part with the content-id cid exists

boolean
isMessagePart(int index)

Tests whether part with index is a MessagePart

boolean
isMessagePart(java.lang.String cid)

Tests whether if the part with content ID cid is a
MessagePart
Aurea Software, Inc. Confidential 241 Copyright © 2013 Aurea, Inc.

Chapter 6: Messages
JMS_SonicMQ_ExtendedType Property

A MultipartMessage is not only identified as an instance of MultipartMessage. For the
convenience of older SonicMQ versions or other JMS providers, a String property,
JMS_SonicMQ_ExtendedType, is also set when a MultipartMessage type is sent to carry the
profile of the message. The name is also accessible in
progress.message.jclient.Constants as:

public String EXTENDED_TYPE = “JMS_SonicMQ_ExtendedType”

int
getPartCount()

Returns the number of parts in the
MultipartMessage

Part
getPart(int index)

Gets part index of the message

Part
getPart(java.lang.String cid)

Gets the part of the message identified as content
ID cid

Message
getMessageFromPart(int index)

Gets a JMS message from part index of the
message

Message
getMessageFromPart(java.lang.String cid)

Gets a JMS message from the part of the message
with the content ID cid

boolean
isReadOnly()

Tests whether a message is read only

void
clearReadOnly()

Makes the message writable

Table 15: Consumer Methods in MultipartMessage Interface

Method Description
Aurea Software, Inc. Confidential 242 Copyright © 2013 Aurea, Inc.

Working With Messages That Have Multiple Parts
Parts of a MultipartMessage

A part of a MultipartMessage follows the design pattern for Java handling of MIME used in
JAXM and JavaMail™ through the JavaBeans Activation Framework. Each part has an
associated Header and content, as described:

• The Header contains name/value pair to represent header objects such as
ContentType and ContentId. The Header can be implemented separately from a
MessagePart, or as methods on the Part itself.

• The content of a Part is accessed through a javax.activation.DataHandler in the
following formats:

• DataHandler by using the getDataHandler() method or through a
javax.activation.DataHandler object. The DataHandler object lets you
discover the operations available on the content and then instantiate the
appropriate component to perform those operations. A DataContentHandler
class for the specified type must be available to ensure the expected result. For
example,

setContent(mycontents, "application/x-mytype")

expects a DataContentHandler for application/x-mytype.

• Input stream by using the getInputStream() method.

• Java object by using the getContent() method. This method returns the content
as a Java object.

The methods in the Parts interface are listed in Table 16.

Table 16: Methods in the Parts Interface

Method Description

setContent(java.lang.Object object,
java.lang.String type)

Sets the part's content as a Java Object of
content type type

setContent(byte[] content) Sets the part's content as a byte array of
content

setDataHandler(javax.activation.
DataHandler dataHandler)

Specifies the DataHandler to set the part's
content by wrapping the actual content

java.lang.Object
getContent()

Gets the content of the part as an Object

byte[]
getContentBytes()

Gets the content of the part as a byte array

javax.activation.DataHandler
getDataHandler()

Provides the mechanism to get this part's
content. Returns the DataHandler for the Part

Header
getHeader()

Gets the Header for the Part
Aurea Software, Inc. Confidential 243 Copyright © 2013 Aurea, Inc.

Chapter 6: Messages
MessagePart Subclass

A subclass of the Part is the MessagePart, used by an application to wrap one or more JMS
messages into a MultipartMessage. The ContentType of SonicMQ MessageParts is set
implicitly, as shown in Table 17:

The MessagePart interface inherits all its methods from the Part interface.

Header of the MultipartMessage or a Part

The MultipartMessage itself and each Part have Header objects associated with them that
hold the ContentId, ContentType, and other fields (typically MIME). Table 18 lists the
methods in the Header interface.

java.io.InputStream
getInputStream()

Invokes the DataHandler's getInputStream()
method and returns an input stream for this
part's content

java.io.OutputStream
getOutputStream()

Invokes the DataHandler's getOuputStream()
method and returns an output stream for
writing this part's content

Table 16: Methods in the Parts Interface

Method Description

Table 17: Implicit Content-Type for JMS Message Types

JMS/SonicMQ Type Content-Type

Message application/x-sonicmq-message

BytesMessage application/x-sonicmq-bytesmessage

MapMessage application/x-sonicmq-mapmessage

ObjectMessage application/x-sonicmq-objectmessage

StreamMessage application/x-sonicmq-streammessage

TextMessage application/x-sonicmq-textmessage

XMLMessage (SonicMQ) application/x-sonicmq-xmlmessage

MultipartMessage (SonicMQ) application/x-sonicmq-multipartmessage
Aurea Software, Inc. Confidential 244 Copyright © 2013 Aurea, Inc.

Working With Messages That Have Multiple Parts
Using Multipart Messages to Wrap Problem
Messages

A MultipartMessage is an efficient to handle undeliverable and indoubt messages even
after they have been relegated to a Dead Message Queue (DMQ). You can create
applications that screen DMQs to package lost messages and send them to a queue where
they can be unpacked and analyzed.

Table 18: Methods in the Header Interface

Method Description

void
setContentId(java.lang.String cid)

Sets the ContentId header of the message
or attachment part to the value cid.

setContentType(java.lang.String type) Sets the ContentType header of the
message or attachment part to the value
type

void
setHeaderField(java.lang.String name,

java.lang.String value)

Sets the value of a header field name to the
String value

java.lang.String
getContentId()

Gets the content ID of the message or
attachment part

java.lang.String
getContentType()

Gets the ContentType of the message or
attachment part. Returns the ContentType
of the part or null

java.util.Enumeration
getHeaderFieldNames()

Gets the list of all header fields

java.lang.String
getHeaderField(java.lang.String name)

Gets the value of header field name or null
if it does not exist

java.lang.String
getHeaderField(java.lang.String name,

java.lang.String value)

Gets the value of a header field name. If it
does not exist default to value

void
removeHeaderField(java.lang.String
name)

Removes header name from the part

void
removeAllHeaders()

Removes all headers
Aurea Software, Inc. Confidential 245 Copyright © 2013 Aurea, Inc.

Chapter 6: Messages
Wrapping a Problem SonicMQ Message Within a
Message

In this example, a MessageListener has received a message that it cannot handle and
sends the message to an special-case application listening on SpecialQ.

To wrap a problem message and provide a reason code:

1. Wrap the entire original message as the payload for a MultipartMessage without
changing the message body, headers, or properties.

2. Add an application reason code to the properties of the MultipartMessage.

3. Send the MultipartMessage to, in this example, SpecialQ.

Wrapping a Problem Message on page 246 shows an example of how to wrap a problem
message.

Wrapping a Problem Message

void onMessage (Message m)
{
// We only handle MapMessages
if (m instanceOf MapMessage)
doNormalProcessing(m);
else
{
// Send the message to the SpecialQ for processing
MultipartMessage mm = session.createMultipartMessage();
// Use JMS Properties on the mm to indicate an issue. DMQ these
mm.setStringProperty(“myError”, “Can’t handle this message”);
mm.setBooleanProperty(Constants.PRESERVE_UNDELIVERED, true);
mm.setBooleanProperty(Constants.NOTIFY_UNDELIVERED, true);
// Add the original message as the “Part”
Part att = mm.createMessagePart(m);
mm.addPart (att);
specialSender.send(mm, PERSISTENT)
}
}

Receiving a Wrapped Problem Message

In the preceding example, one SonicMQ message was wrapped inside another to
encapsulate a problem. Receiving a Wrapped Problem Message on page 246 shows how
that message is read and examined.

Receiving a Wrapped Problem Message

// This is the MessageListener on the SpecialQ (for wrapped errors).
void onMessage (Message m)
{
// Was it a normal error?
if (m instanceof MultipartMessage && m.getStringProperty(“myError”) != null)
{
// This was a user error.
Aurea Software, Inc. Confidential 246 Copyright © 2013 Aurea, Inc.

Working With Messages That Have Multiple Parts
log.out (“Error: “ + m.getStringProperty(“myError”));
// Put out properties of the multipart message
log.out(“MessageID: “ + m.getJMSMessageId());
log.out(“Destination: “ + m.getJMSDestination());
log.out(“Mode: “ + m.getJMSDeliveryMode());
// Retrieve the original message(s)
for (int i=0; i<m.getPartCount(); i++)
{
if (m.isMessagePart(i))
{
javax.jms.Message att = m.getPartAsMessage(i);
log.out(“\nPart # “+ i);
log.out(“Original MessageID: “ + att.getJMSMessageId());
log.out(“Original Dest: “ + att.getJMSDestination());
log.out(“Original Mode: “ + att.getJMSDeliveryMode());
}
}
}
}

Interacting with Business-to-Business
Multipart Types

The SonicMQ MultipartMessage type supports B2B messaging in general and SOAP v.1.1.
with Attachments in particular. SOAP message types are not expected to be handled at the
JMS level. Instead, the application programmer wraps the underlying JMS MultipartMessage
in a wrapper that implements the appropriate message, as shown in Figure 55.

Figure 55: SOAP with Attachments as a MultipartMessage

SOAP with Attachments

SOAP Part

SOAP Header

SOAP Body

Attachment 1

Attachment 2
Aurea Software, Inc. Confidential 247 Copyright © 2013 Aurea, Inc.

Chapter 6: Messages
This description shows how SonicMQ MultipartMessages coexist with business
frameworks. Typically, the application looks at a JMS property and, based on the property
value, creates an application object that uses or wraps the MultipartMessage. In the
following example, the JMS header field JMSType holds the type of application object where
it is intended to be used:

void onMessage (Message m)
{
// Handle Multiparts by wrapping them
if (m instanceof MultipartMessage)
{
MultipartMessage mm = (MultipartMessage) m;
if (mm.getJMSType().equals(“SOAP”)
{
// Use the SonicSW MessageFactory to expose this
// as a SOAP Message.
MessageFactory mf = new com.sonicsw.xc.MessageFactory ();
javax.xml.soap.Message soapm = mf.createSoapMessage(mm);

// Now we can do SOAP stuff on “soapm”;
soapm.getSOAPPart();
...
}
...
}

Message Structure
JMS Messages are composed of the following parts:

• Header Fields (JMS) — All messages support the same set of header fields. Header
fields contain values used by clients and brokers to identify and route messages.

• User-defined Properties — User-defined name-value pairs that can be used for
filtering and application requirements.

• Provider-defined Properties — Properties defined and typed by SonicMQ for
carrying information used by SonicMQ features.

• Supported JMS-defined Properties (JMSX) — Predefined name-value pairs that
are an efficient mechanism for supporting message filtering.

• Body — JMS defines several types of message bodies, which cover the majority of
messaging styles currently in use.

Note: While the JMS message system provides programmatic access to all components
of a message, message selectors and routing data are constrained to the header
fields and properties—not the message body.
Aurea Software, Inc. Confidential 248 Copyright © 2013 Aurea, Inc.

Message Header Fields
Message Header Fields
The message header fields are defined and used by the sender and the broker to convey
basic routing and delivery information. The message header fields are described in detail
in Table 19.

.

Table 19: Message Header Fields

JMS Header Field Type Description Usage Comments

JMSDestination

Required.

Set by the producer
send/publish
method.

String The destination
where the
message is being
sent.

While a message is
being sent this value is
ignored.

After completion of the
publish|send method,
it holds the destination
specified by the send.

When a message is
received, its
destination value
must be equivalent
to the value assigned
when it was sent.

JMSDeliveryMode

Required.

Set in a producer
send/publish
parameter.

String Specifies whether
the message is to
be retained in the
broker’s persistent
storage
mechanism.

Required.
Must be
PERSISTENT,
NON_PERSISTENT,
NON_PERSISTENT

_REPLICATED,
NON_PERSISTENT_
SYNC,
NON_PERSISTENT_
ASYNC, or
DISCARDABLE.

Default value is
NON_PERSISTENT
.

JMSMessageID

Required.

Set by the producer
send/publish
method.

String SonicMQ field for
a unique identifier.

A message ID value
must start with “ID:”.

While required, the
algorithm that
calculates the ID on
the client can be
bypassed, which
sets the
JMSMessageID to
null.

JMSTimestamp

Required.

Set by the producer
send/publish
method.

long GMT time on the
producer system
clock when the
message was
sent.

 Set method exists
but is always
overridden by the
send method
valuation.
Aurea Software, Inc. Confidential 249 Copyright © 2013 Aurea, Inc.

Chapter 6: Messages
JMSCorrelationID

Optional.

Set by producer
method.

String Broker-specified
message ID or an
application-specifi
c String.

Required when other
JMS providers support
the native concept of a
correlation ID.

An application made
up of several clients
might want an
application-specific
value for linking
messages.

JMSCorrelationID

AsBytes

Optional.

Set by producer
method.

bytes A native byte[]
value.

JMSReplyto

Optional.

Set by producer
method.

String The destination
where a reply to
the current
message should
be sent.

If null, no reply is
expected.

If not null, expects a
response, but the
actual response is
optional and the
mechanism must be
coded by the
developer.

Message replies
often use the
CorrelationID to
assure that replies
synchronize with the
requests.

JMSRedelivered

Set by broker.

boolea
n

If true it is likely
that this message
was delivered to
the client earlier
but the client did
not acknowledge
its receipt at that
time.

Set by the broker at the
time the message is
delivered.

Note that, while
setJMSRedelivered
(boolean) exists, this
header field has no
meaning on send and
is left unassigned by
the sending method.

When
acknowledgement is
expected and not
received in a
specified time, the
broker can decide to
set this and resend.

JMSType

Optional.

Set by producer
method.

String Contains the
name of a
message's
definition as found
in an external
message type
repository.

Recommended for
systems where the
repository needs the
message type sent to
the application.

This is not, by
default, the message
type.

Table 19: Message Header Fields

JMS Header Field Type Description Usage Comments
Aurea Software, Inc. Confidential 250 Copyright © 2013 Aurea, Inc.

Message Header Fields
JMSExpiration

Required.

Set by the producer
send/publish
method by
incrementing the
current GMT time
on the producer
system by the
producer
send/publish
parameter,
timeToLive.

long When a
message's
expiration time is
reached, the
broker can discard
it. Clients should
not receive
messages that
have expired;
however, the JMS
specification does
not guarantee that
this will not
happen.

The sum of the
time-to-live value
specified by the client
and the GMT at the
time of the send. If the
time-to-live is specified
as zero, the message
does not expire.

Default value is 0.

When a message is
sent, expiration is left
unassigned. After
completion of the
send method, it
holds the expiration
time of the message.

Default value is 0.

The expiration of a
message can be
managed by setting
the message
property
JMS_SonicMQ_
preserveUndelivered
which will transfer an
expired (or
undeliverable)
message to the
broker’s DMQ.

JMSPriority

Required.

Set in a producer
send/publish
parameter.

int Sets a value that
will allow a
message to move
ahead of other
undelivered
messages in a
topic or queue.
Also allows
message
selectors to pick
messages at a
given priority.

A ten-level priority
value with 0 as the
lowest priority and 9 as
the highest.

0 to 4 are normal.

5 to 9 are expedited.

Default value is 4.

The JMS
specification does
not require that
SonicMQ strictly
implement priority
ordering of
messages; however,
the broker will do its
best to deliver
expedited messages
ahead of normal
messages.

Table 19: Message Header Fields

JMS Header Field Type Description Usage Comments
Aurea Software, Inc. Confidential 251 Copyright © 2013 Aurea, Inc.

Chapter 6: Messages
Setting Header Values When
Sending/Publishing

The basic method for producing a message allows essential delivery information to accept
the JMS default values. For example:

publisher.publish(Message message)

Three of the message header fields have default values as static final variables:

• DEFAULT_DELIVERY_MODE = NON_PERSISTENT

• DEFAULT_PRIORITY = 4

• DEFAULT_TIME_TO_LIVE = 0

The delivery mode default value of NON_PERSISTENT is interpreted as NON_PERSISTENT_SYNC
when security is enabled and NON_PERSISTENT_ASYNC when security is not enabled.

The default header field values can be changed in the signature of the send or publish
method to override the defaults:

• Point-to-point:

sender.send(Message message,

int deliveryMode,
int priority,
long timeToLive)

• Publish and Subscribe:

publisher.publish(Message message,
int deliveryMode,
int priority,
long timeToLive)

If you use this format of the method but do not intend to override some of the default values,
you can substitute the values back into the parameter list. For example:

private static final int MESSAGE_LIFESPAN = 1800000;

// milliseconds (30 minutes)

sender.send(msg,
javax.jms.DeliveryMode.PERSISTENT,
javax.jms.Message.DEFAULT_PRIORITY,
MESSAGE_LIFESPAN);
Aurea Software, Inc. Confidential 252 Copyright © 2013 Aurea, Inc.

Message Properties
Message Properties
Properties are optional fields that are associated with a message. No message properties
are required for any message producer. The property values are used for message
selection criteria and data required by applications and other messaging infrastructures.
The order of property values is not defined.

Although the JMS specification does not define a policy for what should or should not be
made a property, application developers should note that data is handled in a message's
body more efficiently than data in a message's properties. For best performance,
applications should only use message properties when they need to customize a
message's header. The primary reason for doing this is to support customized message
selection.

Property names must obey the rules for a message-selector identifier. Property values can
be boolean, byte, short, int, long, float, double, and String. A String property is limited
to 65,535 characters.

Property values are set prior to sending a message. When a client receives a message, its
properties are in read-only mode. If clearProperties is called, the properties are erased
and then can be set.

Provider-defined Properties (JMS_SonicMQ)

SonicMQ reserves some property names and declares each property’s type. The following
properties are prescribed in SonicMQ for use in expressing intended handling of
undelivered messages, setting preferred message encryption, and indicating message
types.

Table 20 lists SonicMQ-defined properties.

Table 20: SonicMQ Provider-defined Properties

Function JMS Provider-defined Property Type Set by

QoP setting JMS_SonicMQ_perMessageEncryption boolean Producer

Message type JMS_SonicMQ_Extended_Type String Producer
Aurea Software, Inc. Confidential 253 Copyright © 2013 Aurea, Inc.

Chapter 6: Messages
Review the sample Persistent Storage Application (PTP) on page 99 to see how the first
properties are used. See Chapter 10, Guaranteeing Messages on page 345 for detailed
information about how these properties contribute to handling undeliverable messages in
local brokers and dynamic routing nodes.

Per Message Encryption

SonicMQ brokers can establish Quality of Protection (QoP) settings on a security-enabled
broker so that a client application that intends to produce to a destination must make the
effort to send the message after the encryption and integrity requested has been
performed. The client application is not aware of the QoP enforced on it by the destination.
Similarly, per-message encryption does not force the broker to encrypt a message to a
message consumer when the destination’s QoP settings do not require it.

When an application wants to be sure that it sends messages to a security-enabled broker
after encrypting them and establishing integrity tests, the application can set the property
JMS_SonicMQ_perMessageEncryption. On a broker that is not security-enabled, this setting
is a no-op.

The property that selects per message encryption is a boolean property:

JMS_SonicMQ_perMessageEncryption=true

This setting can also be set by using a constant:

aMessage.setBooleanProperty
(progress.message.jclient.Constants.ENCRYPT_MESSAGE, true);

Handling of
undeliverable
messages

JMS_SonicMQ_preserveUndelivered boolean Producer

JMS_SonicMQ_notifyUndelivered boolean Producer

JMS_SonicMQ_undeliveredReasonCode int Broker

JMS_SonicMQ_undeliveredTimestamp long Broker

JMS_SonicMQ_destinationUndelivered String Broker

JMS_SonicMQ_undeliveredBrokerName String Broker

JMS_SonicMQ_undeliveredNodeName String Broker

JMS_SonicMQ_undeliveredReasonAddedToDMQ int Broker

JMS_SonicMQ_undeliveredOriginalJMSDestinatio
n

String Broker

JMS_SonicMQ_undeliveredOriginalJMSTimestam
p

long Broker

JMS_SonicMQ_undeliveredOriginalJMSExpiration long Broker

Table 20: SonicMQ Provider-defined Properties

Function JMS Provider-defined Property Type Set by
Aurea Software, Inc. Confidential 254 Copyright © 2013 Aurea, Inc.

Message Properties
You can determine whether a broker is security enabled by calling the
progress.message.jclient.Connection.isSecure() method:

if (connect.isSecure())
{
aMessage.setBooleanProperty
(progress.message.jclient.Constants.ENCRYPT_MESSAGE, true);
}
else
{
//Handle condition where broker is insecure...
}

JMS-defined Properties (JMSX)

The JMS specification reserves the JMSX property name prefix for optional JMS-defined
properties. Properties that are set on send are available to the producer and the consumers
of the message.

Properties can be referenced in message selectors whether or not they are supported by a
connection. They are treated like any other absent property. Table 21 lists and describes
the JMSX Message Properties used in SonicMQ.

.

For more information about queue message grouping where the default grouping property
is JMSXGroupID, and the JMSXGroupSeq is used to close a group assignment, see:

• The producer and consumer information in the Using Message Grouping on page 288.

• The broker settings on queues that handle message grouping, see the “Configuring
Queues” chapter of the Aurea SonicMQ Configuration and Management Guide.

For more information about setting the sending user name of the message in JMSXUserID:

• As used in basic authentication with HTTP Direct, see the “HTTP(S) Direct Acceptors
and Routings” chapter of the Aurea SonicMQ Deployment Guide.

• As a brokerwide setting for TCP and SSL connections, see advanced broker property
settings in the “Configuring SonicMQ Brokers” chapter of the Aurea SonicMQ
Configuration and Management Guide.

Table 21: JMSX Properties Used in SonicMQ

JMSX Property Type Set by

JMSXGroupID String Producer on send

JMSXGroupSeq int Producer on send

JMSXUserID String Broker

JMSXDeliveryCount int Producer on receive
Aurea Software, Inc. Confidential 255 Copyright © 2013 Aurea, Inc.

Chapter 6: Messages
For more information about JMSXDeliveryCount:

• As used to programmatically handle excessive redeliveries, see Setting Maximum
Delivery Count on page 209.

• As used to automatically handle excessive redeliveries, see Setting Maximum
Delivery Count on page 209, and the “JMS Administered Objects Tool” chapter in the
Aurea SonicMQ Configuration and Management Guide.

User-defined Properties

A message supports application-defined property values, providing a mechanism for
adding application-specific header fields to a message. For examples:

• Identifiers for audits or reconcilement of undeliverable messages. These might be
properties you define such as OriginatorHostID, AuditID, RealTimeDeviceID, RFID,
or similar.

• Hints for rerouting undeliverables such as ReturnURL, AlternateURL,
ReturnDestination, ReturnEmail, or similar.

• Settings that are used by SonicMQ’s outbound routing to provide the security and
attributes for routing pure HTTP messages to HTTP Web servers. These are
described in the “Using HTTP(S) Direct” part of the Aurea SonicMQ Deployment
Guide. Examples of such properties are:

• X-HTTP-AuthUser and X-HTTP-AuthPassword for Web server authentication.

• X-HTTP-ReplyAsSOAP, X-HTTP-RequestTimeout, X-HTTP-Retries, and

X-HTTP-RetryInterval These are not attached to the HTTP message as header
propertiers. They define the HTTP Direct outbound routing connection attempts
and, in the case of X-HTTP-ReplyAsSOAP, the reply format of internally generated
error replies.

• X-HTTP-GroupID to define message grouping for ordered delivery.

• SSL-related properties for HTTPS Web server authentication:

X-HTTPS-CipherSuites, X-HTTPS-CACertificatePath,
X-HTTPS-ClientAuthCertificate, X-HTTPS-PrivateKey,
X-HTTPS-PrivateKeyPassword, X-HTTPS-ClientAuthCertificateForm.
Aurea Software, Inc. Confidential 256 Copyright © 2013 Aurea, Inc.

Message Properties
Determining the Pending Queue for Messages

SonicMQ brokers maintain thread pools for outbound HTTP Direct messages so that
messages can be grouped by URL. Each thread uses a reserved pending queue. Two
techniques enable multiple pending queues to operate concurrently:

• When a client application sends JMS messages to a node with the property
X-HTTP-GroupID set to a String so that many applications using that GroupID have
their messages dispatched in the order they were submitted by the applications.

• When a routing definition has the option Group Messages by URL selected and
GroupIDs are not in use, messages routing through an HTTP Direct routing node use
the destination that was created as a node-qualified HTTP destination URL to group
messages for the same destination, sending them through the same pending queue
after normalizing the URL into patterns.

For more information, see the “Grouping Messages by Destination URL” section of the
“HTTP(S) Direct Acceptors and Routings” chapter in the Aurea SonicMQ Deployment
Guide.

The active pending queues can be monitored through the Sonic Management Console’s
Manage tab where a broker’s Routing Statistics can be viewed. For more information, see
the “Routing Statistics” section of the “Managing SonicMQ Broker Activities” chapter in the
Aurea SonicMQ Configuration and Management Guide.

Setting Message Properties

Message properties are in no specified order. They might or might not contain values or
data extracted from the message body. There are no default properties.

An example of some custom properties for HTTP outbound and attached custom
information is shown in the following figure captured in a JMS Test Client session.
Aurea Software, Inc. Confidential 257 Copyright © 2013 Aurea, Inc.

Chapter 6: Messages
Property Methods

JMSX properties can be referenced in message selectors whether or not they are
supported by a connection. If values for these properties are not included, they are treated
like any other absent property. The setting and getting of message properties allows a full
range of data types when the property is established. The properties can be retrieved as a
list. A property value can be retrieved by using a get() method for the property name.

While JMS-defined properties are typed, user-defined properties are not. Data typing is
defined by the set method used, such as setIntProperty().

When data is retrieved, the get() method for user-defined properties can attempt to
coerce the data into that data type when the value is retrieved.

Checking Whether a Property Exists

Use the propertyExists() method to check whether a property value exists:

public boolean propertyExists(String name)

where name is the name of the property to test. Returns TRUE if it exists.

Clearing Message Properties

Use the clearProperties method to delete a message's properties. This method leaves
the message with an empty set of properties. Clearing properties affects only those
properties that have been defined and has no impact on the header fields or the message
body:

public void clearProperties()

Setting the Property Type

Message properties are set as name-value pairs where the value is of the declared data
type. Setting a property type that does not exist causes that property type to exist as a
property in that message:

set[type]Property(String name, [type] value)

where type is one of the following:

{ Boolean | Byte | Short | Int | Long | Float | Double | String }

For example:

setBooleanProperty(“reconciled”,true).
Aurea Software, Inc. Confidential 258 Copyright © 2013 Aurea, Inc.

Message Properties
Getting Property Names

Use getPropertyNames() to retrieve a property name enumeration. Use this enumeration
to iterate through a message's property values. Then use the various property get()

methods to retrieve their respective values.

Getting Property Values

Use the get[type]Property() method to get the value of a property. If the property does
not exist, a null is returned:

public [type] get[type]Property(String name);

where type is one of the following:

{ Boolean | Byte | Short | Int | Long | Float | Double | String }

For example, boolean getBooleanProperty(“reconciled”) returns true.

Property values can be coerced. The accepted conversions are listed in Table 22 where a
value written as the row type can be read as the column type. For example, a short
property can be read as a short or coerced into an int, long or String. An attempt to
coerce a short into another data type is an error.

Valid coercions are indicated with Yes; those intersections marked with No throw a
JMSException. A string-to-primitive conversion might throw a run-time exception if the
primitives valueOf() method does not accept it as a valid string representation of the
primitive.

Table 22: Permitted Type Conversions for Message Properties

boolean byte short int long float double String

boolean Yes No No No No No No Yes

byte No Yes Yes Yes Yes No No Yes

short No No Yes Yes Yes No No Yes

int No No No Yes Yes No No Yes

long No No No No Yes No No Yes

float No No No No No Yes Yes Yes

double No No No No No No Yes Yes

String Yes Yes Yes Yes Yes Yes Yes Yes
Aurea Software, Inc. Confidential 259 Copyright © 2013 Aurea, Inc.

Chapter 6: Messages
Message Body
The message body has no default value and is not required to have any content. The
message body is populated by the message set() method for the message type. The
following sections explain how to use the set() and get() methods for the message
body.

Setting the Message Body

Use the set() methods specified by JMS for all types except XML unless the message is
read-only (in which case you will need to copy or reset the received message). For
example, for a TextMessage:

msg.setText(aMessage);

Important: If you use setText(String string) where string is the string containing the
message’s data, you set the string containing this message’s data, overriding
setText in class TextMessage.

For information about setting XMLMessage body, see Working with XML Messages on
page 234 and the samples XML Messages on page 79.

For information about setting the Parts into a MultipartMessage, see Composition of a
MultipartMessage on page 238.

Getting the Message Body

Use the get() methods required by the JMS specification for all types except XML. For
example:

msg.getText(aMessage);

For information about getting XMLMessage body and interpreting it with DOM or SAX
parsers, see Working with XML Messages on page 234 and the samples XML Messages
on page 79.

For information about getting Parts of a MultipartMessage and distinguishing JMS
message types from other MIME types, see MultipartMessage Type on page 238 and the
sample Decomposing Multipart Messages on page 83.
Aurea Software, Inc. Confidential 260 Copyright © 2013 Aurea, Inc.

7
Message Producers and
Consumers

This chapter describes the generic programming model for messaging that is common to
both messaging models, Publish and Subscribe (Pub/Sub) and Point-to-point (PTP). These
two messaging models are described in Chapter 8, Point-to-point Messaging on page 283
and Chapter 9, on page 307 This chapter covers the following topics:

• About Message Producers and Message Consumers on page 262

• Message Ordering and Reliability on page 262

• Destinations on page 263

• Steps in Message Production on page 264

• Message Management by the Broker on page 267

• Message Receivers, Listeners, and Selectors on page 269

• Steps in Listening, Receiving, and Consuming Messages on page 276

• Reply-to Mechanisms on page 279

• Producers and Consumers in JMS Messaging Domains on page 281
Aurea Software, Inc. Confidential 261 Copyright © 2013 Aurea, Inc.

Chapter 7: Message Producers and Consumers
About Message Producers and Message
Consumers

To establish message producers and message consumers in one of the messaging
models, you create an appropriate ConnectionFactory, then create connections. You
create sessions on each connection and then create the session objects, as shown in
Figure 56.

Figure 56: Generic Messaging Model

The message producers send messages to a destination on a broker. Message consumers
get messages from a destination by implementing asynchronous MessageListeners or by
doing synchronous receives.

Message Ordering and Reliability
Various factors in a loosely coupled messaging structure can impact the sequence of
messages delivered to consumers. Message ordering and redelivery both contribute to
reliable message delivery.

Messaging services are impacted by many uncontrollable environmental factors ranging
from latency and machine outages to internal factors such as related applications that do
not accept data types, values, poorly formed XML data, and data payloads. Message
delivery is distinctly nonlinear.

Message ordering and reliability common to all messaging domains are described in this
chapter. See also Message Ordering and Reliability in PTP on page 285 and Message
Ordering and Reliability in Pub/Sub on page 309 for details about message ordering and
reliability within those domains.

Figure 57:

MessageProducer

MessageConsumer

ConnectionFactory

Connection

Session

MessageListener

Destination
Aurea Software, Inc. Confidential 262 Copyright © 2013 Aurea, Inc.

Destinations
Messages can be delivered with a range of options to modify message ordering and invoke
features that improve reliability:

• The producer can set the time-to-live of the message so that obsolete messages can
expire. If message A is set at one minute, message B at five seconds, and message
C at one hour, then after three minutes with no deliveries, only message C will still
exist. Ordering is maintained while expiration is a user-defined value.

• The producer can set the delivery mode of messages so that the broker confirms
persistent storage of the message before acknowledgement is sent. In the event of a
broker failure, a message that the broker acknowledged before it was persisted might
be lost. The delivery mode of a message characterizes the message for its entire life.
If a non-persistent message is waiting in a durable subscription or a queue when the
broker restarts, the message does not exist when the broker comes back up.

• The producer can set the priority of a message so that the broker can take efforts to
position a more recent message before an older one.

• The producer uses a synchronous process to put the message on the broker’s
message store; when it is released, the message is acknowledged as delivered to its
interim destination.

• The consumer can use listeners to get messages as they are made available.

• Messages sent in the NON_PERSISTENT delivery mode can arrive prior to messages that
are PERSISTENT.

• The consumer starts a session by expressing its preferred acknowledgement
technique—transactional or not, explicit or implicit.

• Connections can be monitored and, when broken, techniques can automatically
attempt to reconnect. (This might not be necessary if you are using fault-tolerant
connections. See Fault-Tolerant Connections on page 172.)

• Message senders in the Internet environment are not guaranteed consistent
communication times. Transmission latencies can cause messages to be produced
before other messages. As a result, two messages from two sessions are not
required—and cannot be reliably expected—to be in any specific sequence.

Destinations
Destinations are objects that provide the producer, broker, and consumer with a context for
delivery of messages. Destinations can be JMS Administered Objects (static objects under
administrative control), dynamic objects created as needed (topics only), or temporary
objects created for very limited use. The destination name length limit is 256 characters.

For topics, SonicMQ provides extended management and security with hierarchical name
spaces; for example, jms.samples.chat. See Chapter 13, Hierarchical Name Spaces on
page 411 for more information.

Important: Table 4 lists characters that are not allowed in SonicMQ names. Refer to this
list for restricted characters must not use in your topic or queue names.
Aurea Software, Inc. Confidential 263 Copyright © 2013 Aurea, Inc.

Chapter 7: Message Producers and Consumers
The following restrictions apply to queue and topic names:

• The strings $SYS and $ISYS are reserved for administrative queues. See the Aurea
SonicMQ Configuration and Management Guide for more information.

• A queue name cannot begin with the string “SonicMQ.” This prefix is reserved for
system queues. Queues whose names begin with “SonicMQ” cannot be added or
deleted using the Administration Shell.

You can programmatically store and retrieve defined destinations. SonicMQ lets you store
topic or queue names in JNDI or a simple file store and then reference the object indirectly (by
name) in some context. See Lookup and Use of Administered Objects on page 154 for
more information.

Steps in Message Production
Every time a Session wants to send a message to a Destination, it must create a
MessageProducer. The following sections explain the steps required to produce a message
within a connected Session. These sections follow the approach used in the Chat sample:

1. Create a Session on page 264

2. Create the Producer on the Session on page 265

3. Create the Message Type and Set Its Body on page 265

4. Set Message Header Fields on page 265

5. Set the Message Properties on page 266

6. Elect Per Message Encryption on page 266 (optional)

7. Produce the Message on page 266

Create a Session

After establishing a connection, the Chat sample creates a Session:

javax.jms.Session pubSession;
...
pubSession =
connect.createSession(false,javax.jms.Session.AUTO_ACKNOWLEDGE);

You can use a Session for P2P messaging, Pub/Sub messaging, or both. The Chat sample
names the Session pubSession, because it is intended for Pub/Sub messaging.
Aurea Software, Inc. Confidential 264 Copyright © 2013 Aurea, Inc.

Steps in Message Production
Create the Producer on the Session

The Chat example sets up the static variable APP_TOPIC (assigned the value
“jms.samples.chat") as the working Topic and creates a MessageProducer associated
with that Topic:

private static final String APP_TOPIC = "jms.samples.chat";
...
private javax.jms.MessageProducer publisher = null;
...
javax.jms.Topic topic = pubSession.createTopic (APP_TOPIC);
...
publisher = pubSession.createProducer(topic);

MessageProducer objects can send messages to any Destination, both Queues and
Topics. Here, a Topic is the Destination passed to the createProducer() method. When
a valid Destination is passed to the createProducer() method, the returned
MessageProducer object uses that Destination as its default.

The MessageProducer object’s send() method (the form that specifies no target
Destination) uses the default Destination as its target Destination. You can explicitly
specify a different target Destination if you use a different form of the send() method.

Create the Message Type and Set Its Body

The Chat example constructs a text message from the standard input (the keyboard) and
reads the message in with the readLine() method. It creates a new SonicMQ
TextMessage and sets the text into the message, prepended in the sample by the
username, a colon, and a space:

String s = stdin.readLine();
javax.jms.TextMessage msg = pubSession.createTextMessage();
msg.setText(username + ": " + s);

When the sample is run, if the user Sales enters “Hello.”, the message content would
be “Sales: Hello.”

Set Message Header Fields

The Chat example does not set any message header fields. If you want to change header
fields, use the set() methods for message header fields that are available for change:

setJMSType("CentralFiles")

For some header field set() methods (such as setJMSMessageID() and
setJMSTimestamp()), the value you assign is overwritten at the time the message is
produced.
Aurea Software, Inc. Confidential 265 Copyright © 2013 Aurea, Inc.

Chapter 7: Message Producers and Consumers
The header fields that are named and typed and also available for assignment are:

• JMSCorrelationID, reserved for message matching functions

• JMSReplyto, reserved for request reply information

• JMSType, available for general use

Set the Message Properties

The Chat example does not set any message properties. If you want to set message
properties, use the set() methods for the data type of a property and then supply the
property name and its value of the declared type:

set[type]Property(String name, String value)

For example:

setLongProperty(“OurInfo_AuditTrail”,“6789”)

Elect Per Message Encryption

Destinations can be configured on a broker to encrypt messages. When a producer binds
to a destination, the producer is instructed to encrypt or not encrypt by the broker. But this
decision for encryption is not revealed to the application. A client application can ensure
that a message is sent encrypted to a security-enabled broker by electing to do per
message encryption, as follows:

setBooleanProperty(progress.message.jclient.Constants.ENCRYPT_MESSAGE,
true);

Produce the Message

When the message is assigned its attributes (header fields and properties) and its payload,
the message is ready to be sent to its destination. The Chat example uses the simplest form
of the send() method to send the message to its Destination, as follows:

publisher.send(msg);

The form of send() used in the DurableChat sample application sets three important
message parameters at the moment the send() method is executed, as follows:

private static final long MESSAGE_LIFESPAN = 1800000;
publisher.send(msg,
javax.jms.DeliveryMode.PERSISTENT,
javax.jms.Message.DEFAULT_PRIORITY,
MESSAGE_LIFESPAN);
Aurea Software, Inc. Confidential 266 Copyright © 2013 Aurea, Inc.

Message Management by the Broker
This form of the send() method passes along either the default values or the entered
values for:

• JMSDeliveryMode is [NON_PERSISTENT|PERSISTENT|NON_PERSISTENT_SYNC|
NON_PERSISTENT_ASYNC|NON_PERSISTENT_REPLICATED|DISCARDABLE]

• JMSPriority is [0...9] where 0 is lowest, 9 is highest, 4 is the default

• timeToLive, the message lifespan that will calculate the JMSExpiration, is [0...n]
where 0 is “forever” and any other positive value n is in milliseconds

The send() method assigns—and overwrites, if previously assigned—data to the
following header fields:

• JMSDestination, the producer’s current destination

• JMSTimestamp, based on the producer’s system clock

• JMSMessageID, based on the algorithm run on the producer’s system

• JMSExpiration, based on the producer’s system clock plus the timeToLive

The release of the synchronous block by the broker returns only a boolean indicating
whether the message production completed successfully.

Important: While the JMSExpiration is calculated from the client system clock at the time
of the send, it is enforced on the broker’s clock. To accommodate variances
between client and broker clocks, the broker adjusts the message expiration
to its clock. When the message is forwarded to another broker, the remaining
timeToLive value (expiration minus current broker GMT time) is forwarded.
The time that elapses until the first packet of the message in transit is received
is effectively ignored.

Message Management by the Broker
A message at a destination behaves according to the parameters of the message send
(PTP) or publish (Pub/Sub) event. Table 23 lists those parameters and how they direct the
broker to handle the message.

Note: Asynchronous message delivery — Sonic’s asynchronous message delivery is
set on a connection factory to give a non-transacted session increased
performance for delivery modes that are not explicitly
asynchronous—NON_PERSISTENT on a security-disabled broker and
NON_PERSISTENT_ASYNC delivery mode. This feature adds asynchronous operation
to the NON_PERSISTENT_REPLICATED delivery mode, a delivery mode used by
fault-tolerant brokers replicating nonpersistent messages from the active peer to its
standby.

See the section “Asynchronous Message Delivery” in the “SonicMQ Connections”
chapter of the Aurea SonicMQ Application Programming Guide for detailed
information about this connection factory setting and its associated behaviors.
Aurea Software, Inc. Confidential 267 Copyright © 2013 Aurea, Inc.

Chapter 7: Message Producers and Consumers
Table 23: How Message Producer Parameters Influence the Broker

Producer
Parameter How the parameter is treated by the broker

deliveryMode deliveryMode = PERSISTENT — Stores the message in the broker’s message log in
case of impending failure. Acknowledges the producer only after logging the
message.

deliveryMode = NON_PERSISTENT — If the message is enqueued or stored for a
durable subscriber on a broker that shuts down, the message is volatile. This
parameter is interpreted as NON_PERSISTENT_ASYNC or
NON_PERSISTENT_SYNC based on whether security is enabled.

deliveryMode = NON_PERSISTENT_ASYNC — Message publisher methods do not
expect any acknowledgement whatsoever. This is the default nonpersistent delivery
mode when security is not enabled. Messages can be lost if client fails. Also, some
exceptions that might otherwise be thrown back to the client when it sends a
message are not communicated; for example, a message that is larger than the
queue size could seem to be a lost as the client did not get the exception and then
fail or crash.

deliveryMode = NON_PERSISTENT_SYNC — This is the default nonpersistent
delivery mode when security is enabled. Message publisher methods block to await
acknowledgement.

deliveryMode = NON_PERSISTENT_REPLICATED — Used with fault-tolerant
connections. In this mode, non-persistent messages are protected from broker
failures by being replicated to a standby broker. This delivery mode also ensures
once-and-only-once delivery to fault-tolerant subscribers (both durable and
non-durable) provided that after a failure the subscriber either successfully resumes
its connection at the same broker or fails over to the standby broker when that broker
takes the active role.

deliveryMode = DISCARDABLE — For nontransacted Pub/Sub only. Delivers all
messages to subscribers that are keeping up with the flow of messages, but drops
the oldest messages waiting for lagging subscribers when new messages arrive,
under any of the following conditions:

When the message server’s internal buffers for that subscriber session are full

When a neighbor cluster member containing a Topic subscription is unavailable and
a subscriber is located on the other cluster member

When an intended durable subscriber is unavailable

Note: A message’s deliveryMode is effective throughout its lifespan. If a
NON_PERSISTENT message is enqueued (PTP) or stored for a durable subscriber
(Pub/Sub) on a broker that shuts down, the message is volatile. This behavior stays
with a message throughout its travels in a dynamic queue routing deployment, and
even applies in the dead message queue.

priority priority = 0...9

When there are several messages for a receiver that are awaiting delivery, higher
priority messages (5 through 9) can move toward the front of the FIFO list. While
there are circumstances where this is desirable, more often keeping a smooth FIFO
flow is preferable.
Aurea Software, Inc. Confidential 268 Copyright © 2013 Aurea, Inc.

Message Receivers, Listeners, and Selectors
Message Receivers, Listeners, and Selectors
MessageConsumer objects that are associated with a Topic do not automatically get
messages. Having an active session where an application subscribes to a topic does not
result in the message getting delivered to the application. You must use an asynchronous
listener or a synchronous message receiver to ensure the message is delivered to an
application.

Message Receiver

The receiver methods are synchronous calls to fetch messages. The different methods
manage the potential block by either not waiting if there are no messages or timing out after
a specified period.

Receive

To receive the next message produced for the consumer, use the receive() method:

Message receive()

This call blocks indefinitely until a message is produced. When a receive() method is
called in a transacted session, the message remains with the consumer until the
transaction commits. The return value is the next message produced for this consumer. If
a session is closed while blocking, the return is null.

Receive with Timeout

To receive the next message within a specified time interval and cause a timeout when the
interval has elapsed, use the receive() method with a timeout:

Message receive(long timeout)

where timeout is the timeout value [in milliseconds].

timeToLive timeToLive = <non-negative long integer value>

Number of milliseconds added to the GMT time of the client when the message is
produced to determine the JMSExpiration date-time of the message. If the
timeToLive is 0, the expiration date-time is also 0, the indication that the message is
intended never to expire.

The timeToLive feature ensures eventual delivery but can result in out-of-date
deliverables when queues are not purged and when durable subscriptions are not
formally unsubscribed.

Table 23: How Message Producer Parameters Influence the Broker

Producer
Parameter How the parameter is treated by the broker
Aurea Software, Inc. Confidential 269 Copyright © 2013 Aurea, Inc.

Chapter 7: Message Producers and Consumers
This call blocks until either a message arrives or the timeout expires. The return value is
the next message produced for this consumer, or null if one is not available.

Receive No Wait

To receive the next available message immediately or instantly timeout, use te
receiveNoWait() method:

Message receiveNoWait()

The receiveNoWait() method receives the next message if one is available. The return
value is the next message produced for this consumer, or null if one is not available.

Note: The ReceiveNoWait() method is unlikely to provide effective message
consumption in the Pub/Sub paradigm.The no-wait concept is useful for durable
subscriptions, but is unlikely to produce results for normal subscriptions.
The method is very useful in the PTP paradigm where messages wait on a static
queue.

Message Listeners

Invoke a message listener to initiate asynchronous monitoring of the session thread for
consumer messages by using the following method:

setMessageListener(MessageListener listener)

where listener is the message listener to associate with this session.

The listener is often assigned just after creating the destination consumer from the session,
so that the listener is bound to the destination to which a consumer was just created. For
example, in PTP:

javax.jms.MessageConsumer receiver =
session.createConsumer(queue, java.lang.String messageSelector);
receiver.setMessageListener(this);

Another example, this time in Pub/Sub:

javax.jms.MessageConsumer subscriber =
session.createConsumer(topic, java.lang.String messageSelector);
subscriber.setMessageListener(this);

As a result, asynchronous message receipt becomes exclusive for the session.

Note: Message sending is not limited when message listeners are in use. Sending is
always synchronous.
Aurea Software, Inc. Confidential 270 Copyright © 2013 Aurea, Inc.

Message Receivers, Listeners, and Selectors
Message Selection

While some messaging applications expect to get every message produced to a
destination, other applications might want to receive only certain messages produced to a
destination. The following techniques that can reduce the flow of irrelevant messages to a
message consumer:

• Subscription to hierarchical name spaces (Pub/Sub) — SonicMQ’s hierarchical
name spaces let subscribers point to content nodes (and, optionally, to sets of relevant
subordinate nodes) to focus publishers into meaningful spaces. For more information,
see Chapter 13, Hierarchical Name Spaces on page 411.

• Applying a message selector — As shown in the preceding code examples, JMS
can create consumers with a String parameter that holds a syntax that is a subset of
SQL-92 conditional expressions. This SQL allows a consumer on a destination to filter
and categorize messages in the message header and properties based on specified
criteria.

Server-based or Client-based Topic Message
Selectors

The default behavior of message selector filtering operations is defined by its messaging
model:

• A queue receiver does its evaluation on the server as only one of the queue receivers
will take the message instance.

• A topic subscriber is not receiving anything unique so it can take its subscribed
messages to the client system and then select the messages that are acceptable.

However, there are cases where topic subscribers are particularly selective and the
resources on the server far exceed the resources of the network and the clients. SonicMQ
provides the option to perform subscription message selection on the server. A
setSelectorAtBroker(true) method call on the connection factory before the topic
connection is created enables this feature. See Setting Server-based Message Selection
on page 147 for more information.

Scope of Message Selectors

Message selectors evaluate message header fields and properties. They do not access the
message body. Although SQL supports arithmetic operations, JMS message selectors do
not. SQL comments are not supported.

A selector String greater than 1024 characters will throw an exception.
Aurea Software, Inc. Confidential 271 Copyright © 2013 Aurea, Inc.

Chapter 7: Message Producers and Consumers
Message Selector Syntax

A message selector is a java.lang.String that is evaluated left to right within precedence
level. You can use parentheses to change this order. A message selector string can contain
combinations of the following elements to comprise an expression:

• Literals and Indefinites (See Table 24)

• Operators and Expressions (See Table 25)

• Comparison tests (See Table 26)

• Parentheses control the evaluation of an expression

• Whitespace (spaces, horizontal tabs, form feeds, and line terminators) are evaluated
in the same way as in Java

For example, the following message selector might be set up on a Bidders topic to retrieve
only high-priority quotes that are requesting a reply:

“Priority > 7 AND Form = ’Bid’ AND Amount is NOT NULL”

Table 24: Literal and Identifier Syntax in Message Selectors

Selector Element Format and Requirements Constraints Example

Literals String literals Zero or more characters enclosed in
single quotes

None ‘sales’

Exact
numeric
literals

Numeric long integer values, signed or
unsigned

None 57
-957
+62

Approximate
numeric
literals

Numeric double values in
scientific notation

None 7E3
-57.9E2

Numeric double values with a decimal,
signed or unsigned

None 7.
-95.7
+6.2

Boolean
literals

true or false None true
Aurea Software, Inc. Confidential 272 Copyright © 2013 Aurea, Inc.

Message Receivers, Listeners, and Selectors
Identifiers All A case-sensitive character sequence
that must begin with a Java-identifier
start character. All following characters
must be Java-identifier part characters.

A Java-identifier is an unlimited-length
sequence of Java letters, Java digits,
and, “for historical reasons,” the
underscore (_) and dollar sign ($)
characters. The first character of a
Java-identifier must be a Java letter.
For more about Java-identifiers, see
the Java Language Specification’s
Lexical Structure chapter at
java.sun.com/docs/books/jls/third_e

dition/html/lexical.html#3.8

Cannot be
null, true,
false, NOT,
AND, OR,
BETWEEN,
LIKE, IN, or IS.

JMSType,
JMSXState,
JMS_Links,
PSC_Link

Message
header field
references

JMSDeliveryMode, JMSPriority,
JMSMessageID, JMSTimestamp,
JMSCorrelationID, or JMSType

JMSDelivery
Mode, and
JMSPriority
cannot be null.

JMSType

JMSX-define
d property
references

null when a referenced property does
not exist

None JMSXState

SonicMQ-
defined
properties

JMS_Sonic
MQ_preser
ve
Undelivered

Application-s
pecific
property
names
(do not start
with ‘JMS’)

Audit_Team

Table 24: Literal and Identifier Syntax in Message Selectors

Selector Element Format and Requirements Constraints Example
Aurea Software, Inc. Confidential 273 Copyright © 2013 Aurea, Inc.

Chapter 7: Message Producers and Consumers
Table 25: Operator and Expression Syntax in Message Selectors

Selector Element Format and Requirements Example

Operators Logical In precedence order:
NOT, AND, OR

a NOT IN (‘a1’,’a2’)

a > 7 OR b = true

a > 7 AND b = true

Comparison =, >, >=, <, <=, <>

(for booleans and Strings: =, <>)

a > 7

b = ’Quote’

Arithmetic In precedence order:

Unary + or -

Multiply * or divide /

Add + or subtract -

a > +7

a * 3

a - 3

Arithmetic range
between two
expressions

id BETWEEN e2 AND e3

id NOT BETWEEN e2 AND e3

a BETWEEN 3 AND 5

a NOT BETWEEN 3 AND 5

Expressions Selector Conditional expression that matches
when it evaluates to true

((4*3)=(2*6))= true

Arithmetic Include:

Pure arithmetic expressions

Arithmetic operations

Identifiers with numeric values

Numeric literals

7*5

a/b

7

Conditional Include:

Pure conditional expressions

Comparison operations

Logical operations

Identifiers with Boolean values

Boolean literals (true, false)

7>6

a > 7 OR b = true

a = true

true
Aurea Software, Inc. Confidential 274 Copyright © 2013 Aurea, Inc.

Message Receivers, Listeners, and Selectors
Comparing Exact and Inexact Values

Comparing an int value (an exact numeric literal that uses the Java integer literal syntax)
and a float value (an approximate literal that uses the Java floating point literal syntax) is
allowed.

Type conversion is defined by the rules of Java numeric promotion as described in the Java
Language Specification, which, in part, declares that:

• Unary conversions are from byte, short, or char to a value of type int by a widening
conversion; otherwise, a unary numeric operand remains as is and is not converted.

• Binary conversions called for by operands on data of numeric types. If either operand
is of type double, the other is converted to double. If either operand is of type float,
the other is converted to float. If either operand is of type long, the other is converted
to long. Otherwise, both operands are converted to type int.

Table 26: Comparison Test Syntax in Message Selectors

Selector Element Format and Requirements Example

Comparison
tests

IN Identifier IN (str1, str2, ...)

Identifier NOT IN (str1, str2, ...)

a IN (‘AR’,’AP’, ‘GL’)

a NOT IN (‘PR’,’IN’, ‘FA’)

LIKE Identifier LIKE (str1, str2,...)

Identifier NOT LIKE (str1, str2,...)

can be enhanced with pattern values:

Underscore (_) stands for any character

Percent (%) stands for any sequence of
characters

To explicitly defer the special characters _
and %, precede their entry with the Esc
character.

a LIKE ‘Fr%d’
is true for ‘Fred’ ‘Frond’ and
false for ‘Fern’

a LIKE ‘_%’ ESCAPE ‘\’
true for ‘_foo’ and
false for ‘bar’

null Identifier IS NULL

Identifier IS NOT NULL

for:

Header field value

Property value

Existence of a property

Refer to SQL-92 semantics or the JMS
specification for more about comparisons
that involve null values.

a is NULL

a is NOT NULL
Aurea Software, Inc. Confidential 275 Copyright © 2013 Aurea, Inc.

Chapter 7: Message Producers and Consumers
Steps in Listening, Receiving, and Consuming
Messages

The following sections explain the steps required to receive and consume a Pub/Sub
message within a connected session:

1. Implement the Message Listener on page 276

2. Create the Destination and Consumer, Then Listen on page 276

3. Handle a Received Message on page 277

a. Get Message Properties on page 278

b. Consume the Message on page 278

c. Acknowledge the Message on page 278

Implement the Message Listener

Implement the standard JMS message listener:

public class Chat
implements javax.jms.MessageListener
...

Create the Destination and Consumer, Then
Listen

Once you obtain a ConnectionFactory object, use it to create a Connection. From the
Connection, create a Session, and, from the Session,create a MessageConsumer.

To create a MessageConsumer, you call the Session object’s createConsumer() method.
When you call this method, you pass in a Destination (either a Queue or Topic, both of
which extend the Destination interface). If you pass in a Queue, the returned
MessageConsumer acts in accordance with the P2P messaging model; if a Topic, the
Pub/Sub messaging model.

After you create the MessageConsumer, you call its setMessageListener() method,
passing in the appropriate MessageListener. In the Chat sample, the MessageListener is
the Chat object itself (this):

javax.jms.Topic topic = subSession.createTopic("jms.samples.chat");
javax.jms.MessageConsumer subscriber = subSession.createConsumer(topic);
subscriber.setMessageListener(this);
Aurea Software, Inc. Confidential 276 Copyright © 2013 Aurea, Inc.

Steps in Listening, Receiving, and Consuming Messages
Handle a Received Message

In the following Chat sample code, the received message is assumed to be text and is
output to the standard output stream:

public void onMessage(javax.jms.Message aMessage)
{
javax.jms.TextMessage textMessage = (javax.jms.TextMessage) aMessage;
String string = textMessage.getText();
System.out.println(string);
}

When the received message type is uncertain, special message handling is required. In the
following XMLDOMChat sample, the message is tested to determine whether or not it is an
instance of XMLMessage and then handled appropriately:

public void onMessage(javax.jms.Message aMessage)
{
if (aMessage instanceof progress.message.jclient.XMLMessage)
{
... see Parsing an XML Message
}else{
// Cast the message as a text message and display it.
javax.jms.TextMessage textMessage = (javax.jms.TextMessage) aMessage;
System.out.println("[TextMessage] " + textMessage.getText());
}

When the received message is an XML message, your application can parse the message
to extract data from the message fields. The following code sample shows how to parse an
XML message and extract data:

// Cast the message as an XML message.
progress.message.jclient.XMLMessage xmlMessage =
(progress.message.jclient.XMLMessage) aMessage;
// Get the XML document associated with this message.
org.w3c.dom.Document doc = xmlMessage.getDocument();
// Get the sender and content from the message.
org.w3c.dom.NodeList nodes = null;
nodes = doc.getElementsByTagName("sender");
String sender = (nodes.getLength() > 0) ?
nodes.item(0).getFirstChild().getNodeValue() : "unknown";
nodes = doc.getElementsByTagName("content");
String content = (nodes.getLength() > 0) ?
nodes.item(0).getFirstChild().getNodeValue() : null;
// Show the message.
System.out.println("[XML from '" + sender + "'] " + content);
// Show the message as a tree.
printDocNodes(doc.getDocumentElement(),0);
System.out.println();
Aurea Software, Inc. Confidential 277 Copyright © 2013 Aurea, Inc.

Chapter 7: Message Producers and Consumers
Get Message Properties

Use the get() methods for the data type of a property and then supply the property name
and its value of the declared type. When a property requested does not exist in a message,
the return value is null. Generically:

get[type]Property(String)

For example:

getIntProperty(“OurInfo_AuditTrail”)

Warning: This example gets an int property that was set with (and stored as) a long.
Attempting to get a property type that is not the type with which the property
was set will force coercion of the value to the declared type. If the conversion is
not valid, an exception is thrown. See Table 22.

Consume the Message

The application can pass the data in an accepted message to the business application for
which it performs its services. Explicit acknowledgement of the JMS message to the broker
could be postponed until the business application acknowledges processing with a
transaction or audit trail identifier. This value could be passed back to the producer if a reply
was requested.

Acknowledge the Message

The acknowledgement mode is established when the session is created. Two of the
acknowledgement modes are automatic: AUTO_ACKNOWLEDGE and DUPS_OK_ACKNOWLEDGE.
Other acknowledgement modes require explicit invocation of the acknowledge() method:

• If the mode for the session is SINGLE_MESSAGE_ACKNOWLEDGE, explicit
acknowledgement acknowledges only the current message. Any messages not
acknowledged are not released—thereby becoming available for redelivery—on the
broker until the session ends.

• If the mode for the session is CLIENT_ACKNOWLEDGE, explicit ack acknowledges all
messages previously received by the session.

Note: The acknowledge method has no effect when the session is transacted or when the
session ack mode is AUTO_ACKNOWLEDGE or DUPS_OK_ACKNOWLEDGE. See Explicit
Acknowledgement on page 210 for more information.
Aurea Software, Inc. Confidential 278 Copyright © 2013 Aurea, Inc.

Reply-to Mechanisms
Reply-to Mechanisms
The typical design pattern for request/reply is:

• Create a message you want to send

• Make a temporary destination

• Set the JMSReplyTo header to this destination

• Create a MessageConsumer on the destination

• Send the message

• Call MessageConsumer.receive(timeout) on the message

The JMSReplyTo message header field contains the destination where a reply to the current
message should be sent. Messages with a JMSReplyTo value are typically expecting a
response. If the JMSReplyTo value is null, no reply is expected. A response can be optional,
and client code must handle the action. These messages are called requests.

A message sent in response to a request is called a reply. Message replies often use the
JMSCorrelationID to ensure that replies synchronize with their requests. A
JMSCorrelationID would typically contain the JMSMessageID of the request.

Temporary Destinations Managed by a
Requestor Helper Class

Under Pub/Sub, the TopicRequestor uses the session and topic that were instantiated from
the session methods. Notice that the code never actually manipulates the TemporaryTopic
object; instead it uses the helper class TopicRequestor.

Requestor Application

The following code excerpt from the TopicPubSub Requestor sample application uses the
helper class TopicRequestor:

javax.jms.TopicRequestor requestor = new javax.jms.TopicRequestor(session,
topic);
javax.jms.Message response = requestor.request(msg);
javax.jms.TextMessage textMessage = (javax.jms.TextMessage) response;
Aurea Software, Inc. Confidential 279 Copyright © 2013 Aurea, Inc.

Chapter 7: Message Producers and Consumers
Replier Application

Synchronous requests leave the originator of a request waiting for a reply. To prevent a
requestor from waiting, a well-designed application uses code similar to the following
excerpts from the TopicPubSub Replier sample application:

//get the mesage
public void onMessage(javax.jms.Message aMessage)
{
javax.jms.TextMessage textMessage = (javax.jms.TextMessage) aMessage;
String string = textMessage.getText();
}
...
//Look for the header specifying JMSReplyTo:
javax.jms.Topic replyTopic = (javax.jms.Topic) aMessage.getJMSReplyTo();
if (replyTopic != null)
...
//Send a reply to the topic specified in JMSReplyTo:
javax.jms.TextMessage reply = session.createTextMessage();

Design for Handling Requests

The final steps taken by the message handler represent good programming style, but they
are not required by the design paradigm for JMS requests:

• Set the JMSCorrelationID, tying the response back to the original request.

• Use transacted session commit so that the request will not be received without the
reply being sent. For example:

reply.setJMSCorrelationID(aMessage.getJMSMessageID());

replier.send(replyTopic, reply);

session.commit();

Writing a Topic Requestor

The default TopicRequestor behavior is to block when waiting for a reply. You can write
your own TopicRequestor class that will timeout (receive(long timeOut)) or listen to the
temp topic as a subscriber, thereby avoiding the blocking situation. The
javax.jms.TopicRequestor.java file, shown in Writing a Topic Requestor on page 280, is
a start toward creating your own TopicRequestor.class.

Writing a Topic Requestor

// @(#)TopicRequestor.java 1.9 98/07/08
// Copyright (c) 1997-1998 Sun Microsystems, Inc. All Rights Reserved.
package javax.jms;
public class TopicRequestor
{
TopicSession session;

// The topic session the topic belongs to.
Topic topic;
Aurea Software, Inc. Confidential 280 Copyright © 2013 Aurea, Inc.

Producers and Consumers in JMS Messaging Domains
// The topic to perform the request/reply on.
TemporaryTopic tempTopic;
TopicPublisher publisher;
TopicSubscriber subscriber;

// Constructor for the TopicRequestor class.
public TopicRequestor(TopicSession session, Topic topic) throws
JMSException
{
this.session = session;
this.topic = topic;
tempTopic = session.createTemporaryTopic();
publisher = session.createPublisher(topic);
subscriber = session.createSubscriber(tempTopic);
}
// Send a request and wait for a reply.
public Message request(Message message) throws JMSException
{
message.setJMSReplyTo(tempTopic);
publisher.publish(message);
return(subscriber.receive());
}
// Close resources when done.
public void close() throws JMSException
{
tempTopic.delete();
publisher.close();
subscriber.close();
session.close();
}
}

Producers and Consumers in JMS Messaging
Domains

Table 27 lists a general messaging functionality that is consistent in both Publish and
Subscribe and Point-to-point messaging.
Aurea Software, Inc. Confidential 281 Copyright © 2013 Aurea, Inc.

Chapter 7: Message Producers and Consumers
See Chapter 8, Point-to-point Messaging on page 283 and Chapter 9, Publish and
Subscribe Messaging on page 307 for programming concepts and functionality in each
messaging domain.

Table 27: Producer and Consumer Common to Both Messaging Models

javax.jms Interface Functionality in Either Domain

Destination

extended by: Queue, Topic

Destination supports concurrent use

MessageProducer Able to send message while connection is stopped

Close MessageProducer method

Supports message delivery modes PERSISTENT,
NON_PERSISTENT, NON_PERSISTENT_SYNC,
NON_PERSISTENT_ASYNC, NON_PERSISTENT_REPLICATED,
and, for topics only, DISCARDABLE

Supports message Time-to-Live

Support message priority

MessageConsumer Close MessageConsumer method

Supports MessageSelectors

Supports synchronous delivery (receive method)

Supports asynchronous delivery (onMessage method)

Supports AUTO_ACKNOWLEDGE of messages

Supports CLIENT_ACKNOWLEDGE of messages

Supports DUPS_OK_ACKNOWLEDGE of messages

Supports SINGLE_MESSAGE_ACKNOWLEDGE of messages

Message

extended by:

TextMessage
extended by

XMLMessage
MapMessage
StreamMessage
ObjectMessage
BytesMessage
MultipartMessage

• Message header fields

• Message properties

• Message acknowledgment

• Message selectors

• Access to message after being sent for reuse
Aurea Software, Inc. Confidential 282 Copyright © 2013 Aurea, Inc.

8
Point-to-point Messaging

This chapter describes the Point-to-point (PTP) messaging model and explains how to use
the features of that model. The chapter contains the following sections:

• About Point-to-point Messaging on page 284

• Message Ordering and Reliability in PTP on page 285

• Using Multiple MessageConsumers on page 286

• Using Message Grouping on page 288

• Setting Prefetch Count and Threshold on page 292

• Browsing a Queue on page 293

• Handling Undelivered Messages on page 295

• Life Cycle of a Guaranteed Message on page 297

• Detecting Duplicate Messages on page 300

• Forwarding Messages Reliably on page 301

• Dynamic Routing with PTP Messaging on page 302

• Clusterwide Access to Queues on page 304
Aurea Software, Inc. Confidential 283 Copyright © 2013 Aurea, Inc.

Chapter 8: Point-to-point Messaging
About Point-to-point Messaging
In the Point-to-point (PTP) messaging model, shown in Figure 58, a queue stores
messages for as long as they are specified to live, waiting for a consumer. The
QueueBrowser class enables an application to browse the queue, examine its contents, and
observe how message traffic is moving.

Figure 58: Point-to-point Messaging Model

Queues must be created by the administrator before they can be used (except for
temporary queues, which are created dynamically by users). See the Aurea SonicMQ
Configuration and Management Guide for information about maintaining queues.

The QueuePTP sample application, Talk, provides an example of how PTP applications are
coded. The command that starts the Talk application specifies the sending queue and the
receiving queue that will be used:

java Talk -b broker:port -u user -p pwd -qs queue -qr queue

where:

• broker:port specifies the host on which the broker is running and the port on which
it is listening.

• user and pwd are the unique user name and the user’s password.

• -qs queue is the name of the queue for sending messages.

• -qr queue is the name of the queue for receiving messages.

Talk Sample: Creating Objects for PTP on page 285, from the Talk sample, shows how to
create the objects used in PTP communication.

MessageProducer

MessageConsumer

ConnectionFactory

Connection

Session

MessageListener

Queue

cr eat eConnect i on()

cr eat eSessi on()

cr eat ePr oducer (queue)

cr eat eConsumer (queue)

set MessageLi st ener

cr eat eQueue(St r i ng)
Aurea Software, Inc. Confidential 284 Copyright © 2013 Aurea, Inc.

Message Ordering and Reliability in PTP
Talk Sample: Creating Objects for PTP

// Create a connection. (try/catch)
javax.jms.ConnectionFactory factory;
factory = (new progress.message.jclient.ConnectionFactory (broker));
connect = factory.createConnection (username, password);
sendSession = connect.createSession
(false,javax.jms.Session.AUTO_ACKNOWLEDGE);
receiveSession = connect.createSession
(false,javax.jms.Session.AUTO_ACKNOWLEDGE);
// Create Sender and Receiver 'Talk' queues. (try/catch)
if (sQueue != null)
{
javax.jms.Queue sendQueue = sendSession.createQueue (sQueue);
sender = sendSession.createProducer (sendQueue);
if (rQueue != null)
{
javax.jms.Queue receiveQueue = receiveSession.createQueue (rQueue);
javax.jms.MessageConsumer qReceiver =
receiveSession.createConsumer(receiveQueue);
qReceiver.setMessageListener(this);
// The 'receive' setup is complete. Start the Connection
connect.start();
...
}
}

Message Ordering and Reliability in PTP
The PTP messaging model has unique features in message ordering and delivery.

Message Ordering

Queued delivery allows each message to be processed by one and only one message
consumers. As a result, a series of messages might be consumed by several different
message consumers, each taking a few messages.

Messages on a queue have factors that impact the ordering and reliability of messages:

• When a new message is put onto a queue with a high priority set by the sender, an
active message consumer takes the new message off the queue before taking an
older message with a lower priority (provided that a message selector is not being
used by the consumer).

• Queued messages that are not acknowledged are placed back on the queue
(reenqueued) for delivery to the next qualified consumer. In the interim, a newer
message might have been received by a consumer.

• MessageConsumer objects have a prefetch parameter that retrieves a number of
messages and caches them, for the client, for processing. If these messages are not
processed by the client, they are returned to the queue.
Aurea Software, Inc. Confidential 285 Copyright © 2013 Aurea, Inc.

Chapter 8: Point-to-point Messaging
Message Delivery

The following factors can impact the delivery of messages on a queue:

• Message selectors can limit the number of messages that a client will receive.
Messages can stay on the queue until a consumer provides either a suitable message
selector or no message selector at all. A queue might appear empty to a consumer if
none of the currently enqueued messages match the consumer’s selection criteria.

• An administrator permanently disposes of queued messages (by clearing the queue).

• Message removal due to expiration might result in permanent disposal of a message
or, if the message is flagged by the producer, the message being placed on the
broker’s DMQ. An administrative application can set up an authorized consumer on
the DMQ to determine whether to recast the message, resend it as is, or discard it.

• Duplicate messages can be detected when transacted sessions are used if the broker
is set up to manage the identifiers filed for a specified lifespan. With this broker setup,
a commit to the specified identifier will clear the index value, but any intervening sends
that specify an already recorded identifier are rejected.

Note: The effects of dynamic routing on message ordering and delivery are discussed at
greater length in the scenarios in the Aurea SonicMQ Deployment Guide.

Using Multiple MessageConsumers
Every MessageConsumer is prepared to receive the next available message on its
associated queue. Since the PTP messaging model dictates one-to-one delivery
semantics, each MessageConsumer will only receive a subset of all the messages on a
queue for which there are multiple active consumers. For example, a hundred messages
on a queue for which there are four consumers might result in each consumer processing
twenty-five messages each.

You can use either an asynchronous listener or a synchronous receiver for message
delivery to an application for a queue. A synchronous consumer will effectively generate a
request for a message and wait for the message’s delivery. With an asynchronous listener,
implicit requests are generated for messages from the application’s perspective, and the
listener will be invoked when a message is delivered.

Message Queue Listener

A message listener is used to allow asynchronous processing of queue messages:

setMessageListener(MessageListener listener)

where listener is the message listener to associate with this session.
Aurea Software, Inc. Confidential 286 Copyright © 2013 Aurea, Inc.

Using Multiple MessageConsumers
The listener is often assigned just after creating the consumer from the session, as shown:

javax.jms.Queue receiveQueue = session.createQueue (rQueue);
javax.jms.MessageConsumer qReceiver = session.createConsumer(receiveQueue);
qReceiver.setMessageListener(this);

As a result, asynchronous message receipt becomes exclusive for the consumer. Message
sending is not limited when message listeners are in use. Sending is always synchronous
unless you use the delivery mode NON_PERSISTENT_ASYNC, which results in asynchronous
sending.

MessageConsumer

The MessageConsumer interface provides methods for synchronous calls to fetch messages.
Variants allow for not waiting if there are no messages currently enqueued or for timing out
after a specified wait period. These call methods are described in the following sections.

Receive

To synchronously receive the next message produced for the MessageConsumer, use the
method:

Message receive()

This call blocks indefinitely until a message is enqueued. When a receive() method is
called in a transacted session, the message remains with the MessageConsumer until the
transaction is committed or rolled back. The return value is the next message delivered to
this consumer. If a session is closed while blocking, the return value is null.

Receive with Timeout

To receive the next message on the queue within a specified time interval and cause a
timeout when the interval has elapsed, use the method:

Message receive(long timeOut)

where timeout is the timeout value (in milliseconds).

This call blocks until a message arrives or the timeout expires, whichever occurs first. The
return value is the next message delivered for this consumer, or NULL if one is not available.
Aurea Software, Inc. Confidential 287 Copyright © 2013 Aurea, Inc.

Chapter 8: Point-to-point Messaging
Receive No Wait

To immediately receive the next available message on the queue or, otherwise, instantly
timeout, use the method:

Message receiveNoWait()

This call receives the next message if one is available. The return value is the next
message delivered for this consumer, or NULL if one is not available.

Using Message Grouping
When there are multiple receivers on a queue, messages are distributed round-robin to the
active receivers. That could mean that the messages for a group (such as a customer or
stock ticker symbol) could get recorded out of order by the receiver applications.

To avoid this behavior, you could create an exclusive queue for each group so that only one
receiver gets those messages in strict order. Or, you could define message selectors for a
receivers that each select one category of messages. But in both cases, you need to set
up a known, static set of producer destinations, queues, and consumers.

Message grouping—defined by the message producers sending to specifically configured
queues on the broker—provides a mechanism that you might think of as dynamic
exclusive subqueues.

The producer sets a property with a message’s group value, and sends the message to the
broker. The broker determines whether it has an assigned active receiver for the message’s
group:

• If it does, the message goes to the assigned receiver at the end of undelivered
messages.

• If it does not, it assigns a receiver to the group name.

This feature provides advantages when the incoming messages are for diverse groups with
arbitrary names that handle a reasonable number of messages. The limitation is that, like
exclusive queue receivers, when the backlog on a message group’s receiver gets huge,
you cannot add receivers to balance the load.

Note: MessageGroupTalk sample application — Try the message grouping sample
MessageGroupTalk (PTP) on page 117.
Aurea Software, Inc. Confidential 288 Copyright © 2013 Aurea, Inc.

Using Message Grouping
Illustration of Message Grouping

The following illustration shows how source data sent for two groups (a and b) is set on the
message grouping property of each message from a message producer. The producer
connects to a queue that is enabled for message grouping. The two receivers on the queue
are each assigned a message group so subsequent messages with the same group
identifier are channeled to the assigned group receiver.

Application

Message Producer
Queue Sender to Q1

Setting Header property JMSXGroupID

Message with JMSXGroupID = a

Message with JMSXGroupID = b

Message with JMSXGroupID = a

Data for group a
Data for group b
Data for group a

Message with JMSXGroupID = b

Broker Queue
Q1

Enabled for message grouping on JMSXGroupID value

Message for message group a

Message for message group b

Message for merssage group a

Message for message group b

Message Consumer
Queue Receiver on Q1

Assigned message group a

Message Consumer
Queue Receiver on Q1

Assigned message group b

Data Source

Data for group b
Aurea Software, Inc. Confidential 289 Copyright © 2013 Aurea, Inc.

Chapter 8: Point-to-point Messaging
Broker Settings for Message Grouping

A SonicMQ broker must enable message grouping on a per-queue basis before message
grouping can occur. Each queue configuration enables message group dispatching of
messages to receivers and specifies the property that will determine the grouping of
messages. The default property is JMSXGroupID.

Other queue properties set on the broker help it control the message groups.

Initial Message Dispatch

Manages the assignment of messages and message groups when receivers start:

• Max. wait time after first receiver — Specifies a delay after the first consumer is
available to avoid forcing all the message groups that receiver. The default value is 10
seconds.

• Min. consumers to start dispatch — Specifies the number of consumers that, when
receiving on the queue, will allow dispatch of messages before the wait time has
elapsed. The default value is 2. If the Max wait time is 0, this setting has no effect.

Group Idle Timeout

Once groups are established, the broker needs overhead to keep track of assigned group
receivers. You can set a timeout for a group assignment that has not received any
messages in the elapsed time. Subsequent messages to the group will be assigned again,
possibly to the same receiver that was timed out.

Message Producers for Message Grouping

A producer application controls a message’s group handling with two StringProperty
settings, the group identifier and the group sequence.
Aurea Software, Inc. Confidential 290 Copyright © 2013 Aurea, Inc.

Using Message Grouping
Creating and Sending to a Message Group

The message grouping property name on a message sent to queue to enabled for message
grouping to perform message group dispsatching to receivers. The value of that property
will be a group, even if the group value is "".

Message message = session.createTextMessage("Order for customer Acme");
message.setStringProperty("JMSXGroupID", "ACME");
...
producer.send(message);

If the message grouping property is not on a message, it is distributed in the standard
round-robin to active receivers.

Requesting the Broker to Unassign a Message
Group

The producer can set a demarcation (for example, end of order or end of day) in a stream
of messages to a message group by specifying the group’s value in the message group
property, and also set the value JMSXGroupSeq to the value 0. For example:

Message message = session.createTextMessage("EOF");
message.setStringProperty("JMSXGroupID", "PRGS");
message.setIntProperty("JMSXGroupSeq", 0);
...
producer.send(message);

The broker would no longer deliver new messages to the assigned receiver for the group,
and any subsequent messages for that group name would get re-assigned (possibly to the
same receiver as before.)

For scenarios where the producer demarcation may be used to signal to the consumer that
it should commit its work before the group is re-assigned, use the value -1 instead of 0 to
instruct the broker to close the group, but to wait until the last message of the group has
been acknowledged before doing so.

Note: You can, at your discretion, use JMSXGroupSeq positive integer values to iterate the
messages sent to a group in producer and receiver applications.
Aurea Software, Inc. Confidential 291 Copyright © 2013 Aurea, Inc.

Chapter 8: Point-to-point Messaging
Message Consumers for Message Grouping

Receivers on a queue enabled for message grouping are managed by the broker such that:

• A message for a group name that is not currently assigned to a receiver is assigned
to an active receiver selected through a round robin algorithm.

• A message for a group name that is currently assigned to a receiver is delivered to the
assigned receiver. A receiver that is assigned a message group will be the only
receiver of messages for that group as long as the receiver is active and the producer
has not explicitly called for the assignment to end. When a receiver closes, it forsakes
its assigned message groups; the unacknowledged messages for those groups create
corresponding message group assignments to other active receivers.

• A message without the group property specified is assigned to an active receiver
hrough a round robin algorithm.

Receivers on a queue that is enabled and performing message grouping are not aware of
their assigned groups. Message group assignments are made and managed by the broker.

Important: When message group handling is enabled on a queue, message selectors on
that queue are not valid. Applications that attempt to receive messages on a
queue that is enabled for message grouping will fail if the application uses
message selectors.

Message group assignments endure across failover to a standby broker as long as the
fault-tolerant receivers re-establish connections before timing out.

Setting Prefetch Count and Threshold
SonicMQ extends the standard MessageConsumer interface, enabling you to set and get the
following parameters of the message receiver that allow performance tuning:

• PrefetchCount — The number of messages that the consumer will take off the queue
to buffer locally for consumption and acknowledgment (default value = 3).

• PrefetchThreshold — The minimum number of messages in the local buffer that will
trigger a request for the delivery of more messages to the consumer. The number of
requested messages is equal to the PrefetchCount (default value = 1).

For example, a PrefetchThreshold of 2 and a PrefetchCount of 5 causes a request to be
sent to the broker for batches of five messages whenever the number of messages locally
waiting for processing drops below two. The threshold value cannot be greater than the
count value.
Aurea Software, Inc. Confidential 292 Copyright © 2013 Aurea, Inc.

Browsing a Queue
Use the following set() and get() methods for the prefetch count:

• setPrefetchCount:

progress.message.jclient.MessageConsumer.setPrefetchCount(int
count)

where count is the number of messages to prefetch.

When the PrefetchCount value is greater than one, the broker can send multiple
messages as part of a single MessageConsumer request. This can improve
performance.

• getPrefetchCount:

progress.message.jclient.MessageConsumer.getPrefetchCount()

Returns the PrefetchCount positive integer value.

Use the following set() and get() methods for the prefetch threshold:

• setPrefetchThreshold:

progress.message.jclient.MessageConsumer.setPrefetchThreshold(
int threshold)

where threshold is the threshold value for prefetching messages.

Setting this to a value greater than zero allows the MessageConsumer to always have
messages available for processing locally, if any are available on the queue. This
might improve performance.

When the number of messages waiting to be processed by the MessageConsumer falls
to (or below) the PrefetchThreshold number, a new batch of messages will be
fetched.

• getPrefetchThreshold:

progress.message.jclient.MessageConsumer.getPrefetchThreshold(
)

Returns the PrefetchThreshold positive integer value.

Browsing a Queue
A QueueBrowser enables a client to look at messages in a queue without removing them.
Queue browsing in SonicMQ provides a dynamic view of a queue. As messages may be
enqueued and/or dequeued very rapidly, browsing might not show every message on a
queue over a given time interval. Browsing is very useful for assessing queue size and
rates of growth. Instead of getting actual message data, you can also use the enumeration
method to return just the integer count of messages on the queue.
Aurea Software, Inc. Confidential 293 Copyright © 2013 Aurea, Inc.

Chapter 8: Point-to-point Messaging
Create the browser with a session method as follows:

Session.createBrowser(Queue queue)

where queue is the queue you want to browse.

A message selector string can be added to qualify the messages that are browsed. See Message
Selection on page 271 for information about selector syntax. Create a browser with a
message selector as follows:

Session.createBrowser(Queue queue, String messageSelector)

where:

• queue is the queue you want to browse

• messageSelector is the selector string that qualifies the messages you want to browse

Use the following methods to get browser information and close the browser:

• getMessageSelector:

You can get the message selector expression being used with:
String getMessageSelector()

• getEnumeration:

You can get an enumeration for browsing the current queue messages in the
sequence that messages would be received with:
java.util.Enumeration getEnumeration()

• getQueue:

You can get the queue name associated with an active browser with:
getQueue()

• close:

Always close resources when they are no longer needed with:
close()

The sample application QueuePTP\QueueMonitor uses the QueueBrowser to display current
queue contents in a Java window, as shown in QueueBrowser Sample on page 295.
Aurea Software, Inc. Confidential 294 Copyright © 2013 Aurea, Inc.

Handling Undelivered Messages
QueueBrowser Sample

// Create a browser on the queue and show the messages waiting in it.

javax.jms.Queue q = (javax.jms.Queue) theQueues.elementAt(i);
textArea.append("Browsing queue \"" + q.getQueueName() + "\"\n");

// Create a queue browser

System.out.print ("Creating QueueBrowser for \"" + q.getQueueName() +
"\"...");
javax.jms.QueueBrowser browser = session.createBrowser(q);
System.out.println ("[done]");
int cnt = 0;
Enumeration e = browser.getEnumeration();
if(!e.has MoreElements())
{
textArea.append ("<no messages in queue>");
}
else
{
while(e.hasMoreElements())
{
System.out.print (" --> getting message " + String.valueOf(++cnt) + "...");
javax.jms.Message message = (javax.jms.Message) e.nextElement();
System.out.println("[" + message + "]");
if (message != null)
{
String msgText = getContents (message);
textArea.append(msgText + "\n");
...
}
...
}
...
}

See Browsing Clusterwide Queues on page 305 for information about browsing clustered
queues.

Handling Undelivered Messages
SonicMQ provides a service that a MessageProducer can request to handle undelivered
messages. This service removes an undeliverable message from its queue then
re-enqueues the message on a special system queue. The message remains on this queue
until acted on. This system queue, referred to as the dead message queue (DMQ), is
usually managed by broker administrator applications. The name of this system queue is
SonicMQ.deadMessage.
Aurea Software, Inc. Confidential 295 Copyright © 2013 Aurea, Inc.

Chapter 8: Point-to-point Messaging
As a programmer, you can elect to request that undeliverable messages be placed on the
DMQ. You can set messages to:

• Be placed in the DMQ when the messages are found to be expired

• Be placed in the DMQ when a message cannot be delivered (for example, when the
destination queue is not found)

• Request that a notification (an administrative event) be sent when the message is
placed in the DMQ

Note: There are several other reasons a message could be undelivered in a dynamic
routing deployment. See Aurea SonicMQ Deployment Guide for more about
undelivered messages in the Dynamic Routing Architecture.

Setting Important Messages to be Saved if
They Expire

Important messages should be sent with a PERSISTENT delivery mode and flagged to be
preserved on expiration or when they cannot be routed successfully across routing nodes.
You can choose to also generate an administrative notification when a message is
enqueued on the DMQ. Setting PERSISTENT Delivery Mode on page 296 shows how to
set messages for a PERSISTENT delivery mode to be preserved if undeliverable and to
generate a notification if undeliverable.

Setting PERSISTENT Delivery Mode

// Create a BytesMessage for the payload. Make sure the message
// is delivered within 2 hours (7,200,000 milliseconds).
// If expires, send a notification and save the message.
javax.jms.BytesMessage msg = session.createBytesMessage();
msg.setBytes(payload);

// Set 'undelivered' behavior.
msg.setBooleanProperty(PRESERVE_UNDELIVERED, true);
msg.setBooleanProperty(NOTIFY_UNDELIVERED, true);

// Send the message with PERSISTENT, TimeToLive values.
qsender.send(msg,
 javax.jms.DeliveryMode.PERSISTENT,
 javax.jms.Message.DEFAULT_PRIORITY,
 7200000);

Setting Small Messages to Generate
Administrative Notice

To determine if delivery times are an issue, you can program an application to send a small
message using high priority, with the expectation that this message will be delivered in ten
minutes. Only notification events are needed. Setting Messages to Generate Notification
on page 297 shows how to set messages to generate administrative notice.
Aurea Software, Inc. Confidential 296 Copyright © 2013 Aurea, Inc.

Life Cycle of a Guaranteed Message
Setting Messages to Generate Notification

// Create a BytesMessage for the payload. Make sure the message
// is delivered within 10 minutes (600,000 milliseconds).
// If expires, send a notification.

javax.jms.BytesMessage msg = session.createBytesMessage();
msg.setBytes(payload);

// Set 'undelivered' behavior. Using the property names that
// are defined as static final Strings in

// progress.messages.jclient.Constants ensures catching errors.
msg.setBooleanProperty(NOTIFY_UNDELIVERED, true);

// Send the message for fast delivery, or not at all.

qsender.send(msg,
 javax.jms.DeliveryMode.NON_PERSISTENT,
 8, // Expedite at a high priority
 600000); // 10 minutes

In this example, when an administrative notification is received, you will know whether
delivery times are large.

Life Cycle of a Guaranteed Message
A message gets sent to the DMQ only when the application developer designates the
message as a guaranteed message. The following sections explain the life cycle of a
guaranteed message. See Chapter 10, Guaranteeing Messages on page 345 for
information about using the DMQ and guaranteeing messages.

Setting the Message to Be Preserved

The application developer can choose to set the property of a message to declare that the
entire message should be preserved if it is undeliverable as follows:

msg.setBooleanProperty(progress.message.jclient.Constants.PRESERVE_UNDELIVE
RED, true);

You can choose to also generate an administrative notification.
Aurea Software, Inc. Confidential 297 Copyright © 2013 Aurea, Inc.

Chapter 8: Point-to-point Messaging
Setting the Message to Generate an
Administrative Event

You can elect to be notified whether a message was delivered without needing to preserve
the original message. This option is distinctly more efficient both in terms of the message
traffic density and the requirements of dequeueing undelivered messages. To declare that
an administrative event should be generated, set the appropriate message property:

msg.setBooleanProperty(progress.message.jclient.Constants.NOTIFY_UNDELIVERE
D, true);

Sending the Message

The sending application sends the message metadata and the message payload. The
application can expect that the message gets delivered to an interested consumer.

Letting the Message Get Delivered or Expire

A message can be acknowledged as delivered to a consumer. A NON_PERSISTENT message
is volatile in the event of a system outage, whereas a PERSISTENT message will be restored
in the event of a system outage.

Post-processing Expired Messages

When a message’s expiration time (as marked in the message’s JMSExpiration header
field) has passed, the broker dequeues the message and examines the message
producer’s settings.

Dequeueing of expired messages only takes place when the enqueued messages are
reviewed on the broker. Inert or low volume queues might have messages that expire but
are not examined until a receive mechanism compels the broker to look at the message.
Two properties are checked to see what processing steps are required:

• JMS_SonicMQ_preserveUndelivered — If true, the expired message is transferred to
the DMQ.

• JMS_SonicMQ_notifyUndelivered — If true, the expired message generates an
administrative event.

Processing Enqueued Expired Messages

When a message is transferred to the queue SonicMQ.deadMessage, the broker adds two
properties:

• JMS_SonicMQ_undeliveredReasonCode = reason code

• JMS_SonicMQ_undeliveredTimestamp = GMT time [as long]
Aurea Software, Inc. Confidential 298 Copyright © 2013 Aurea, Inc.

Life Cycle of a Guaranteed Message
When a message is transferred to the DMQ due to expiration, it has the reason code
UNDELIVERED_TTL_EXPIRED. The message retains its original JMSDestination header field
value (unlike all other non-system queues, where the JMS destination of each enqueued
message matches the queue name).

Also, the message retains its original JMSExpiration header field value. When the
message is retrieved from the DMQ, you can examine its properties including the time at
which it was declared undeliverable, an indicator of the time on the system where the
message expired.

Important: Messages in the DMQ with a PERSISTENT delivery mode will not expire. If you
have access to administrative functions on a broker, stay alert and dequeue
dead messages as soon as possible. Messages with NON_PERSISTENT delivery
mode are volatile and will perish if the broker restarts.

Sending Administrative Notification

When an expired message requests administrative notification, a notice is sent with the
following information:

• Undelivered Reason Code — Stored in the JMS_SonicMQ_undelivered_ReasonCode
property of the original message. For message expiration, the value of the reason
code is UNDELIVERED_TTL_EXPIRED (which happens to be 1). The message is
undelivered because the message’s timeToLive expired.

• MessageID — JMSMessageID of the original message.

• Destination— From JMSDestination of the original message.

• Timestamp — The time when the message was handled after a determinations was
made that it was undeliverable; also stored in the
JMS_SonicMQ_undeliveredTimestamp property of the message if it is saved.

• Broker Name — The name of the broker where the notification originated. This
information is important in clustered broker deployments.

• Preserved — As set in the JMS_SonicMQ_preserveUndelivered property of the
original message. If true, the message has been saved in the DMQ on the broker
where the message was declared undeliverable.

Getting Messages Out of the Dead Message
Queue

Getting Messages from the DMQ on page 300 shows the use of synchronous receives for
messages in the DMQ.
Aurea Software, Inc. Confidential 299 Copyright © 2013 Aurea, Inc.

Chapter 8: Point-to-point Messaging
Getting Messages from the DMQ

import progress.message.jclient.Constants;
. . .
// Create a MessageConsumer for the dead message queue.
Session session = connect.createSession(false,Session.CLIENT_ACKNOWLEDGE);
Queue dmq = session.createQueue ("SonicMQ.deadMessage");
MessageConsumer receiver = session.createConsumer(dmq);
connect.start();

// Empty the dead message queue.
while(true)
{
Message m = receiver.receive();
int code = m.getIntegerProperty(Constants.UNDELIVERED_REASON_CODE);
if (code == Constants.UNDELIVERED_TTL_EXPIRED)
{
// Handle due to normal timeout.
. . .
}
}

Detecting Duplicate Messages
To avoid sending duplicate messages from two clients, or to avoid sending a duplicate
message between client sessions, use a transacted program.message.jclient.Session
and use the transactionID parameter in the commit() method to assign a 32-character
(maximum size) unique universal identifier (UUID) to a message. The identifier might
represent an audit trail value or a form identifier such as a purchase order number.

After you send messages in the transaction and then commit with your identifier, the
commit will throw an exception if the UUID is on file.

Use the commit() method to commit all messages sent and received since the last commit
or rollback. Use this method with a UUID:

commit(java.lang.String transactionId, long lifespan)

where:

• transactionId is the UUID for duplicate transaction detection

• lifespan is the length of life of the UUID (in milliseconds)

If a transaction gets rolled back because a duplicate UUID is detected, the following
exception is thrown: TransactionRolledBackException.

Note: Transactions using this commit feature will be slower than normal transactions.

For more information about duplicate messages, see Duplicate Message Detection
Overview on page 346.
Aurea Software, Inc. Confidential 300 Copyright © 2013 Aurea, Inc.

Forwarding Messages Reliably
Forwarding Messages Reliably
The progress.message.jclient.Message class provides the acknowledgeAndForward
method to reliably acknowledge a message received from a queue destination and to
forward the message to another queue destination.

To acknowledge a message and forward it to a new destination, use the method:

public void acknowledgeAndForward (javax.jms.Destination destination,
int deliveryMode,
int priority,
long timeToLive)

where the variables are defined as follows:

• destination — The forwarding destination, a queue

• deliveryMode — The preferred delivery mode to use on the forwarded message (for
example, PERSISTENT or NON_PERSISTENT)

• priority — The priority (0 - 9) to use on the forwarded message

• timeToLive — The new lifetime (in milliseconds) of the forwarded message

This method can be called only on messages that were received in a
progress.message.jclient.Session.SINGLE_MESSAGE_ACKNOWLEDGE session. The
acknowledgment and the move to the new destination are performed as an atomic
operation, guaranteeing that either both succeed or both fail. Other messages that might
have been received before this message, through the same session, are not affected.

You can use this method only for messages received from a queue destination and
forwarded to a queue.

The optimal technique for routing messages to a remote queue is to build a transaction for
a message wherein the message is not acknowledged to the broker queue from which it
was received until it is securely enqueued in its target destination. SonicMQ provides a
method that offers the increased reliability of acknowledge-and-forward without the
overhead of a transacted session. Message moves assure that the body and property of
the message are not disturbed by the action.

A message move requires that a JMS client have the ability to both acknowledge receipt of
a message and forward onto a new queue in a single, atomic action that couples the send
method and the receipt acknowledge method. The session is required to use
SINGLE_MESSAGE_ACKNOWLEDGE, which is the SonicMQ non-transacted extension of the
CLIENT_ACKNOWLEDGE session parameter that is constrained to the current message only.

If the priority, deliveryMode or timeToLive are not specified in the
acknowledgeAndForward() method, the values of those parameters are replicated from
the original message. For example, the following method would result in the use of the
priority and delivery mode values of the message while the interval between the timestamp
and the expiration time would be used as the time to live:

public void acknowledgeAndForward (javax.jms.Destination destination)
Aurea Software, Inc. Confidential 301 Copyright © 2013 Aurea, Inc.

Chapter 8: Point-to-point Messaging
The acknowledgeAndForward() method does not acknowledge or forward previously
received messages. If the method is called on acknowledged messages, an
IllegalStateException is raised.

The definition of acknowledgeAndForward as nontransacted means that, while the commit
is retained, no explicit rollback is available.

Note that topics are not currently supported for either message consumer destination or
message producer destination under acknowledgeAndForward.

The following procedure describes how you can modify one of the SonicMQ sample
applications to demonstrate the acknowledgeAndForward() method.

To modify a sample to show the acknowledgeAndForward behavior:

1. Copy the ReliableTalk sample source file,
samples\QueuePTP\ReliableTalk.java.

2. Change the line textMessage.acknowledge() to:

javax.jms.Queue sendQueue = sendSession.createQueue(m_sQueue);
((progress.message.jclient.Message)textMessage).acknowledgeAnd
Forward(sendQueue);

3. Change the line receiveSession = connect.createSession... to:

receiveSession =
connect.createSession(false,progress.message.jclient.Session.SINGLE
_MESSAGE_ACKNOWLEDGE);

4. Save the modified file and then compile it into a class file.

5. Run the modified ReliableTalk sample.

Because of the change you made, the application automatically acknowledges any
message it receives and forwards it to the send queue.

Dynamic Routing with PTP Messaging
The term dynamic routing, a concept familiar to network architects, is commonly used to
describe the way routers talk to each other in order to maintain a list of connected routers.
The Sonic Dynamic Routing Architecture (DRA) is based on a similar concept. Most of the
DRA complexity is managed in the communication layer, so that programmers have
minimal interaction with the physical deployment set up by the administrators, in the same
way network applications that send an HTTP request to an IP address have no need to
manage the routing of the request.

Fundamental to SonicMQ’s reliable and secure message delivery are:

• Authentication in a SonicMQ node security domain

• Authorization for a destination maintained on the node
Aurea Software, Inc. Confidential 302 Copyright © 2013 Aurea, Inc.

Dynamic Routing with PTP Messaging
The SonicMQ DRA provides active route optimization and accelerated
acknowledge-and-forward transactional message forwarding while minimizing
programmatic overhead.

Administrative Requirements

In all cases of Sonic dynamic routing deployments, an administrator must establish routing
nodes and routing definitions, and must define users with routing ACLs. For dynamic
routing of queue messages, an administrator must also establish global queues.

See the chapters “Configuring Routings” and “Managing SonicMQ Broker Activities” in the
Aurea SonicMQ Configuration and Management Guide for information about how to
perform these administrative tasks.

Application Programming Requirements

To implement dynamic routing using PTP messaging, application programmers must send
the queue messages with the destination format:
(“routing_node_name::global_queue_name”)

where the variable are defined as follows:

• routing_node_name — The name of an existing node (either a standalone broker or a
cluster of brokers)

• global_queue_name — The name of an existing queue destination on that node that
has been set to be global

The Aurea SonicMQ Deployment Guide provides examples of how you can implement
dynamic routing in your applications. For detailed information about the different types of
routing that SonicMQ provides, see the following:

• The chapter “Multiple Nodes and Dynamic Routing” in the Aurea SonicMQ
Deployment Guide provides information about dynamic routing for queues in the PTP
messaging model and dynamic routing for topics in the Pub/Sub messaging model.

• The chapter “HTTP Direct Acceptors and Routings” in the Aurea SonicMQ
Deployment Guide provides information about HTTP Direct routing.
Aurea Software, Inc. Confidential 303 Copyright © 2013 Aurea, Inc.

Chapter 8: Point-to-point Messaging
Message Delivery with Dynamic Routing

Message behavior and handling when making use of dynamic routing is determined by
several factors:

• What was the format of the destination name specified by the application?

For example, the destination name can be specified in the following ways:

• destination (non-remote destination)

• routing_node_name::destination (remote destination)

• ::destination (global queue or topic on the current node)

• Is a broker a member of a cluster?

• Is the destination a queue or topic?

• If the destination is a queue:

• Is the queue global?

• Does the queue exist on a broker (either clustered or not)?

• Is the queue a global queue elsewhere in the routing node?

Clusterwide Access to Queues
SonicMQ enables clusterwide access to queues, providing the following features for your
applications:

• A client application with consumers, producers, and queue browsers can connect to
any broker on the cluster and be able to receive from, browse, or send to any queue
that has been administratively designated as clustered.

• Your applications can distribute messages on clustered queues.

• You can ensure Request/Reply, with a reply-to destination that is a temporary queue,
with clustered queues.

Each broker in a cluster contains an instance of the clustered queue(s) configured for the
cluster.
Aurea Software, Inc. Confidential 304 Copyright © 2013 Aurea, Inc.

Clusterwide Access to Queues
Sending to Clusterwide Queues

Sending to a clustered queue is similar to sending to a local queue on a broker. Each broker
in the cluster contains an instance of the queue. When a message is sent to a broker, that
broker places the message on its own instance of the queue. While a local clustered queue
is accessible by specifying the destination as queue_name without any node syntax, a global
clustered queue is accessible by specifying any of the three queue notations:

• queue_name

• local_node::queue_name

• ::queue_name

The direct interaction of the producers with an instance of the queue on the local broker
also means that transactions involving sending to clustered queues behave in the same
way as transactions involving sending to local queues.

Receiving from Clusterwide Queues

From a consumer's perspective, receiving from a clustered queue on the local broker is no
different than receiving from a local queue (see MessageConsumer on page 287). When a
clustered queue on the local broker cannot satisfy the request for messages from its
consumers, the clustered queue pulls messages from other clustered queue instances on
neighbor brokers.

The clustered queue attempts to pull messages from corresponding neighbor brokers’
clustered queue instances when:

• The clustered queue is empty and has consumers requesting messages.

• The clustered queue has more room and none of the requests can be satisfied by the
existing messages on the queue.

Browsing Clusterwide Queues

A QueueBrowser created against a clustered queue has the same functionality as a
QueueBrowser created against a non-clustered queue (see Browsing a Queue on
page 293). The browsing of a clustered queue is an operation that examines the message
content of the local broker's clustered queue instance only.

The following notes apply to a QueueBrowser for a clustered queue:

• A QueueBrowser for a clustered queue does not display messages that might be
available for consumption on corresponding neighbor brokers’ clustered queue
instances.

• To browse the content of every instance of the clustered queue, you must connect to
every broker in the cluster and create a queue browser each time.
Aurea Software, Inc. Confidential 305 Copyright © 2013 Aurea, Inc.

Chapter 8: Point-to-point Messaging
Message Selectors with Clusterwide Queues

Message selectors are applied against messages in the local broker's clustered queue
instance in the same manner as for a local queue (see Message Selection on page 271 and
Browsing a Queue on page 293). A clustered queue instance on a broker will receive
messages from another neighbor broker’s clustered queue instance if and only if a
message satisfies at least one of the selectors in use by receivers connected to the broker.

In the event that a message consumer exists with no message selector, the neighbor
broker will not need to take the time to evaluate the list of message selectors, as any
messages will match the no selector case.

Clustered Queue Availability When Broker is
Unavailable

If any broker in the cluster becomes unavailable as a result of software or hardware failure,
all the messages on the clustered queue instances on that broker become unavailable until
the broker is restarted. Since a clustered queue instance exists on all other brokers in the
cluster, access for sending, receiving, and browsing continues uninterrupted for clients
connected elsewhere in the cluster. However, the trapped messages will not be available
for browsing or receiving until the unavailable broker is restarted.

Note: Clustered queues do not support the enforcement of strict message ordering.
Aurea Software, Inc. Confidential 306 Copyright © 2013 Aurea, Inc.

9
Publish and Subscribe Messaging

This chapter describes the Publish and Subscribe (Pub/Sub) messaging model and
contains the following sections:

• About Publish and Subscribe Messaging on page 307

• Message Ordering and Reliability in Pub/Sub on page 309

• Topic on page 310

• MessageProducer (Publisher) on page 311

• MessageConsumer (Subscriber) on page 313

• Durable Subscriptions on page 313

• Dynamic Routing with Pub/Sub Messaging on page 317

• Shared Subscriptions on page 319

• MultiTopics on page 336

About Publish and Subscribe Messaging
The Publish and Subscribe (Pub/Sub) messaging model is shown in Figure 59. In Pub/Sub
messaging, a message is sent to a topic, and each consumer of that topic gets the
message. This one-to-many model keeps topic producers (publishers) independent of the
topic consumers (subscribers). In fact, producers could be sending messages to topics
where no consumers exist.
Aurea Software, Inc. Confidential 307 Copyright © 2013 Aurea, Inc.

Chapter 9: Publish and Subscribe Messaging
Figure 59: Publish and Subscribe Messaging Model

Mechanisms exist to allow messages to persist for consumers who have a durable
subscription to a topic. The characteristics of durable subscriptions are discussed in
Durable Subscriptions on page 313.

See Chapter 13, Hierarchical Name Spaces on page 411 for information about how
SonicMQ applications can subscribe to sets of topics.

Creating Objects for Pub/Sub on page 308, from the Chat sample application, shows how
to create the objects used in a Session for Pub/Sub communication: Topic,
MessageConsumer, MessageProducer, and Message.

Creating Objects for Pub/Sub

//The topic is defined as a hierarchical topic
private static final String APP_TOPIC = "jms.samples.chat";

// Create Publisher and Subscriber to 'chat' topics
try{
topic = pubSession.createTopic(APP_TOPIC);
subscriber = subSession.createConsumer(topic, "SampleSubscription");
subscriber.setMessageListener(this);
publisher = pubSession.createProducer(topic);
connection.start();
}
catch (javax.jms.JMSException jmse)
{
jmse.printStackTrace();
}
...
try
{

MessageProducer

MessageConsumer

ConnectionFactory

Connection

Session

MessageListener

Topic

cr eat eConnect i on()

cr eat eSessi on()

cr eat ePr oducer (t opi c)

cr eat eConsumer (t opi c)

set MessageLi st ener ()

cr eat eTopi c(St r i ng)

cr eat eDur abl eSubscr i ber (t opi c)
Aurea Software, Inc. Confidential 308 Copyright © 2013 Aurea, Inc.

Message Ordering and Reliability in Pub/Sub
// Read all standard input and send it as a message.
java.io.BufferedReader stdin =

new java.io.BufferedReader(new java.io.InputStreamReader(System.in
));

System.out.println("\nEnter text messages to clients that subscribe to
the " + APP_TOPIC + " topic." +

"\nPress Enter to publish each message.\n");
while (true)
{

String s = stdin.readLine();

if (s == null)
exit();

else if (s.length() > 0)
{

javax.jms.TextMessage msg = pubSession.createTextMessage();
msg.setText(username + ": " + s);
publisher.send(msg);

}
}

}

Message Ordering and Reliability in Pub/Sub
The Pub/Sub messaging model provides additional services to general message ordering
and reliability, described in Message Ordering and Reliability on page 262.

General Services

Asynchronous message delivery allows messages to be delivered with a range of options
that ensure an appropriate quality of service:

• The producer can set the message life span, delivery mode, and message priority.

• The broker stores the message for later delivery and manages both acknowledgement
to the producer and acknowledgement from the consumer.

• The consumer can express a durable interest in a topic (durable subscriber).

Reliable message delivery also deals with questions of ordering and redelivery.
Aurea Software, Inc. Confidential 309 Copyright © 2013 Aurea, Inc.

Chapter 9: Publish and Subscribe Messaging
Message Ordering

A predictable sequence of messages is a series of messages that have the same priority
from a single producer in a single session. Even if transacted, the messages are delivered
sequentially from the broker to the consumers. The sequence of messages received by a
consumer can be influenced by the following factors in Pub/Sub domains:

• Changing a priority on a message from a producer can result in a delivery of a high
priority message to a newly activated or reactivated subscription before an older
message.

• Messages from other sessions and other connections are not required to be in
specified sequence relative to messages from another session or connection.

• If a non-durable subscriber closes and then reconnects, it counts as a new subscriber.
Order is only guaranteed within each connected session, not between the sessions.

• Messages that are not acknowledged are redelivered to durable subscribers with an
indication of the redelivery attempt. As a result, a redelivered message could be
received after a message that was timestamped later.

• Durable subscriber disconnects and reconnects at a different broker. You can specify
strict message order to ensure that messages will be received in the order they are
sent, regardless of other factors that can affect that order. For information about
message ordering with durable subscriptions, see Message Order with Clusterwide
Durable Subscriptions on page 315.

Reliability

The assurance that a message will be received by a consumer has several other influences
in Pub/Sub domains:

• A producer is never guaranteed that any consumer exists for a topic where messages
are published.

• Consumer message selectors limit the number of messages that a client will receive.
Regular subscriptions and durable subscriptions with a message selector definition
that excludes a message will never get that message.

Message destruction due to expiration or administrator action (removing a durable
subscription) permanently disposes of stored messages.

Topic
Topics are objects that provide the producer, broker, and consumer with a destination for
JMS methods. Topics can be predefined objects under administrative control, dynamic
objects created as needed, or temporary objects created for very limited use. The topic
name is a java.lang.String, up to 256 characters.
Aurea Software, Inc. Confidential 310 Copyright © 2013 Aurea, Inc.

MessageProducer (Publisher)
SonicMQ provides extended topic management and security with hierarchical name
spaces; for example, jms.samples.chat. Some characters and strings are reserved for the
features of hierarchical topic structures, such as:

• . (period) delimits hierarchical nodes.

• * (asterisk) and # (pound) are used as template characters.

• $ (dollar sign) is used for internal topics (starting with $SYS or $ISB).

• : (colon) is used for dynamic routing.

• [[]] (double brackets) are used for shared subscriptions.

• | (vertical bar) is used only with MultiTopics.

See Chapter 13, Hierarchical Name Spaces on page 411 for more information.

Important: Table 4 lists characters that are not allowed in SonicMQ names. Refer to this
list for characters you can use in topic names.

You can programmatically store and retrieve topics in a directory service such as LDAP or
the embedded Java Naming and Directory Interface (JNDI) service. With SonicMQ, you can
store topic names in a JNDI or a simple file store, and then reference the object indirectly (by
name) in some context. See Chapter 4, SonicMQ Connections on page 131 for more
information.

MessageProducer (Publisher)
If you want your client application to send messages to a Topic, you must first create a
MessageProducer in the session for the selected Topic. When you create a
MessageProducer (via the Session.createProducer() method), you can specify a default
destination. If you specify a default destination, you do not need to specify a destination
when you send a message.

You can also create a MessageProducer that is not bound to a default destination. You can
do this by passing a null destination to the createProducer() method. Then, to use the
MessageProducer to send a message, you must explicitly call a form of the send() method
that specifies a valid destination. The following code creates a MessageProducer without a
default Topic:

publisher = session.createProducer(null);
topic = session.createTopic(jms.sample.chat”);
publisher.send(topic, msg);

Creating the MessageProducer

This sample code creates a MessageProducer that specifies a default Topic:

javax.jms.Topic topic = session.createTopic("jms.samples.chat");
publisher = session.createProducer(topic);
Aurea Software, Inc. Confidential 311 Copyright © 2013 Aurea, Inc.

Chapter 9: Publish and Subscribe Messaging
Creating the Message

The message is created using the Session.createMessage() method for the preferred
message type (for example, Session.createTextMessage() creates a text message). The
Chat sample application uses the following code to accept input and then create, populate,
and send the input as a text message, prepended with the username of the
MessageProducer:

while (true)
{
String s = stdin.readLine();
if (s == null)
exit();
else if (s.length() > 0)
{
javax.jms.TextMessage msg = session.createTextMessage();
msg.setText(username + ": " + s);
publisher.send(msg);
}
}

Sending Messages to a Topic

The Chat sample simply puts text into the body of the message and accepts every default
that is provided for a message. The send() method is:

publisher.send (Message message)

or

publisher.send (Message message,
int deliveryMode,
int priority,
long timeToLive)

where:

• message is a javax.jms.Message

• deliveryMode is [NON_PERSISTENT|PERSISTENT|NON_PERSISTENT_SYNC|
NON_PERSISTENT_ASYNC|NON_PERSISTENT_REPLICATED|DISCARDABLE]

• priority is [0...9] where 0 is lowest and 9 is highest

• timeToLive is [0...n] where 0 is “forever” and any other positive value n is in
milliseconds
Aurea Software, Inc. Confidential 312 Copyright © 2013 Aurea, Inc.

MessageConsumer (Subscriber)
MessageConsumer (Subscriber)
A MessageConsumer can subscribe to a topic. The createConsumer() method, which
creates a non-durable subscription, has the following parameters:

MessageConsumer createConsumer (Destination topic)

or

MessageConsumer createConsumer (Destination topic,
 String messageSelector,

boolean noLocal)

where:

• topic is a Topic object you want to access

• messageSelector is a string that defines selection criteria

• noLocal is a boolean where true sets the option not to receive messages from
subscribed topics that were published locally (by the same connection)

In a Session, multiple MessageConsumer objects can have overlapping subscriptions
defined in their message selectors and hierarchical topics. In this case, all of the message
consumers would get a copy of the message delivered.

Durable Subscriptions
A MessageConsumer can also express a durable interest in a topic (this is called a durable
subscription). This means the MessageConsumer receives all the messages published on a
topic even when the client connection is not active. When the MessageConsumer expresses
a durable interest in a topic, the broker ensures that all messages from the topic's
publishers are retained until they either are acknowledged by the MessageConsumer or have
expired. The Session.createDurableSubscriber() method has the following signatures:

TopicSubscriber createDurableSubscriber (Topic topic,
String subscriptionName)

or

TopicSubscriber createDurableSubscriber (Topic topic,
String subscriptionName,
 String messageSelector,
boolean noLocal)

where:

• topic is a Topic object that specifies the destination of the subscription.

• subscriptionName is a string of arbitrary alphanumeric text. A subscription name is an
identifier that allows a client to reconnect to a durable subscription.
Aurea Software, Inc. Confidential 313 Copyright © 2013 Aurea, Inc.

Chapter 9: Publish and Subscribe Messaging
• messageSelector is a string that defines selection criteria. If the durable subscriber is
also part of a shared subscription, the message selector must match the selector of
other members of the shared subscription.

• noLocal is a boolean. When set to true, the subscriber does not receive messages
from subscribed topics that were published locally.

Note: SonicMQ extends the PubSub Message Consumer to enable shared
subscriptions. When a MessageConsumer is also a member of a shared
subscription, the MessageConsumer does not receive all messages published to the
topic; instead, the MessageConsumer receives a subset of the messages, because
delivery of the messages is load-balanced to all members of the shared
subscription. See Shared Subscriptions on page 319 for more information.

The TopicSubscriber interface extends the MessageConsumer interface. Since
TopicSubscriber is a JMS Version 1.02b model-specific interface, you should avoid using
the interface directly, because the JMS Version 1.1 specification states that some of the
model-specific interfaces might be deprecated in future versions. It is recommended that
you use the MessageConsumer interface instead; the MessageConsumer interface exposes all
of the methods defined by the TopicSubscriber interface.

A subscription name combined with the user name and the client identifier to define the
durable interest. This construct lets you create many durable subscriptions that are easily
understood and nonconflicting. The durable subscription identity is constructed from, and
indexed on:

• username — The username for authorization when logging on or for user identity

• clientID — The instance identifier in an application

• subscription name — The identity of the subscription within the application.

See Table 4 for a list of restricted characters for durable subscriber names.

A durable subscription is not allowed for a temporary topic. An attempt to create a durable
subscriber on a TemporaryTopic will throw a JMSException.

While you can stop listening to a topic, there is broker overhead expended when trying to
deliver messages to subscribers, especially when the messages might be persistent and
the subscribers durable. The Session class’s unsubscribe() method unsubscribes a
durable subscription that has been created by a client. This method deletes the state
maintained on behalf of the subscriber by its message broker:

unsubscribe(String name)

where name is the name used to identify this subscription.

SonicMQ creates a common message store for all durable members of a shared
subscription. If all members (durable and non-durable) are inactive, SonicMQ stores
messages in the common store, until one or more members (durable or non-durable)
becomes active. SonicMQ retains the common store until the last durable member
unsubscribes, at which time the store is deleted.
Aurea Software, Inc. Confidential 314 Copyright © 2013 Aurea, Inc.

Durable Subscriptions
An inactive durable subscription is a durable subscription that exists but does not
currently have a message consumer connected to it. A MessageConsumer must be inactive
(closed) before using the unsubscribe() method on that durable subscription.

An error will occur when a client tries to delete a durable subscription while the client has
an active MessageConsumer for it.

Clusterwide Access to Durable Subscriptions

Messages in a durable subscription can be accessed from any broker in a cluster. A
message that is published on one broker can be received by a client application that has
created a durable subscriber on any other broker in the cluster.

When a message is published for a disconnected durable subscriber, or a message is
published while there is no active subscriber for the durable subscription on any broker in
the cluster, that message is stored in the message store on the publishing broker. When
the client application connects to any broker in the cluster and recreates the durable
subscriber for the subscription, the messages stored earlier for that subscription are
forwarded to the client application.

Message Order with Clusterwide Durable
Subscriptions

If a client is publishing messages and the broker to which it is connected becomes
unavailable, the client can reconnect to any other broker in the cluster and continue
publishing messages. However, some of the messages published by the first session might
be stored in the failed broker, and when that broker is restarted they can be delivered out
of order.

A similar situation can occur if an application publishes some messages, closes its JMS
session, then connects to a different broker in the cluster and continues publishing
messages to the same topic. The strict order of messages delivered to the subscribers of
the topic is not guaranteed across different JMS publisher sessions.

In a single broker configuration that does not use shared subscriptions, message ordering
to durable subscribers is always guaranteed. In a clustered environment, SonicMQ
supports optional strict message ordering to durable subscribers (unless they are members
of a shared subscription). This feature is optional in a clustered scenario because enforcing
strict message order can lead to delays in delivery when messages intended for the durable
subscriber get trapped on a crashed or partitioned broker. Applications that elect strict
message ordering for durables, therefore, must be able to tolerate delays in message
delivery.

If an application is receiving messages from a durable subscription and the broker goes
down or the application closes the current session, the application can later connect to any
broker in the cluster and continue receiving messages from the durable subscription. In this
situation, messages will be received in the order they were sent even though the application
started a new session (only if setDurableMessageOrder was enabled).
Aurea Software, Inc. Confidential 315 Copyright © 2013 Aurea, Inc.

Chapter 9: Publish and Subscribe Messaging
Strict message ordering is not enabled by default. An application can select strict message
order enforcement in the ConnectionFactory or in the topic session. The setting made at
the topic session always takes precedence over any settings made at the
ConnectionFactory. You can enable preservation of message order for reconnecting
durable subscribers as follows:

• When set in the connection factory, all durable subscribers created on one of the
connections are created with message ordering enforced:

progress.message.jclient.ConnectionFactory.setDurableMessageOr
der
(boolean durableSubscriberMessageOrder)

• When set in the session, all durable subscribers created on the session use this value,
which overrides the value set in the connection factory:

progress.message.jclient.Session.setDurableMessageOrder

(boolean durableSubscriberMessageOrder)

It is possible to change the message ordering of a durable subscriber each time it connects.
However, once the durable has connected with message ordering disabled, there is no
guarantee how long it will take to restore message order after reconnecting it with message
ordering enabled. It is possible to have messages out of order in this case.

Availability of Clusterwide Durable Subscription
After Reconnecting

This section explains the availability of clusterwide durable subscriptions after a broker
becomes unavailable and then reconnects. If a broker goes down as a result of a software
or hardware failure, all messages that were stored on behalf of durable subscriptions on
that broker become unavailable until the broker is restarted. When a client application
creates a durable subscriber, that client receives the messages from the brokers in the
cluster that are up and running, but cannot receive messages stored on the broker that
went down until it is restarted.

If the broker to which the client is connected goes down and the client reconnects to
another broker in the cluster, it is possible that some messages unacknowledged by the
application in the previous session will remain in-doubt until the broker that went down is
restarted. In this case, if strict durable message order is requested, the client might not be
able to receive a subscriptions’s messages until that broker is restarted.

A client application will be able to publish messages as long it is connected to some broker
in the cluster even if other brokers in the cluster are down.

Figure 60 shows an example of three brokers in a cluster. In this example, broker B
becomes unavailable, then reconnects. Message delivery proceeds differently depending
on whether durable message ordering is enabled, as explained in the following sections.
Aurea Software, Inc. Confidential 316 Copyright © 2013 Aurea, Inc.

Dynamic Routing with Pub/Sub Messaging
Figure 60: Clusterwide Durable Subscription Availability After Failure

Durable Message Ordering Enabled

In Figure 60, broker B is unavailable and the durable subscriber DS moves from broker B
to broker C. In this case durable message ordering is enabled, and as a result delivery of
messages to DS will be delayed until broker A's connection to B is restored. This delay is
due to the following:

• To preserve message order for the DS, messages that were sent to B destined for DS
are stored on B until the connection between B and C is restored.

• Any messages stored on B from publisher P must be delivered to DS (which is now on
C) before new messages from publisher P can be delivered.

Therefore, message delivery cannot continue until broker B comes back online. The
messages stored A on cannot be sent to C until the connection is restored between brokers
A and B and the in-doubt message state between brokers A and C is resolved, or there is
a risk of redelivery. This example shows how, with message ordering enabled, it is possible
for message delivery to be delayed when the broker on which the durable was active has
become unavailable.

Durable Message Ordering Disabled

When strict durable message ordering is not enabled in the example shown in Figure 60,
message delivery is not delayed for the durable subscriber DS. Messages stored on broker
B will not be delivered to DS on C until the connection is restored. Messages in-doubt
between A and B are not delivered until the connection between them is restored and the
doubt is resolved, but new messages from publisher P will be sent to DS on C. Once the
brokers reconnect to B, the skipped messages will be delivered out of order.

Dynamic Routing with Pub/Sub Messaging
Dynamic routing, a concept familiar to network architects, defines the way routers talk to
each other to maintain a list of connected routers. The Sonic Dynamic Routing Architecture
(DRA) is based on the same concepts. Most of the DRA complexity is managed in the
communication layer so programmers have minimal interface with the architecture
implemented by the administrators, in the same way network applications that send an
HTTP request to an IP address have no need to manage the routing of the request.

Broker
A

Broker
C

Broker
B

P

DS

P

= Durable SubscriberDS

= PublisherP

= Failure
Aurea Software, Inc. Confidential 317 Copyright © 2013 Aurea, Inc.

Chapter 9: Publish and Subscribe Messaging
Fundamental to SonicMQ’s reliable and secure message delivery are:

• Authentication in a SonicMQ node security domain

• Authorization on a destination maintained on the node

This static design can result in a high messaging volume on some brokers. While load
balancing and clustering can force clients to try other connections, those solutions can be
time-intensive and the results are a static list of connections instead of a static connection.

The SonicMQ DRA provides remote publishing and subscribing for topic messages. This
feature allows applications to publish messages to remote nodes, and enables subscribers
to receive messages published from remote nodes.

Note: There are two ways to use dynamic routing with Pub/Sub messaging: with global
subscription rules or with remote publishing. For more information on these topics,
see the Aurea SonicMQ Deployment Guide.

Administrative Requirements

In all cases of dynamic routing and remote publishing, an administrator must establish
routing nodes and routing definitions, and must define users with routing ACLs. Remote
subscribing requires the administrator to establish subscription rules for each remote
subscriber.

See the chapters “Configuring Routings” and “Managing SonicMQ Broker Activities” in the
Aurea SonicMQ Configuration and Management Guide for information about how to
perform these administrative tasks.

Application Programming Requirements

To implement remote publishing of topic messages, the application programmer must
publish topic messages with the destination format: routing_node_name::topic_name

Use this syntax only when you want to deliver the message only to the subscribers of a
single remote node. If your application messages are supposed to be delivered according
to the global subscription rules that have been set up administratively, you should use the
syntax topic_name as you normally would.

It is also possible to administratively connect the topic spaces of two nodes so that
messages published to a topic on one node will be delivered to subscribers on the other
node without using a special destination format. This technique is called global
subscriptions.

Global subscriptions where the topic spans two nodes is implemented entirely as an
administrative task. Programmers do not need to be aware that they are sending to, or
receiving from, topics that cross routing nodes.
Aurea Software, Inc. Confidential 318 Copyright © 2013 Aurea, Inc.

Shared Subscriptions
The Aurea SonicMQ Deployment Guide provides examples of how you can implement
dynamic routing or remote publishing in your applications. For detailed information about
the different types of routing that SonicMQ provides, see the following:

• The chapter “Multiple Nodes and Dynamic Routing” in the Aurea SonicMQ
Deployment Guide provides information about dynamic routing for queues in the
point-to-point domain and dynamic routing for topics in the publish and subscribe
domain.

• The chapter “HTTP Direct Acceptors and Routings” in the Aurea SonicMQ
Deployment Guide provides information about HTTP Direct routing.

Message Delivery with Remote Publishing

Message behavior and handling with remote publishing is determined based on how the
destination name was referenced when the application created the destination. For
example, the destination name can be referenced in the following ways:

• destination (non-remote)

• routing_node_name::destination (topic on routing_node_name)

• ::destination (topic on the current node)

Shared Subscriptions
A problem in JMS topic subscriptions is that there are often cases where one application
acting as a topic subscriber cannot process messages as fast as messages are being
published. This leads to a bottleneck, where the subscribing application falls farther and
farther behind.

Three typical JMS solutions are:

• ServerSessionPools — A single application server consumes messages on a single
subscription in parallel. The shortcoming of this architecture is that all subscribers
share one subscription in one JVM (for example, a J2EE AppServer) on one machine,
which might be the bottleneck.

• Forward messages to Queue — A single application consumes messages from the
topic and forwards the messages to a queue. JMS provides a model for shared
MessageConsumers (reading from a queue) running in parallel on multiple machines.
The shortcomings of this approach are:

• The need to guarantee the operation of the forwarding application, which must be
transacted to guarantee delivery

• The extra hops required for the topic/queue forwarding

• Multiple Standard Subscribers — By creating multiple subscribers, each subscriber
gets every message and application logic must either serialize requests against a
common resource such as a persistent storage mechanism, or check with central
controlling program to resolve the duplicates.
Aurea Software, Inc. Confidential 319 Copyright © 2013 Aurea, Inc.

Chapter 9: Publish and Subscribe Messaging
SonicMQ provides a solution to the bottleneck problem by letting you establish groups of
topic subscribers that share subscriptions to allocate the message load between them
such that, while every message is delivered to the group, each message is delivered to
(and consumed by) only one member of the group. These group members can be located
on dispersed computers over diverse JMS connections. The implementation is compatible
with clusters of brokers so that the members of a consumer group can connect to different
brokers in a SonicMQ cluster. Regular subscribers, durable subscribers, and participants
in a shared subscription can be active concurrently on a broker.

Figure 61 shows an example where the clients, including those within a group, might be
connected to different brokers. In this example, the publishers are producing to one topic
and all the subscribers are actively consuming on that topic. Using shared subscriptions
within the two subscriber groups provides the following performance:

• Consumer 1 and Consumer 2 receive every message only once.

• Group 1 and Group 2 receive every message only once. The members of the group
each receive a subset of the complete set of messages.

Figure 61: Illustration of Subscribers Abstracted from Specific Broker Connections

Table 28 shows how messages are received in the shared subscription configuration
shown in Figure 61. In the scenario shown in Table 28, ten sequential messages are sent.
The X’s in the table indicate which subscribers received and acknowledged each message.
In this scenario, Subscriber 6 (a non-durable subscription) does not acknowledge receipt
of Message 6 before it fails, so all subsequent messages for Group 2 are delivered to the
remaining member of that shared subscription group, Subscriber 7.

P P

1 2 3 4 5 6 7

P

= Normal JMS Subscribern

= Subscribers in Shared Subscription Group 1n

n = Subscribers in Shared Subscription Group 2

= PublishersP

= Logical Message Bus (perhaps more than 1 broker)

Table 28: Example of Messages Received Under Load Balancing

Message
Normal Subscribers

Shared Subscription
Group 1

Shared Subscription
Group 2

Sub 1 Sub 2 Sub 3 Sub 4 Sub 5 Sub 6 Sub 7

1 X X X X

2 X X X X

3 X X X X

4 X X X X

5 X X X X
Aurea Software, Inc. Confidential 320 Copyright © 2013 Aurea, Inc.

Shared Subscriptions
If Subscriber 6 were a durable subscription, Message 7 and Message 9 would have been
stored for Subscriber 6 until it reconnected to its duable subscription.

Storage of Messages for Durable Members of a Shared Subscription

SonicMQ creates a common message store for all durable members of a shared
subscription. If all members (durable and non-durable) are inactive, SonicMQ stores
messages in the common store, until one or more members (durable or non-durable)
becomes active. SonicMQ retains the common store until the last durable member
unsubscribes, at which time the store is deleted.

Features of Using Shared Subscriptions in
Your Applications

Implementing shared subscriptions with groups of topic subscribers in your applications
provides you with the following features:

• Shared subscriptions can be used in non-durable, high-throughput/low-latency
applications, providing a solution to the problem of slow applications leading to
flow-control in situations where non-persistent/non-durable subscribers are normally
used.

• Applications using shared subscriptions use the standard JMS API methods.

• When any member of a group is connected, that member will receive new messages.

• Messages are allocated evenly to members of a shared subscription group. However,
clients that are slow to the point of becoming flow-controlled are explicitly skipped in
message allocation. In addition, delivery to local subscribers (connected to the same
broker as the publisher) are favored. When publishers and subscribers are co-located
on one broker, or when the subscriber is on a different broker than the publisher, the
following conditions may apply:

• The order that messages are allocated to group members may vary between
subsequent cycles though the group.

• There is no guarantee that some members might not be allocated messages
more than once in some cycles through the group.

• Fairness is determined as a long-term average, rather than a short-term strict
round-robin. Table 29 shows fair delivery for Group 1 shown in Figure 61.

6 X X X X

Subscriber 6 Fails

7 X X X X

8 X X X X

9 X X X X

10 X X X X

Table 28: Example of Messages Received Under Load Balancing

Message
Normal Subscribers

Shared Subscription
Group 1

Shared Subscription
Group 2
Aurea Software, Inc. Confidential 321 Copyright © 2013 Aurea, Inc.

Chapter 9: Publish and Subscribe Messaging
Usage Scenarios for Shared Subscriptions

The following sections describe cases where implementing shared subscriptions can
improve the performance of your applications.

Fault Resilience

In Figure 62, the goal is to guarantee that a topic subscriber application receives messages
exactly once, and is resilient to both broker and application failures.

In this example, subscribers g1 and g2 are in a shared subscription group. The messages
stream from publishers P1 and P2 are divided between the two of them (with indirect routing
from broker A to brokers B and C). This configuration continues to process messages even
if any of the following components fail:

• Broker B

• Broker C

• Topic subscriber g1

• Topic subscriber g2

The normal JMS subscriber (1) receives all messages.

Table 29: Balanced and Fair Delivery to a Shared Subscription Group

Shared Subscription Group

Message # Subscriber 3 Subscriber 4 Subscriber 5

1 X

2 X

3 X

4 X

5 X

6 X

7 X

8 X

9 X

10 X

11 X

12 X
Aurea Software, Inc. Confidential 322 Copyright © 2013 Aurea, Inc.

Shared Subscriptions
Figure 62: Fault Resistance Across Shared Subscription Topic Subscribers on a Cluster

Note: This configuration is fault resistant rather than fault tolerant because this is not a
message replication scheme. A failure of broker B, for example, might still cause
messages to be trapped or lost on broker B (as group members are non-durable).
Newer messages will be redirected entirely to topic subscriber g2.

Highly-Variable Processing Times

There are situations where a topic subscriber is fast enough to handle the message flow,
but where some individual messages take significant processing. In a normal JMS
application, the processing of messages following such a message must wait.

An example of this is an application where the topic subscriber creates a conversation with
a particular publisher (perhaps to request more information, or to satisfy a business
transaction). This is a common scenario in many financial applications where a request to
buy might involve creating an order, and sending conformation information back to the
sending client.

In the example shown in Figure 63, publishers P1 and P2 are publishing these requests. The
normal subscriber 1 is simply listening to every message and, perhaps, recording it in an
audit log. Shared subscription topic subscribers g1 and g2 are listening for orders.

When P1 sends a request, it may be handled by g1. In this example, this action involves a
long duration conversation back with P1. Without the availability of g2 as a shared
subscription topic subscriber, P2 can not also send a request until g1 finishes. In this
configuration, then, implementing shared subscriptions for the group of subscribers
increases the efficiency of the processing.

Cluster

Broker
A

Broker
C

Broker
BP1

P2

1

g1

g2

P

= Normal JMS Subscribern

= Subscribers in Shared Subscription Group 1gn

= PublishersPn
Aurea Software, Inc. Confidential 323 Copyright © 2013 Aurea, Inc.

Chapter 9: Publish and Subscribe Messaging
Figure 63: Application in a Shared Subscription Group Processes Messages Once at Most

Pure Load-balancing

The throughput in Pub/Sub messaging is effectively limited to a speed of the slowest topic
subscriber. If you want to divide the slowest application across two computers, you can
have two identical topic subscribers acting as a single consumer.

Effectively, the goal is to have a shared subscription group act similarly to a single
subscriber with similar durability and acknowledgement modes. If message selectors are
used in the subscriptions, all the subscribers in the group must use the same message
selector definition so that the end result of the shared effort is consistent and predictable.

Defining Shared Subscription Topic
Subscribers

Use the following syntax to name topic subscribers within a group:

 [[prefixName]]topicName

The validity of group names is done only on pure JMS clients and throws an JMSException
if the group name is invalid.

Once a topic has been created, a subscription can be created on that topic using normal
JMS semantics, with the following additional requirements:

• The following call creates a topic object:

javax.jms.Session.createTopic(String name)

The topic name must meet these requirements:

• If the name starts with [[then it must:

• contain matching closing characters]]

• contain some characters after the closing brackets]]

• The group prefix (between [[and]]) can be any Unicode character string up to
64 characters. The following characters are not allowed in a prefix name:

• $ (as ANY character)

• \ (backslash)

Broker
A

P1

P2

1

g1

g2

P

= Normal JMS Subscribern

= Subscribers in Shared Subscription Group 1gn

= PublishersPn
Aurea Software, Inc. Confidential 324 Copyright © 2013 Aurea, Inc.

Shared Subscriptions
• * (asterisk)

• # (pound)

• . (period)

• :: (double colon)

• [(open bracket)

•] (close bracket)

• | (vertical bar)

• Using [[and :: are invalid in the same topic name (in any order)

• The following methods creates a subscriber on topic T as part of the group (T is defined
as [[prefix]]topic):

Session.createConsumer(Topic T)
Session.createConsumer(Topic T, boolean nolocal, String
selector)

• A group is created when the group name and the topic name are identical.

For examples:

• [[group1]]topic1 and [[group1]]topic3 are distinct shared subscriptions.

• [[group1]]topic1 and [[group2]]topic1 are distinct shared subscriptions.

SonicMQ treats a shared subscription to a MultiTopic as separate from a shared
subscription to an ordinary topic, even if the group name and topic name are the
same. See MultiTopics on page 336 for more information

For examples:

• [[group1]]T1 and [[group1]]MULTITOPIC:T1 are distinct shared
subscriptions.

• [[group1]]MULTITOPIC:T1||T2 and [[group1]]MULTITOPIC:T1||T2||T3
are the same shared subscription.

• Similar to QueueReceivers, the nolocal parameter is ignored for shared
subscription subscribers.

• Access control is based on the destination, without the group name. That is, for
[[prefix]]topic, only the topic part is checked in the authorization policy.

Important: Selector stings must match. Choose to use broker-side selectors.

• The following methods creates a durable subscriber on topic T, as part of the group:

javax.jms.Session.createDurableSubscriber (Topic T, String
subscriptionName);
javax.jms.Session.createDurableSubscriber (Topic T, String
subscriptionName, boolean nolocal, String selector)

• Members of the group are those with:
Aurea Software, Inc. Confidential 325 Copyright © 2013 Aurea, Inc.

Chapter 9: Publish and Subscribe Messaging
• the identical group prefix (case sensitive)

• the identical topic name (case sensitive)

For example, a message published to T.A would be delivered to one member of
each of the following groups:

• [[group]]T.A

• [[grp2]]T.A

• [[group]]T.*

Note: Group [[g]]T.A is not part of [[g]]T.* — Because there is no overlapping
based on wildcards

Group [[G]]T.* is not related to [[g]]t.* — Because group names are
case sensitive

• Selectors must match for all members of a shared subscription.

• Durable subscribers in the same group must follow normal JMS Durable
Subscriber rules. That is, the members of the group must differ in one or more of
the following:

• subscription name

• Client ID

• User Name

• Similar to QueueReceivers, the nolocal parameter is ignored for shared
subscription subscribers.

• You cannot publish to a topic that has a group prefix.

• You should not use a topic that has a group prefix ReplyTo in its name because you
cannot publish to it:

javax.jms.Message.setJMSReplyTo(Topic T)

Message Delivery to a Broker with Shared
Subscriptions

This section describes message delivery in both a single broker and cluster configurations.

Single Broker Behavior with Shared Subscriptions

In Figure 64, a topic has both normal and shared subscription topic subscribers. Two
publishers, P1 and P2, are connected to broker A. There are two normal topic subscribers,
1 and 2, and a group of shared subscription topic subscribers g1, g2, and g3.
Aurea Software, Inc. Confidential 326 Copyright © 2013 Aurea, Inc.

Shared Subscriptions
Figure 64: Shared Subscriptions with a Single Broker

When a message arrives at a broker from a publisher, it must be delivered to:

• Each connected normal subscriber, on whatever broker the subscriber is connected
to.

• Each disconnected normal durable subscriber, on whatever broker the subscriber is
connected to.

• One member of each shared subscription group.

In this example, when broker A receives a message from publisher P1, the broker must
deliver a copy of that message to all normal subscribers whose subscription matches the
message topic and properties.

For each shared subscription group, however, the decision is slightly more complex
because only one group member must receive (and acknowledge) the message. This
behavior calls for the broker to allocate delivery between members of the group, attempting
to deliver the message to a member. If space is not available on one member subscriber,
then the next group member is tried.

Connecting Group Member

When a new subscriber is added to the group, the new member gets the next published
message, not the first un-processed message. Unprocessed messages are not
reallocated. Once a message has been sent to a particular client context, it won’t be
reallocated unless the client fails.

Similarly, adding a new group member breaks a flow control situation. Existing clients that
are flow controlled will continue to be blocked until the subscriber that caused the flow
control situation either processes messages or is closed. However, a new publisher is not
flow controlled because the new publisher is allocated to the new group member.

Selectors and Shared Subscriptions

Members in a shared subscription group must use the same selector.

Broker
A

P1

P2

1

g1

g2 P

= Normal JMS Subscribern

= Subscribers in Shared Subscription Group 1gn

= PublishersPn

g3

2

Aurea Software, Inc. Confidential 327 Copyright © 2013 Aurea, Inc.

Chapter 9: Publish and Subscribe Messaging
Disconnecting Group Member (Non-durable)

When a non-durable member of a shared subscription group is closed, or disconnects, all
messages that have been allocated to the client might be discarded. This means that both
NON_PERSISTENT and PERSISTENT messages can be discarded when the subscription is not
durable.

No attempt is made to reallocate unacknowledged messages that have been allocated or
delivered to the client. In addition, pending messages that have been allocated to a
particular client are lost, even if they have not been delivered to the message listener’s
onMessage() method.

Shared Durable Subscriptions

A shared subscription group uses a common message store for all members of the group.
If there are durable members in the group and no group members are active, SonicMQ
persists messages to the common store until at least one member (durable or non-durable)
becomes active. When a member becomes active, SonicMQ delivers messages from the
common store to the active member. As other members become active, SonicMQ
load-balances message delivery to active members. SonicMQ retains the common store
until the last durable member unsubscribes, at which time it deletes the store.

If a message is load-balanced to a durable member of a shared subscription, and the
durable member closes without acknowledging the message, SonicMQ reallocates the
message to another active member. This behavior means that the order of messages
cannot be guaranteed for shared subscriptions that have durable members.

Cluster Behavior with Shared Subscriptions

SonicMQ supports shared subscriptions in a cluster. In the example shown in Figure 65, a
topic has both normal and shared subscription topic subscribers. Two publishers, P1 and
P2, are connected to separate brokers A and C. Normal subscribers 1 and 2 are also
distributed through the cluster. A group of shared subscription topic subscribers (g1, g2, g3,
and g4) are also connected throughout the cluster.
Aurea Software, Inc. Confidential 328 Copyright © 2013 Aurea, Inc.

Shared Subscriptions
Figure 65: Cluster with Shared Subscriptions

In this example, a message is published by P1 to a topic on broker A. Broker A handles the
message for normal subscribers as follows:

• Delivers the message to local subscribers, in this case, subscriber 1.

• Sends a copy to other brokers with normal subscribers, in this case, subscriber 2 on
broker C.

Broker A must also decide to which group subscriptions the message is targeted. For each
group, the broker must decide whether to handle the message locally, or to push the
message to another broker. To make these decisions, the broker maintains a list of brokers
that have shared subscribers in a group. For each new message, the broker uses this list
to decide whether to handle a message locally, or to forward it to another broker.
Preference is given to local subscribers. If a local subscriber cannot accept a message, that
message is sent to the next subscriber in the cluster.

When a broker receives a message over an interbroker connection with a list of group
subscriptions, the receiving broker takes responsibility for message delivery. The receiving
broker tries to deliver the message to shared subscription local subscribers. If all locally
connected subscribers are closed or are full, the receiving broker must either:

• Discard the message, if no broker is known to have active subscribers

• Forward the message to another broker where subscribers exist

Messages are not forwarded in a loop. At most, message delivery is attempted on every
broker. The last broker always accepts the message at:

• Connected local subscribers (even if flow controlled)

• Disconnected durable subscribers

If no subscribers exist, the message is discarded.

Cluster

Broker
A

Broker
C

Broker
BP1

P2
1

g1

g2
P

= Normal JMS Subscribern

= Subscribers in Shared Subscription Group 1gn

= PublishersPn

2

g3

g4
Aurea Software, Inc. Confidential 329 Copyright © 2013 Aurea, Inc.

Chapter 9: Publish and Subscribe Messaging
Shared Subscriptions and Flow Control

When a broker gives a message to a member of a group subscription, the broker chooses
the member as follows:

1. The broker searches for any local subscribers connected to the broker that are free to
immediately process the message, without causing persistent storage mechanism I/O
or causing a flow control situation. This means that the subscriber’s in-memory buffer
on the broker has plenty of space for the message. If such subscribers are found, the
broker gives the message to the next such subscriber.

2. If the broker cannot find a subscriber in its initial search, the broker checks to see
whether it can give the message to another broker in the same cluster—a broker that
has members for the same group subscription. If so, the broker attempts to give the
message to the other broker, allowing the other broker to complete the process of
choosing a subscriber.

3. If the broker cannot successfully give the message to another broker in the same
cluster, it again searches for local connected subscribers. This time, however, the
broker searches for subscribers that have flow-to-disk functionality enabled. If such
subscribers are found, it gives the message to the next such subscriber. Although this
causes message store I/O, it delivers the message to a connected subscriber.

4. If the broker cannot find subscribers with flow-to-disk enabled, the broker looks for
disconnected durable subscribers. If such subscribers are found, the message is
written to the group’s message store.

5. If the broker cannot find any disconnected durable subscribers, it gives the message
to the next available subscriber, even if it causes a flow-control situation to occur.

Once the broker allocates a message to a particular group member, the subscriber is
expected to consume the message and acknowledge receipt. Otherwise:

• If the subscriber is non-durable, and it closes, unacknowledged messages are lost.

• If the subscriber is durable and it closes, unacknowledged messages are re-allocated
to active (durable or nondurable) group members; if no other group member is active,
the messages are saved to the group’s message store.

• If the subscriber does a rollback() on a transacted session, or if it does a
Session.recover(), messages are redelivered to that same subscriber.

JMS Interactions with Shared Subscriptions

The following sections describe some examples of JMS interactions that can occur with
shared subscriptions.
Aurea Software, Inc. Confidential 330 Copyright © 2013 Aurea, Inc.

Shared Subscriptions
Connection Consumers

The example shown in Figure 66 involves multiple group members, some of which are
connection consumers. In SonicMQ, a non-durable topic connection consumer allows a
J2EE AppServer to have multiple threads on the client side processing messages. The
SonicMQ broker sees this configuration as a single client context shipping messages to a
single socket.

Figure 66: Connection Consumer in an AppServer

While the SonicMQ broker is able to determine that shared subscription group g3 is a
connection consumer, the broker does not determine how much faster that subscriber is
than normal subscribers. If, for example, there are six threads handling messages at g3, a
simple allocation of messages to each context will only give one third of the messages to
that group. You can use connection consumers for shared subscriptions, but there is an
assumption that all the subscriptions are similar in capabilities and configuration.

J2EE AppServer

Broker
A

P1

P2

1

g1

g2
P

= Normal JMS Subscribern

= Subscribers in Shared Subscription Group 1gn

= PublishersPn

g3

2

Aurea Software, Inc. Confidential 331 Copyright © 2013 Aurea, Inc.

Chapter 9: Publish and Subscribe Messaging
In Figure 67, similarly configured connection consumers have comparable session pool
sizes.

Figure 67: Similarly Configured Connection Consumers

Session Recovery

When the recover() method is called on a session, the normal JMS behavior occurs. That
is, message delivery is stopped in the session, then restarted with the oldest
unacknowledged message for that session. The redelivered messages will have their
JMSRedelivered flag set to true—a setting that can be made only by the broker.

No reallocation of messages will occur from one shared subscription topic subscriber to
another.

Transacted Sessions

A transacted session will delay acknowledgement of messages received on it until the
commit() method is called. For non-durable subscriptions, closing or failing the session
will cause those unacknowledged messages to be discarded.

For durable subscriptions, closing or crashing the session will cause the messages
originally delivered to the subscriber to be stored in the persistent storage mechanism.

The behavior of shared subscription topic subscribers is similar to normal subscribers in
failure situations. That is, messages are not acknowledged, and are discarded.

Similarly, if the rollback() method is called on a transacted session, then the normal
SonicMQ behavior is followed. That is, message delivery is restarted with the
unacknowledged messages in the transaction. These messages are redelivered to the
same client session and are not reallocated to different members of the group.

Transacted sessions give no additional protection from message loss for these non-durable
shared subscription topic subscribers. No reallocation of messages will occur from one
load-balanced subscriber to another (except when the subscription is durable).

Broker
A

P1

P2
P

= Normal JMS Subscribern

= Subscribers in Shared Subscription Group 1gn

= PublishersPn

J2EE AppServer

g2

J2EE AppServer

g1
Aurea Software, Inc. Confidential 332 Copyright © 2013 Aurea, Inc.

Shared Subscriptions
Shared Subscriptions with Remote Publishing
and Subscribing

SonicMQ extends the dynamic routing architecture (DRA) to topics by allowing:

• Remote Publishing — Allows a client to publish to a remote node.

• Global Subscriptions — Allows an administrator to define a rule that allows a
subscription on one node to be propagated to another node.

Shared subscriptions are intended to work with both remote publishing and global
subscriptions. For remote publishing, the interaction is minimal. A remote node publishing
(using the syntax “node_name::topic_name”) acts like a local publisher. That is, messages
published on one node directed to a second node should go normally to normal
subscribers, and round-robin to shared subscribers.

See Dynamic Routing with Pub/Sub Messaging on page 317 and the chapter “Multiple
Nodes and Dynamic Routing” in the Aurea SonicMQ Deployment Guide for information
about remote publishing and global subscriptions.

For global subscriptions, there are two points to note:

• Remote subscriptions are only valid for topics without the group prefix. That is, you can
have a rule that propagates T.A, but not [[g]]T.A.

• The subscribing node may have multiple group subscribers, but these act like a single
subscriber when triggering a rule. That is, if two subscribers create subscriptions to
[[g]]T.A, this acts (for global subscription purposes) as a subscription to T.A. Adding
a new member to the group should not fire a new rule. Secondly, the remote
subscription goes away when the last member of the group unsubscribes and closes.

Figure 68 shows an example that illustrates the behavior of remote publishing and global
subscriptions with shared subscriptions. This example includes the two routing nodes
SingleNode and ClusteredNode:

• SingleNode — A single broker routing node containing broker C

• ClusteredNode — A multi-broker routing node containing brokers A and B

Publishers P1 and P2 publish messages on ClusteredNode, and SingleNode contains
shared subscriber groups g and G.
Aurea Software, Inc. Confidential 333 Copyright © 2013 Aurea, Inc.

Chapter 9: Publish and Subscribe Messaging
Figure 68: Clustered Node with Publishers and Single Node with Shared Subscriber Groups

The routing node SingleNode has the following rules and subscribers:

• Rules on SingleNode:

• Topic Pattern T.# -> Propagated to ClusteredNode

• Topic Pattern jms.sample.chat -> Propagated to ClusteredNode

• Subscribers on SingleNode:

• Three subscribers in the shared subscription group g: [[g]]T.A.

• Two subscribers in the shared subscription group G: [[G]]T.

• One non-shared subscriber to ClusteredNode.

The following sections describe the message routing behavior of this configuration for
different scenarios using remote publishing and global subscriptions with shared
subscription groups.

Example of Global Subscriptions

In this example using global subscriptions, a rule has been defined that allows a
subscription sent to a broker on one node, SingleNode, to be propagated to another node,
ClusteredNode (see Figure 68). Messages sent by publishers on broker A are routed as
follows:

• Publishers on broker A publish to ClusteredNode — The message goes to the correct
subscriber on SingleNode.

g1
g2

g3

G1

G2

Node: SingleNode

Broker
C

Cluster

Broker
A

Broker
B

P1

P2

Node: ClusteredNode

GSA Rules on ClusterNode:
None

P

= Subscribers to [[g]] T. A - Shared Subscription Group 1gn

= Subscribers to [[G]] T - Shared Subscription Group 2Gn

= PublishersPn

GSA Rules on SingleNode:
Topic j ms. sampl es. chat Node: Cl ust er edNode
Topi c T. # Node: Cl ust er edNode
Aurea Software, Inc. Confidential 334 Copyright © 2013 Aurea, Inc.

Shared Subscriptions
• Publishers on broker A publish four times to T.A — The messages alternate between
[[g]]T.A subscribers on SingleNode.

Example of Global Subscriptions with a Cluster

This example shows how an existing broker connection (in this case, on broker A) is shared
by another broker (broker B) in the same cluster when publishing (see Figure 68).
Messages sent by publishers on broker B do the following:

• Publishers on broker B publish to ClusteredNode — The message goes to the correct
subscriber on SingleNode.

• Publishers on broker B publish four times to T.A — The messages alternate between
[[g]]T.A subscribers on SingleNode.

Example Without Global Subscriptions

If there were no global subscriptions in the configuration shown in Figure 68, the messages
sent by publishers on ClusteredNode would be handled as follows:

• Publish four times to T — The messages go nowhere on SingleNode.

Example of Global Subscription Maintenance

This example shows how global subscriptions are maintained when individual subscribers
on a node become unavailable. This example refers to the configuration shown in
Figure 68:

• Stop one [[g]]T.A subscriber on SingleNode and publish four times to T.A — The
messages alternate between the remaining two [[g]]T.A subscribers on SingleNode.

• Stop another [[g]]T.A subscriber on SingleNode and publish four times to T.A — The
messages go to the last remaining [[g]]T.A subscribers on SingleNode.

• Stop the last [[g]]T.A subscriber on SingleNode and publish four times to T.A — the
messages are not sent to SingleNode.
Aurea Software, Inc. Confidential 335 Copyright © 2013 Aurea, Inc.

Chapter 9: Publish and Subscribe Messaging
Example of Remote Publishing

This example describes how remote publishing allows a client to publish to a remote node,
in this example, SingleNode, as shown in Figure 68. Messages sent by publishers on
broker A are routed as follows:

• Publishers on broker A publish four times to SingleNode::T.A — The messages
alternate between [[g]]T.A subscribers on SingleNode.

• Publishers on broker A publish two times to SingleNode::T — The messages alternate
between [[G]]T subscribers on SingleNode.

Example of Remote Publishing with a Cluster

This example shows how an existing broker connection (in this case, on broker A) is shared
by another broker (broker B) in the same cluster when publishing (see Figure 68).
Messages sent by publishers on broker B do the following:

• Publishers on broker B publish four times to SingleNode::T.A — The messages
alternate between [[g]]T.A subscribers on SingleNode.

• Publishers on broker B publish two times to SingleNode::T — The messages alternate
between [[G]]T subscribers on SingleNode.

MultiTopics
A MultiTopic combines multiple underlying component topics into a single destination. A
message producer can use a MultiTopic to publish a message to multiple topics in a single
operation (which is significantly faster than publishing to multiple topics individually). A
message consumer can also use a MultiTopic to subscribe to multiple topics in a single
subscription. (Alternatively, a message consumer can accomplish this via hierarchical
namespaces and template characters. However, MultiTopics differ from hierarchical
namespaces in how they define a set of topics for subscription. See Chapter 13,
Hierarchical Name Spaces on page 411)

MultiTopic publishing and MultiTopic subscribing are separate features. A message
producer can publish to a MultiTopic even if no message consumer subscribes to the
MultiTopic (although different message consumers can subscribe to different component
topics within the MultiTopic). Similarly, a message consumer can subscribe to a MultiTopic
even if no message producer publishes to it (although different message producers might
publish to different component topics within the MultiTopic).

When a message producer publishes a message to a MultiTopic, the message is received
by any message consumer subscribed to any of the underlying component topics. When a
message consumer subscribes to a MultiTopic, the consumer receives messages
published to any of its component topics.
Aurea Software, Inc. Confidential 336 Copyright © 2013 Aurea, Inc.

MultiTopics
Format of a MultiTopic String

A MultiTopic, like a standard topic, has a string representation. The format of this string is
described below. MultiTopic strings are designed strictly for read-only purposes. Do not try
to parse and manipulate MultiTopic strings.

MultiTopic String Format

The javax.jms.Topic interface defines a getTopicName() method, which returns a string.
This interface is extended by the progess.message.jclient.MultiTopic interface, which
overrides the getTopicName() method, returning a string with the following format:

MULTITOPIC:topicName_1[||topicName_2||topicName_N...]

where each topicName (topicName_1, topicName_2, and topicName_N) is a standard topic
name.

Examples of MultiTopic Strings

The following examples are all valid MultiTopic strings:

• MULTITOPIC:TopicA||TopicB||TopicC — A MultiTopic with component topics TopicA,
TopicB, and TopicC.

• MULTITOPIC:TopicC||TopicA||TopicB — A MultiTopic whose component topics are
the same as the previous example but in a different order. This MultiTopic is
functionally equivalent to the previous example; the ordering of component topics is
immaterial.

• NODEA::MULTITOPIC:TopicA||TopicB||TopicC — A MultiTopic routed to NODEA. This
MultiTopic can be used only for publishing (not subscribing).

• [[group1]]MULTITOPIC:TopicA||TopicB||TopicC — A MultiTopic where each
component topic is part of a shared subscription (group1). This MultiTopic can be used
only for subscribing (not publishing).

• MULTITOPIC:TopicA — A MultiTopic that results in receipt of the same messages that
a subscription to TopicA would receive.

Note: See Shared Subscriptions on page 342 for more information on the intersection of
the syntaxes for shared subscriptions and multitopics.

Creating MultiTopics

When you create a MultiTopic object, it is initially empty and has no component topics.
There are two ways to create a MultiTopic object, using a Session object or a
DestinationFactory object.
Aurea Software, Inc. Confidential 337 Copyright © 2013 Aurea, Inc.

Chapter 9: Publish and Subscribe Messaging
Using a Session Object to Create a MultiTopic

You can use a progress.message.jclient.Session object to create an empty MultiTopic
object. The following code snippet, from the MultiTopicChat sample, shows how to do this:

//Create an empty MultiTopic from the subscriber session.
progress.message.jclient.MultiTopic multiTopic =

((progress.message.jclient.Session)subSession).createMultiTopic();

Using a DestinationFactory Object to Create a
MultiTopic

If you are writing an application that needs to create a MultiTopic but does not have access
to a Session object, you can use a progress.message.jclient.DestinationFactory to
create the MultiTopic. The DestinationFactory interface defines a createMultiTopic()
method that creates an empty MultiTopic object. The following code snippet, from the
MultiTopicChat sample, shows how this is done:

//Create an empty multitopic using the SonicMQ DestinationFactory:
progress.message.jclient.MultiTopic ret =

progress.message.jclient.DestinationFactory.createMultiTopic();

Adding Component Topics to a MultiTopic

After you create an empty MultiTopic object (using either a Session or
DestinationFactory), you can use the MultiTopic.add(Destination dest) method to
add component topics. When you call this method, the type of Destination objects have
the following constraints:

• You cannot add a Queue.

• You cannot add a topic with a different node name than existing topics.

• You cannot add a topic with a different shared subscription name than an existing
topic.

• You cannot add both a node prefix (used for publishing) and a shared subscription
name (used for subscribing) to the definition of a destination.

You can add a MultiTopic to a MultiTopic; this is equivalent to adding each component topic
individually.

You can add a TemporaryTopic to a MultiTopic. However, you cannot create a durable
subscriber on a MultiTopic that contains one or more temporary topics. If a temporary topic
is deleted, a subsequent attempt to publish using a MultiTopic that contains the deleted
temporary topic fails immediately with an InvalidDestinationException. When a
MultiTopic is saved to an object store, its component temporary topics are not serialized.
Aurea Software, Inc. Confidential 338 Copyright © 2013 Aurea, Inc.

MultiTopics
Publishing and Subscribing to MultiTopics

You publish to a MultiTopic in much the same way as you publish to an ordinary topic; and
you can subscribe to a MultiTopic in much the same way as you subscribe to an ordinary
topic. However, there are several issues to consider regarding MultiTopic publishing and
subscribing, described in the following sections.

Splitting MultiTopic Delivery

With MultiTopic publishing, a message producer can publish a message to multiple
component topics, which means that a single message consumer can receive the same
message multiple times. This can occur if the message consumer subscribes to all or some
of the MultiTopic’s component topics, either by subscribing to another MultiTopic (whose
component topics overlap those of the message producer’s MultiTopic) or by subscribing
to a set of topics in a hierarchical namespace (whose topics overlap those of the message
producer’s MultiTopic).

For example, a message producer can publish a message to the following MultiTopic:

MULTITOPIC:foo.a||foo.b||foo.c

In this situation, there are two different ways that a message consumer can receive multiple
copies of the message: the message consumer can subcribe to a MultiTopic with
overlapping component topics (for example, MULTITOPIC:foo.a||foo.c); or the message
consumer can subscribe to a set of topics in a hierarchical namespace (for example,
foo.*).

A message consumer in this situation can control whether to receive multiple copies or a
single copy of the message. The message consumer controls this by calling the
setSplitMultiTopicDelivery(boolean value) method on either a Session or on a
ConnectionFactory. When called on a Session, it affects only that session. When called
on a ConnectionFactory, it affects all sessions created from the ConnectionFactory.

By default, the value of SplitMultiTopicDelivery is false. A MultiTopic subscriber
receives only one copy of a message from a MultiTopic publish, even when it is deliverable
through several topics that match topics in the publisher's list. In this message, the value of
the JMSDestination header is a MultiTopic. This MultiTopic includes any component topics
overlapping those of the message producer’s MultiTopic. For example, if the message
producer publishes to MULTITOPIC:foo.a||foo.b||foo.c, and the message consumer
subscribes to foo.*, the value of the JMSDestination header is
MULTITOPIC:foo.a||foo.b||foo.c. If the message consumer subscribes to
MULTITOPIC:foo.a||foo.c, the value of the JMSDestination header is
MULTITOPIC:foo.a||foo.c.
Aurea Software, Inc. Confidential 339 Copyright © 2013 Aurea, Inc.

Chapter 9: Publish and Subscribe Messaging
When the split delivery value is set to true, new subscribers take delivery of one copy of a
message MultiTopic published for each topic in its MultiTopic list that match topics in the
publisher's list. In each message, the value of the JMSDestination header is the
component topic where the message was published.

Important: Set the split delivery option before creating subscribers. Once subscribers are
created, changes to this setting are not applied.

Remote Publishing

A message producer can publish a message destined for multiple topics on a remote node
via one method call. However, a message producer cannot publish a message to more than
one node using a single MultiTopic.

If a message producer publishes to a remote node using a MultiTopic, and an ACL check
on the remote node fails for a component topic, the message is not published to that
component topic. However, the message is published to any component topic that passes
an ACL check. For example, if the message producer on NodeA publishes a message to
NodeB::MULTITOPIC:topic1||topic2||topic3, and ACL check fails on topic2, the
message is published only to topic1 and topic3.

For more information about remote publishing, see the “Multiple Nodes and Dynamic
Routing” chapter in the Aurea SonicMQ Deployment Guide.

Global Subscriptions

A subscription created in a publishing node on behalf of a subscribing node is referred to
as a global subscription. The subscribing node requests creation of a global subscription
when a local subscriber connects to the subscribing node.

For more information about global subscriptions, see the “Multiple Nodes and Dynamic
Routing” chapter in the Aurea SonicMQ Deployment Guide.

Global subscription rules on a subscribing node can specify topics for which global
subscriptions on the publishing node are created. These global subscriptions allow the
subscribing node to effectively subscribe to the publishing node and deliver to its own
subscribers the messages it receives from the publishing node.

Important: A global subscription rule cannot use a MultiTopic in its definition.

When a message consumer subscribes to a MultiTopic on a subscribing node, the
subscribing node checks each of the MultiTopic’s component topics against the subscribing
node’s global subscription rules. If an appropriate global subscription rule is in place, a
global subscription is created on the publishing node and the subscribing node receives
messages from the publishing node for that destination. However, the subscribing node
receives messages only for topics that pass ACL checks on the publishing node. If some
topics fail ACL checks at the publishing node, it does not result in the failure of all topics.
Aurea Software, Inc. Confidential 340 Copyright © 2013 Aurea, Inc.

MultiTopics
MultiTopics and Access Control Lists (ACLs)

You cannot define ACLs for a MultiTopic; you define ACLs for the underlying component
topics.

If a message producer publishes a message to a MultiTopic on its local node, the publish
operation fails entirely if an ACL check fails for any component topic. The message is not
published to component topics that pass the ACL check.

If a message consumer subscribes to a MultTopic on its local node, the subscription fails
entirely if an ACL check fails for any component topic. Messages are not received on
component topics that pass the ACL check.

If an ACL is changed that denies subscribe permission on a component topic for an existing
MultiTopic subscription, the subscriber no longer receives messages on that topic.

MultiTopic Considerations

When you use MultiTopics, there are several issues to consider, described in the following
sections.

JMSReplyTo

You cannot specify a MultiTopic as the destination value for JMSReplyTo. An attempt to do
so will throw a JMSException.

QoP and Per Message Encryption

The Quality of Protection (QoP) of a message is determined by choosing the highest level
of protection for any component destination. If per message encryption is enabled for the
message, it overrides any broker-defined value.

You cannot define QoP on a MultiTopic. QoP is defined for each component topic.

QoP Cache Size

A cache on each client connection to a broker buffers the QoP setting communicated from
the broker when a message has been sent to a destination. When you use MultiTopics, a
large list might keep this cache in a constant state of renewal for QoP settings.

You can modify the cache size after you create a connection to better handle the expected
number of topics. See Setting QoP Cache Size on page 148 for information on setting this
parameter.
Aurea Software, Inc. Confidential 341 Copyright © 2013 Aurea, Inc.

Chapter 9: Publish and Subscribe Messaging
Durable Subscriptions

Changing the split delivery value on a subsequent reconnect will not result in the
subscription being unsubscribed.

A DurableSubscriber that is subscribed on a MultiTopic can reconnect with a different set
of topics as long as the new MultiTopic has at least one topic in common with the previous
subscription. In this case messages stored on behalf will not be deleted. Instead they will
be filtered as they are delivered to remove any Topics that no longer match the
subscription. Note that the criteria for having one topic in common is that the topics exactly
match. For example a change from MultiTopic:Topic.1||Topic.2 to
MultiTopic:topic.* would result in an unsubscribe while a change from
MultiTopic:topic.1||topic.2 to MultiTopic:topic.1||topic.3 would not.

Switching a DurableSubscriber from a MultiTopic to a single topic subscription will result in
the durable being unsubscribed. Correspondingly, switching a DurableSubscriber from a
single topic subscription to a multitopic subscription will result in the durable being
unsubscribed.

Shared Subscriptions

A message consumer can be a member of a shared subscription to a MultiTopic, provided
all component topics are part of the same shared subscription.

The following MultiTopic string indicates a shared subscription:

[[group1]]MULTITOPIC:topic1||topic2

When a subscriber defines a single topic as a MultiTopic destination, a subscriber that does
not use MultiTopic syntax would receive the same messages. However, the two syntaxes
cannot define the same shared subscription. For example, [[group1]]topic1 and
[[group1]]MULTITOPIC:topic1 are not equivalent, and therefore not a shared subscription
for the two subscribers.

Note: It is not valid to imbed a [[group]]prefix in a MultiTopic definition.
The following is not valid a string for a shared multitopic subscription:

[[group1]]MULTITOPIC:[[group1]]topic1

A MultiTopic subscription group is defined by the set of intersecting topics for any group
prefix. For example, consider two message consumers, each subscribed to one of the
following MultiTopics:

[[group1]]MULTITOPIC:topic1||topic2
[[group1]]MULTITOPIC:topic1||topic3
Aurea Software, Inc. Confidential 342 Copyright © 2013 Aurea, Inc.

MultiTopics
Because the group prefix is the same, both subscriptions are considered part of the same
shared subscription, but only on their intersecting topic topic1. Messages that would be
delivered to topic2 and topic3 subscribers are discarded. When a message consumer
subscribes with a smaller set of topics, the shared subscription is reduced.

Note: It is a good practice for all group members to use the same MultiTopic, perhaps
maintained and accessed as an adminstered Destination object.

Non multi-topic group subscriptions are load balanced separately from MultiTopic
subscriptions.

Note: See the chapter “Managing SonicMQ Broker Activities” in the Aurea SonicMQ
Configuration and Management Guide for information about viewing disconnected
shared durable subscriptions to multitopics.

HTTP Direct

You can specify a MultiTopic for HTTP Direct inbound. The MultiTopic format is recognized
and handled for inbound JMS over HTTP requests. If reply to is specified as a MultiTopic
an errorcode is returned.

Basic and SOAP

One way HTTP PUTS support the ability to configure the destination as a MultiTopic.

Content-reply and outbound HTTP do not allow MultiTopic destinations.

Flow Control

Multi-publishes are subject to normal pub/sub flow control. If any prior publish causes the
publisher to flow control, a publish operation may block until there is room on the publisher's
output queue. It will be up to the Administrator to determine which slow subscribers are
problematic by use of the pubpause notification. If the subscriber has a Multi-subscription
all subjects from that subscription will be listed in the notification.

Since messages that are routed to other brokers are placed in the routing queue, it is
possible that the routing queue will fill up. If this happens the application will be flow
controlled on all component topics until space becomes available on the routing queue.
Aurea Software, Inc. Confidential 343 Copyright © 2013 Aurea, Inc.

Chapter 9: Publish and Subscribe Messaging
Aurea Software, Inc. Confidential 344 Copyright © 2013 Aurea, Inc.

10
Guaranteeing Messages

This chapter provides information about preventing duplicate messages and guaranteeing
message delivery. The first part of this chapter explains how you can detect duplicate
messages and prevent messages from being delivered more than once. The second part
of the chapter provides information about how you can use the SonicMQ Dead Message
Queue (DMQ) features to guarantee that messages will not be discarded until a client has
processed them. The chapter contains the following sections:

• Introduction on page 345

• Duplicate Message Detection Overview on page 346

• Dead Message Queue Overview on page 347

• Handling Undelivered Messages on page 353

• Specifying a Destination for Undelivered Messages on page 356

• Undelivered Message Reason Codes on page 363

Introduction
SonicMQ can guarantee message delivery when the broker system to which a client
connects can be certain that:

• Messages are not duplicates of ones already delivered.

• Messages that are undeliverable can be channeled into a holding area for
administrative handling.
Aurea Software, Inc. Confidential 345 Copyright © 2013 Aurea, Inc.

Chapter 10: Guaranteeing Messages
Duplicate Message Detection Overview
In some applications, it is critical that multiple messages with identical content not be sent.
When a message has been successfully enqueued on a SonicMQ message broker, there
is no possibility that it will be duplicated. The duplicate message detection feature handles
problems that might arise at the JMS client or application level:

• If there is a connection or network failure between the JMS client and the message
broker, the application might commit the send of a message, but the acknowledgment
of the commit might be lost due to network failure. The client would never know that
the message had been sent.

• The application might fail after the commit has occurred. Even though the message
has been sent and committed at the SonicMQ level, the application would have no
persistent record of this and might try to resend the message when it is restarted.
Using XA connections (and a transaction manager) can also alleviate this situation.

• If the application is not properly designed for concurrent operation, two instances or
threads in the application might try to send the same or similar message.

SonicMQ Extensions to Prevent Duplicate
Messages

SonicMQ extends the JMS concept of a transacted session to allow a commit to take an
optional index parameter and possibly a lifespan parameter as follows:

Session.commit(transactionID, lifespan)

where:

• transactionID is a universally unique identifier generated by the application that is
guaranteed to be unique

• lifespan is the duration for which the transactionID is intended to be saved (in
milliseconds)

The indexed commit operation is supported on SonicMQ transacted queue sessions and
topic sessions. It functions as shown in Table 30.

Note: The same duplicate detection transactionID table is used for JMS-for-HTTP (with
HTTP Direct) and for large message support.

Table 30: Session.commit Behavior

Condition Action

transactionID exists Throws an exception.

transactionID does not
exist

Store a new value of transactionID and continue with
normal Session.commit() behavior.
Aurea Software, Inc. Confidential 346 Copyright © 2013 Aurea, Inc.

Dead Message Queue Overview
Support for Detecting Duplicate Messages

The SonicMQ message broker stores the index for the duplicate detection in a persistent
storage mechanism. The mechanism is always created when the storage is initialized. The
mechanism name is created from the BrokerName by default, but you can also explicitly
specify this name if you choose.

Message brokers in a cluster can share one persistent storage mechanism. Different
brokers in a cluster can point to the same persistent storage mechanism by assigning them
the same value of IndexedTxnTableName. You can set this value in the Sonic Management
Console in the Broker/Properties/Storage dialog box in the Table Name field. See the
Aurea SonicMQ Configuration and Management Guide for information about setting broker
properties in the Management Console.

Note that every indexed commit requires a persistent storage mechanism action, so
sessions using duplicate message properties will be significantly slower than other
sessions. These persistent storage mechanism actions are sequentially committed, so if
two JMS clients use the same ID at the same time, only one will be successful. There is no
window where the two clients will both succeed.

Dead Message Queue Overview
Messages that expire or are viewed by SonicMQ as undeliverable are called dead
messages. One type of dead message you encounter are those that expire. Other types of
dead messages can occur in multi-node deployments, which are discussed in the Aurea
SonicMQ Deployment Guide in the chapter “Multiple Nodes and Dynamic Routing.”

SonicMQ provides the Dead Message Queue (DMQ) to help you handle dead messages.
Both topic and queue messages can be sent to the DMQ. In PTP messaging, undeliverable
and expired queue messages go to the DMQ, while in Pub/Sub messaging only
undeliverable topic messages go to the DMQ. Also, in some cases where HTTP Direct
messaging is used, messages might go to the DMQ. Your applications can either request
to receive notifications of undeliverable or expired messages, or include methods to handle
these messages on the DMQ.

When you implement the SonicMQ dead message features and the SonicMQ broker finds
messages that have exceeded their time to live (TTL) and should expire, or that cannot be
routed due to some external network error, the broker saves the message in a dead
message queue (DMQ) and/or generates an administrative notification (management
event)

At an application level, you can listen for the administrative notifications, browse the DMQ,
and deal with undelivered messages as appropriate. The following sections explain how
you can adapt your applications to handle dead messages.

Note: Messages sent with a NON_PERSISTENT delivery mode are subject to a lower quality
of service than PERSISTENT messages. NON_PERSISTENT messages in the DMQ are
not retained after a planned or unplanned shutdown of the broker. These
messages must be processed in the same broker session in which they occur,
otherwise they will be discarded.
Aurea Software, Inc. Confidential 347 Copyright © 2013 Aurea, Inc.

Chapter 10: Guaranteeing Messages
When a network failure occurs while both brokers are still running, messages sent
with a NON_PERSISTENT delivery mode can be lost. If one routing node sends a
NON_PERSISTENT message to another node and the network fails, additional
messages will be blocked at the originating broker pending a reestablishment of
the connection. However, an indoubt message sent with a NON_PERSISTENT
delivery mode might be lost.

Topic messages published with a DISCARDABLE delivery mode that are
undeliverable are not saved in the DMQ, and do not generate notifications.
DISCARDABLE topic messages are lost when undeliverable, even if the
JMS_SonicMQ_preserveUndelivered property is set to true.

What Is an Undeliverable Message?

In the case of broker-to-broker routing across routing nodes, there are cases where
messages are considered undeliverable. (See Dynamic Routing with PTP Messaging on
page 302, Dynamic Routing with Pub/Sub Messaging on page 317, and the chapter
“Multiple Nodes and Dynamic Routing” in the Aurea SonicMQ Deployment Guide for
information about aurea Sonic’s Dynamic Routing Architecture.) These cases include the
following types of messages:

• Unroutable messages — Queue or topic messages that arrive at a routing queue
where the information on the routing is missing or incomplete.

• Indoubt messages — Queue or topic messages that have been forwarded to another
routing node, but where the handshaking needed to ensure once-and-only-once
delivery of messages has been interrupted due to network or hardware failure and
cannot be re-established within the configurable RoutingIndoubtTimeout.

• Expired messages — Queue messages that do not aurea during routing for a
configured period of time, specified by the time to live on the message or routing
timeout.

• Undelivered messages — Queue messages that have exceeded their delivery limit.

There are other reasons why a message might not be delivered, including timeouts and
network failures. See the chapter “Multiple Nodes and Dynamic Routing” in the Aurea
SonicMQ Deployment Guide for descriptions of various scenarios under which messages
are not delivered. See Undelivered Message Reason Codes on page 363 for reason codes
and descriptions of errors indicating undelivered messages.

Messages that do not make forward aurea during routing for a configured period of time are
transferred to the DMQ. This period of time is specified by the TTL parameter of the send
method.

Using the Dead Message Queue

In SonicMQ if your application specifies the DMQ option for each message, then all expired
or undeliverable messages are sent to the DMQ, named SonicMQ.deadMessage. The DMQ
is treated exactly like a normal queue in that it can be browsed or read using normal JMS
objects (QueueBrowser and QueueReceiver). The only special handling feature of these
queues is that messages are not allowed to expire from them.
Aurea Software, Inc. Confidential 348 Copyright © 2013 Aurea, Inc.

Dead Message Queue Overview
The DMQ is created and populated by SonicMQ, and has the following properties:

• Is created automatically by SonicMQ (all running SonicMQ brokers have an active
DMQ)

• Is always named: SonicMQ.deadMessage

• Is a simple queue (neither clustered nor global)

• Cannot be deleted

As with other queues, messages that have a JMSDeliveryMode of NON_PERSISTENT are not
available in the DMQ after a system shutdown (either planned or unplanned). Topic
messages that have a JMSDeliveryMode of DISCARDABLE are not saved to the DMQ.

Guaranteeing Delivery

When you use the DMQ, any expired or undeliverable message is guaranteed to be
preserved on the broker. To ensure that expired or undeliverable messages are preserved,
you must configure your application to:

• Request that expired or undelivered messages be preserved

• Monitor the DMQs

• Handle all messages that arrive in the DMQ

Enabling Dead Message Queue Features

You enable the DMQ features only on a message-by-message basis. You must specifically
request enqueuing and notifications of administrative events, or the DMQ is not used.
Enabling the DMQ in this way prevents the DMQ from accidentally filling up and shutting
down the broker.

See JMS_SonicMQ Message Properties Used for DMQ on page 351 for information about
the message properties that request enqueuing on the DMQ.

Monitoring Dead Message Queues

It is very important that your application monitor the DMQs and deal with messages that
arrive there. When any of these system queues exceeds its maximum queue size, the
broker is shut down.
Aurea Software, Inc. Confidential 349 Copyright © 2013 Aurea, Inc.

Chapter 10: Guaranteeing Messages
The SonicMQ broker will shut down if the DMQ exceeds its configured capacity. Prior to
shutting down the broker, however, the DMQ will raise an administrative event when it
exceeds a fraction of its maximum size. This notification factor is set by default to 85%. You
can reset this value in the broker’s Properties dialog box using the Sonic Management
Console. See the “Configuring Queues” chapter in the Aurea SonicMQ Configuration and
Management Guide for information about resetting this value.

Warning: Applications should not directly add messages to the DMQ by creating
QueueSenders. Recommended access to the DMQ is through QueueBrowsers
and QueueReceivers.

Note: Queue messages that are enqueued in the DMQ retain their original
JMSDestination and JMSExpiration values. The destination value of a topic
message on the DMQ changes to include the node name to which it was routed.
For example, the destination might be changed from “MyTopic” to
“NodeA::MyTopic” to reflect the node to which the message was undeliverable.

Ensure that QueueBrowsers and QueueReceivers on the DMQ check the
(javax.jms.Message) m.getJMSDestination() for the original topic or queue.

Default DMQ Properties

By default, SonicMQ creates the DMQ with the properties listed in Table 31.

The settings for save threshold and maximum queue size are highly specific to an
application. Therefore, you should change these from their default settings to values
appropriate to your application.

The administrator can modify all the parameters of the SonicMQ.deadMessage queue,
except the Name and Global setting, using the Management Console. See the “Configuring
Queues” chapter in the Aurea SonicMQ Configuration and Management Guide for
information about modifying the DMQ parameters.

The administrator can also modify Access Control for the DMQ through the parameter
security settings. See the “Configuring Queues” chapter in the Aurea SonicMQ
Configuration and Management Guide for information about administrative modifications to
Access Control for the DMQ.

Table 31: Dead Message Queue Properties

Property Value Editable

Name SonicMQ.deadMessa
ge

No

Global false No

Exclusive false Yes

Save Threshold 1,536 K Yes

Maximum Queue
Size

16,384 K Yes
Aurea Software, Inc. Confidential 350 Copyright © 2013 Aurea, Inc.

Dead Message Queue Overview
JMS_SonicMQ Message Properties Used for
DMQ

The message properties associated with messages declared undeliverable and possibly
moving to the DMQ are the following:

• JMS_SonicMQ_preserveUndelivered

Set this boolean property to true for every message that should be transferred to the
SonicMQ.deadMessage queue when noted as being undeliverable. (Ignored for
DISCARDABLE topic messages.) See Setting the Message Property to Preserve If
Undelivered on page 352.

Note: If a routing user does not have permissions to write to the DMQ, messages arriving
from this routing node will be dropped regardless of their
JMS_SonicMQ_preserveUndelivered property (the messages will not go to the
DMQ).

• JMS_SonicMQ_notifyUndelivered

Set this boolean property to true for every message that should raise an administration
notification when noted as being undeliverable. (Ignored for DISCARDABLE topic
messages.)

• JMS_SonicMQ_undeliveredReasonCode

Read this int property to determine why SonicMQ declared this message as
undeliverable. The broker sets this property when messages are moved to a dead
message queue.

• JMS_SonicMQ_undeliveredTimestamp

Read this long property to determine when SonicMQ declared this message as
undeliverable. The broker sets this property when messages are moved to a dead
message queue.

These property names are available as standard constants in
progress.message.jclient.Constants. Table 32 provides the values for these constants.

Table 32: JMS SonicMQ Properties

JMS SonicMQ Constants String Value

NOTIFY_UNDELIVERED “JMS_SonicMQ_notifyUndelivered”

PRESERVE_UNDELIVERED “JMS_SonicMQ_preserveUndelivered”

UNDELIVERED_REASON_CODE “JMS_SonicMQ_undeliveredReasonCode
”

UNDELIVERED_TIMESTAMP “JMS_SonicMQ_undeliveredTimestamp”
Aurea Software, Inc. Confidential 351 Copyright © 2013 Aurea, Inc.

Chapter 10: Guaranteeing Messages
Setting the Message Property to Preserve If
Undelivered

To save undeliverable messages in the DMQ, a sender must set the message property
JMS_SonicMQ_preserveUndelivered to true, as follows:

// Static setup
private static String Q_NAME = <Various>

// Set the msg to be preserved in the Dead Message Queue.
msg.setBooleanProperty(“JMS_SonicMQ_preserveUndelivered”, true);

// Create a Queue and send the message to this queue.
javax.jms.Queue theQueue = session.createQueue(Q_NAME);
javax.jms.MessageProducer sender = session.createProducer(null);
sender.send (theQueue, msg);

Figure 69 shows a message received on a global queue on the remote broker with the
property that retains the message in the DMQ set to true. Notice that the message identifier
at the top of the right panel indicates the global routing taken by this message.

Figure 69: Dynamically Routed Message That Requested to be Preserved
Aurea Software, Inc. Confidential 352 Copyright © 2013 Aurea, Inc.

Handling Undelivered Messages
Handling Undelivered Messages
The following sequence of events describes the process SonicMQ uses to handle
undeliverable messages:

1. A condition occurs where the broker determines the message is not deliverable.

(See “Undelivered Message Reason Codes” on page 363 for possible causes.)

2. The message is passed to a special processing object in the SonicMQ broker.

That object examines the message header.

3. The special processing object determines whether to preserve the message in the
DMQ (unless the message is a DISCARDABLE topic message). The message is checked
for the boolean property:

JMS_SonicMQ_preserveUndelivered

If this property is true, then the message is transferred to the SonicMQ.deadMessage
queue with the following properties:

JMS_SonicMQ_undeliveredReasonCode = reason_code [int]
JMS_SonicMQ_undeliveredTimestamp = GMT_timestamp [long]

See Undelivered Message Reason Codes on page 363 for a description of
reason_code.

4. The special processing object determines whether to send a notification that the
message has been sent to the DMQ or that the message is a queue message that has
expired (expired topic messages are not sent to the DMQ).

The message is checked for the boolean property:

JMS_SonicMQ_notifyUndelivered

If this property is true, an administration notification is sent with the following
information:

• Reason code

• MessageID (of the original message)

• Destination (of the original message)

• Timestamp (of when the message underwent dead-message handling)

• Name of broker (where message originated)

• Preserved boolean (true, if the message was saved to the DMQ)
Aurea Software, Inc. Confidential 353 Copyright © 2013 Aurea, Inc.

Chapter 10: Guaranteeing Messages
Sample Scenarios in Handling Dead Messages

The following sections describe typical scenarios in handling dead messages:

• Preserving Expired Messages and Throwing an Admin Notice on page 354

• Using High Priority and Throwing an Admin Notice on page 354

Preserving Expired Messages and Throwing an
Admin Notice

Typically, important messages are sent PERSISTENT and are flagged both to be preserved
on expiration and to throw an administration notification. Preserving Expired Messages on
page 354 shows how this might be done.

Preserving Expired Messages

// Create a TextMessage for the payload. Make sure the message
// is delivered within 2 hours (7,200,000 milliseconds).
// If expires, send a notification and save the message.
javax.jms.TextMessage msg = session.createTextMessage();
msg.setText(“This is a test of notification and DMQ”);
//
// Set 'undelivered' behavior. Optionally, we could have used the
// property names defined as static final Strings in
// progress.messages.jclient.Constants.
msg.setBooleanProperty("JMS_SonicMQ_preserveUndelivered", true);
msg.setBooleanProperty("JMS_SonicMQ_notifyUndelivered", true);

// Send the message with PERSISTENT, TimeToLive values.
qsender.send(msg,
 javax.jms.DeliveryMode.PERSISTENT,
 javax.jms.Message.DEFAULT_PRIORITY,
 7200000);

Using High Priority and Throwing an Admin Notice

Using High Priority on page 354 shows how a small message can be sent using high
priority, with the expectation that the message will be delivered in ten minutes. In this
example, only notification events are generated.

Using High Priority

// Create a TextMessage for the payload. Make sure the message
// is delivered within 10 minutes (600,000 milliseconds).
// If expires, send a notification.
javax.jms.TextMessage msg = session.createTextMessage();
msg.setText(“Test of undelivered events”);

// Set 'undelivered' behavior. Optionally, we could have used the
// property names defined as static final Strings in
// progress.messages.jclient.Constants.
msg.setBooleanProperty("JMS_SonicMQ_notifyUndelivered", true);
Aurea Software, Inc. Confidential 354 Copyright © 2013 Aurea, Inc.

Handling Undelivered Messages
// Send the message for fast delivery, or not at all.
qsender.send(msg,
 javax.jms.DeliveryMode.NON_PERSISTENT,
 8, // Expedite at a high priority
 600000); // 10 minutes

What To Do When the Dead Message Queue
Fills Up

When the DMQ fills up (to its maximum queue size), the broker stops processing messages
after enqueuing the message that caused the DMQ to exceed its maximum size. In this
way, no messages are lost. See the “Configuring Queues” chapter in the Aurea SonicMQ
Configuration and Management Guide for information about setting the maximum DMQ
size and restarting the broker after a broker shutdown when the maximum DMQ size is
reached.

Undelivered Messages Due to Expired TTL

The reason code for a message that is undelivered due to an expired time to live (TTL) is:
UNDELIVERED_TTL_EXPIRED

Note: Reason codes are defined as public final static int in the
progress.message.jclient.Constants class.

In this case, the SonicMQ broker determines that a message has expired. This failure type
applies only to queue messages.

This dead message event is the simplest case and the one that most developers consider
when thinking about dead message queues.

When sending messages, you can optionally set the parameter time to live (TTL). This
TTL is converted to an expiration time and stored in the message header (in GMT).

When a SonicMQ broker tries to deliver a message, it notes the expiration time (based on
the GMT as calculated from the broker’s system clock) and might decide not to deliver the
message due to expiration.

Checks for expiration are done only periodically within a broker (in order to avoid extra
overhead). Messages are always guaranteed not to be delivered if they have expired.
However, the actual time they are moved to the dead message queue might be significantly
later than the expiration date in the header. You can enable queue cleanup and set the
cleanup interval from the Management Console in the Edit Queues Properties dialog box,
as shown in Figure 70. See the “Configuring Queues” chapter in the Aurea SonicMQ
Configuration and Management Guide for information about using the Management
Console to set the queue cleanup parameters.
Aurea Software, Inc. Confidential 355 Copyright © 2013 Aurea, Inc.

Chapter 10: Guaranteeing Messages
Figure 70: Queue Cleanup Interval Setting

Other cases where messages might be sent to the DMQ occur in scenarios involving
dynamic routing, remote publishing, and global subscribing. See the chapter “Multiple
Nodes and Dynamic Routing” in the Aurea SonicMQ Deployment Guide for information
about these topics.

Specifying a Destination for Undelivered
Messages

By default, SonicMQ brokers use their predefined, system queue SonicMQ.deadMessage to
preserve undelivered messages. You can override this default behavior by specifying an
alternative destination for undelivered messages. Any non-system queue or topic can be
used for this purpose, including temporary topics and temporary queues.

If you specify an alternative undelivered destination, it is critical that your application
monitor the undelivered destination and promptly process its messages. Doing so avoids
filling up the in-memory areas used for the undelivered destination at the SonicMQ broker.

How to Specify an Undelivered Destination

Overriding the DMQ on page 356 shows how an application can override the DMQ and
specify an alternative undelivered destination.

Overriding the DMQ

String undelQueueName = "MyUndeliveredQueue";
javax.jms.Session session = //get a session from a JMS connection.
javax.jms.Destination undeliveredQueue =
session.createQueue(undelQueueName);
progress.message.jclient.Message message = session.createTextMessage() ;
String undelPropName =

progress.message.jclient.Constants.DESTINATION_UNDELIVERED ;
message.setDestinationProperty(undelPropName, undeliveredQueue);

The previous example uses the createQueue method to create a Queue object dynamically.
More commonly, applications use a Queue or Topic object created by an administrator as a
JMS administered object and stored in a JNDI namespace.
Aurea Software, Inc. Confidential 356 Copyright © 2013 Aurea, Inc.

Specifying a Destination for Undelivered Messages
Applications can also use TemporaryTopic and TemporaryQueue objects created by the
corresponding methods in the javax.jms.Session interface.

SonicMQ validates the destination in the setDestinationProperty() method as follows:

• It can be set for either topic or queue messages.

• It can be a Queue or a Topic.

• It can be a global queue that resides in a different routing node or in the local node.

• It can be a remote topic such as Node::Topic.

• It can be a clustered queue, global or not global.

• It can be a temporary queue or a temporary topic.

• It can be the SonicMQ.deadMessage queue at the broker where the application is
connected.

However, an undelivered destination:

• Cannot be an Outbound HTTP Direct destination.

• Cannot be SonicMQ.deadMessage with a node prefix where the node is not the local
node. If a remote SonicMQ.deadMessage is specified, an exception is thrown. If the
local node is used as a prefix, the SonicMQ.deadMessage queue at the local broker is
used.

• Cannot be SonicMQ.routingQueue, with or without a node prefix. If
SonicMQ.routingQueue is specified, an exception is thrown.

• Cannot be the same as the actual destination of the message. If it is the same, an
exception is thrown during the send call.

• Cannot be a MULTITOPIC construct.

SonicMQ uses the undelivered destination only if the JMS_SonicMQ_preserveUndelivered
message property is set to true; otherwise, SonicMQ does not use the undelivered
destination.

JMS_SonicMQ_destinationUndelivered Message
Property

Overriding the DMQ on page 356 shows how an application can use the constant
progress.message.jclient.Constants.DESTINATION_UNDELIVERED to specify a message
property when calling the message.setDestinationProperty() method. The message
property specified by this constant is the JMS_SonicMQ_destinationUndelivered message
property.

Applications can use the Message.getStringProperty() method to retrieve the value of
this property. The returned value is a string formatted as follows:

• $Q. + undeliveredQueueName (if the destination is a queue)

• undeliveredTopicName (if the destination is a topic)
Aurea Software, Inc. Confidential 357 Copyright © 2013 Aurea, Inc.

Chapter 10: Guaranteeing Messages
For example, where the undelivered destination is a queue named myUQ, the syntax is:

message.setStringProperty("JMS_SonicMQ_destinationUndelivered",
"$Q.myUQ");

Note: Clients using version 6.1 or (earlier versions) do not support the Undelivered
Destination feature, even when setting the above message property with
setStringProperty().

An application can also use the Message.setStringProperty() method to set the value
of the JMS_SonicMQ_destinationUndelivered property, but this is not recommended. The
correct way to set this property is to use the Message.setDestinationProperty() method.

When applied to a property whose value is a destination, the
Message.getObjectProperty() method returns the value of the property as a string,
which has the format described above. Likewise, the Message.setObjectProperty()
method also expects a string value for a property of the destination type (and the string
must also have the format described above).

If an application needs to copy message properties from one message to another it can use
the Message.setObjectProperty() method, as shown:

Enumeration properties = message1.getPropertyNames();
while (properties.hasMoreElements())
{
String propName = properties.nextElement() ;

message2.setObjectProperty(message1.getObjectProperty(propName));
}

The Message.setObjectProperty() method should be used for destination properties
only to copy a property from one message to another. In order to set a destination property
in the original message applications should use the Message.setDestinationProperty()
method.

The Message.isDestinationProperty() method enables your application to test whether
a property string is a destination. This method returns true if the type of the property is
javax.jms.Destination; otherwise, it returns false.

An application can use this method to loop through a list of message properties obtained
by the Message.getPropertyNames() method. If a property is a destination property, the
application can use the Message.getDestinationProperty() method to retrieve the value
of the property. Otherwise, the application can use the Message.getObjectproperty()
method.

The Message.isDestinationProperty() method returns true only if the name of the
property is either JMS_SonicMQ_destinationUndelivered or
JMS_SonicMQ_undeliveredOriginalJMSDestination.
Aurea Software, Inc. Confidential 358 Copyright © 2013 Aurea, Inc.

Specifying a Destination for Undelivered Messages
Changes to JMS Headers

When SonicMQ cannot deliver a message to its original destination, SonicMQ delivers the
message to the undelivered destination. However, before delivering the message to the
undelivered destination, SonicMQ modifies the values of the JMSDestination,
JMSTimestamp, and JMSExpiration message headers:

• JMSDestination — SonicMQ sets this header to the destination specified by the
JMS_SonicMQ_destinationUndelivered property of the message.

• JMSTimestamp — SonicMQ sets this header to the time when SonicMQ determined
that the message could not be delivered to its original destination and has to be
forwarded to its undelivered destination.

• JMSExpiration — SonicMQ sets this header to 0 (which means that the message
does not expire).

SonicMQ only changes these JMS headers if the message-producing application overrides
the system DMQ using the JMS_SonicMQ_destinationUndelivered message property.
Otherwise, SonicMQ places the undelivered messages in the system DMQ and leaves their
JMS headers unchanged. These headers also remain unchanged if SonicMQ cannot
deliver an undelivered message to the specified undelivered destination for the reasons
described in Undelivered Message Reason Codes on page 363

In case an application that receives the message from the undelivered destination needs
to know the original values of the modified headers, SonicMQ copies the original values into
corresponding message properties (described in the following section).

Message Properties for Undelivered Destinations

SonicMQ uses several message properties to support undelivered destinations. If a
message becomes undelivered and has to be preserved in a destination other than the
DMQ, SonicMQ sets the following message properties in the message (in addition to the
JMS_SonicMQ_undeliveredReason and JMS_SonicMQ_undeliveredTimestamp properties):

• JMS_SonicMQ_undeliveredBrokerName — (String) Name of the broker where the
delivery failure took place.

• JMS_SonicMQ_undeliveredNodeName — (String) Name of the routing node where the
delivery failure took place.

• JMS_SonicMQ_undeliveredReasonAddedToDMQ — (Integer) Reason the message was
added to the DMQ instead of the specified undelivered destination (see Failure to
Forward Undelivered Messages to the Undelivered Destination on page 360).

Your application can use these message properties to determine the reason the message
couldn't be delivered to its destination. SonicMQ sets these message properties even if the
message is preserved in the DMQ. This allows applications that listen on undelivered
messages to be written uniformly.
Aurea Software, Inc. Confidential 359 Copyright © 2013 Aurea, Inc.

Chapter 10: Guaranteeing Messages
If SonicMQ sends a message to the undelivered destination, SonicMQ sets the following
message properties before delivering the message to the undelivered destination:

• JMS_SonicMQ_undeliveredOriginalJMSDestination — SonicMQ sets this to the
original value of the JMSDestination header.

• JMS_SonicMQ_undeliveredOriginalJMSTimestamp — SonicMQ sets this to the original
value of the JMSTimestamp header.

• JMS_SonicMQ_undeliveredOriginalJMSExpiration — SonicMQ sets this to the
original value of the JMSExpiration header.

Undelivered Messages and Message Expiration

If a message has expiration set and it can't be delivered, the message won't expire after it
is forwarded to the undelivered destination. Therefore, applications must monitor the
undelivered estination and promptly process its messages. This avoids filling up the
in-memory areas used for the destination at the SonicMQ broker.

Failure to Forward Undelivered Messages to
the Undelivered Destination

SonicMQ tries to add an undelivered message to the specified undelivered destination. If it
fails to do so, SonicMQ adds the message to be added to the system DMQ instead.
SonicMQ adds an undelivered message to the system DMQ instead of the specified
undelivered destination in the following situations:

• If the undelivered destination is a queue and that queue does not exist (reason code
UNDELIVERED_JMS_QUEUE_NOT_FOUND).

• If the undelivered destination is a queue and that queue is full (reason code
UNDELIVERED_QUEUE_FULL).

• If the undelivered destination is a queue and the size of the message exceeds the max
size of that queue (reason code UNDELIVERED_MESSAGE_TOO_LARGE_FOR_QUEUE).

• If the undelivered destination is a topic and at least one of the subscribers for that topic
is flow controlling its publishers (reason code UNDELIVERED_TOPIC_FULL).

• Note that even if a subscriber uses FlowToDisk, it may flow control its publishers (for
example, if the maximum topic database size has been exceeded).

• If some of the subscribers are using globalk subscriptions connected at another
routing node (this situation may take place if the routing queue is full).

• If the undelivered destination resides in a different routing node and the message can't
be delivered there because of a DRA-related problem (reason code is one of the
DRA-related codes in the progress.message.jclient.Constants class).

• If the undelivered destination is an HTTP Direct destination (reason code is
UNDELIVERED_UNSUPPORTED_OVERRIDE_DESTINATION).

• If the undelivered destination wasn’t set by a compatible client application using a
correct setter method (reason code is UNDELIVERED_INVALID_PROPERTY_TYPE).
Aurea Software, Inc. Confidential 360 Copyright © 2013 Aurea, Inc.

Specifying a Destination for Undelivered Messages
If SonicMQ places an undelivered message in the DMQ instead of the specified
undelivered destination, SonicMQ sets the JMS_SonicMQ_undeliveredReasonAddedToDMQ
message property to the corresponding reason code as described above.

Note that in some cases, SonicMQ can detect the failure as soon as a message becomes
undelivered—in that case, SonicMQ preserves the message in the DMQ at the broker
processing the undelivered message. However, if the specified undelivered destination
requires SonicMQ to send the message to another broker or node, the failure may take
place at a different broker and SonicMQ places the message in the DMQ at that broker.

Publish Permission Check

If an application that uses the undelivered destination property is connected to a secure
broker, the broker verifies that the application's credentials have been granted the publish
permission to the specified destination.

If the permission check fails, the message is rejected by the broker and the SonicMQ client
runtime throws a JMSSecurityException.

The publish permission check on the undelivered destination is performed a soon as the
broker receives a message - therefore, if the check fails, the application recieves an
exception even though the message has never become undelivered.

The publish permission check on the undelivered destination is performed whenever the
undelivered destination property is set in the message received by the broker, even if the
JMS_SonicMQ_preserveUndelivered property is not set or is set to false.

In the DRA environment, the publish permission check is done by every broker that
receives the message as it is being routed to its destination. Since each node can use its
own authentication and its own security policy, it is possible that the message is received
successfully by the local broker but is later rejected by the remote node. In that case, the
application doesn't receive an exception but the message is dropped at the remote node.

Whenever the publish permission check on the undelivered destination fails, the broker
writes an error a message in its log as it always does for the publish permission check on
the message destination.

Undelivered Message Notifications

If a message that is declared to be undelivered by SonicMQ, has the
JMS_SonicMQ_notifyUndelivered message property set to true and the
JMS_SonicMQ_destinationUndelivered property of the message is not null, the specified
undelivered destination and its type (queue or topic) are added as new attributes to the
notification.

This allows management applications to filter out notifications based on where the
undelivered messages are preserved.
Aurea Software, Inc. Confidential 361 Copyright © 2013 Aurea, Inc.

Chapter 10: Guaranteeing Messages
The following attributes are added to the application.message.Undelivered notification
type:

• IsUndeliveredDestinationQueue — A value of true indicates that the undelivered
message was preserved in a queue. A value of false indicates that the undelivered
message was preserved in a topic.

• UndeliveredDestination — Name of the queue or topic where the undelivered
message was preserved. If the message was preserved in the dead message queue,
the value of this attribute is set to SonicMQ.deadMessage. If the message wasn't
preserved, the value is blank.

Undelivered Destinations for DRA Messages

This section describes using the undelivered destination feature for messages that need to
be delivered to a different routing node.

Undelivered Destinations Without a Node Name

If the specified undelivered destination is not a Temporary Topic , not a Temporary Queue,
and it doesn’t include a node name, when the message becomes undelivered it is
preserved at the node where it became undelivered.

For example, if a queue message has expiration set and the message needs to be sent
from node A to node B, the message may expire either at node A or at node B. Assume
that the value of the undelivered destination property is the SampleQ1 queue (note that there
is no node name). If the message expires at node A, it is added to SampleQ1 at node A. If it
expires at node B, the messageis added to SampleQ1 at node B.

The same result is produced if the queue name is specified as ::SampleQ1.

If the specified undelivered destination is a Temporary Topic or a Temporary Queue, when
the message becomes undeliverd, it is sent to the node where it was produced.

Undelivered Destinations With a Node Name

If an application needs to preserve its undelivered messages at a particular node, it can
qualify the name of the undelivered destination with a node name.

Using the example from the previous section, the name "A::SampleQ1" ensures that
undelivered messages is preserved in the queue SampleQ1 that resides at node A whether
it has expired at node A or at node B.

However, in order for this to work, SampleQ1 must be declared global. Otherwise, if a
message expires at node B, SonicMQ is not able to deliver it to SampleQ1 at node A.
Instead, the message is delivered to node A and added to the system DMQ that resides at
the first broker in node A that receives the message.
Aurea Software, Inc. Confidential 362 Copyright © 2013 Aurea, Inc.

Undelivered Message Reason Codes
Required Routing Definitions

If undelivered destination includes an explicit node name, the specified node must be
directly accessible from the node where the message becomes undelivered. Using the
same example as in the previous section, node B must have a routing definition for node
A. Otherwise the message is preserved in the system DMQ at the current broker in node B.

For example, if node B has a routing definition for node C which has a routing definition for
node A, but node B has no routing definition for node A, the message is added to the
system DMQ at the current broker in node B.

The same requirement exists for the undelivered destinations that specify temporary
queues or topics. For example, if a message that specifies a temporary queue as its
undelivered destination is sent from node A to node B and expires at some broker in node
B, that broker attempts to send the message back to node A. However, if at the time of
message expiration node B doesn't have a routing for node A, the message ends up in the
system DMQ at the current broker.

Undelivered Message Reason Codes
Undelivered messages can result from routing of queue and topic messages, and from

HTTP direct routing extensions. The reason codes, JSM_SonicMQ_undeliveredReasonCode,
generated for these types of undelivered messages are described in this section. The
reason codes are integers. The corresponding reason name is a String in
progress.message.jclient.Constants that provides a description for the issue with the
with the undelivered messages.

Table 33 lists the reason codes that relate to general cases of undelivered messages that
can occur for both topic and queue messages, with or without dynamic routing or remote
nodes.

Table 34 lists the reason codes that relate to messages whose delivery attempts to a
receiver exceeded the specified maximum redelivery attempts.

Table 33: Reason Code for Undelivered Messages

Reason Value Reason Marked as Undeliverable

UNDELIVERED_TTL_EXPIRED 1 The current system time on the broker (as
GMT) exceeds the message’s expiration
time (as GMT).
Aurea Software, Inc. Confidential 363 Copyright © 2013 Aurea, Inc.

Chapter 10: Guaranteeing Messages
Table 35 contains a reason code that can occur only for undelivered queue messages
under dynamic routing. See the chapter “Multiple Nodes and Dynamic Routing” in the
Aurea SonicMQ Deployment Guide for some examples of dynamic routing of queue
messages.

Table 36 lists the reason codes that can occur for undelivered messages under dynamic
routing and, in some cases as indicated, in remote publishing or subscribing. See the
chapter “Multiple Nodes and Dynamic Routing” in the Aurea SonicMQ Deployment Guide
for some examples of dynamic routing of queue messages and examples of remote
publishing and subscribing.

Table 34: Reason Code for Undelivered Messages

Reason Value Reason Marked as Undeliverable

UNDELIVERED_DELIVERY_LIMIT_EXCEEDED 28 MaxDeliveryCount was set to 1 or higher
and that number attempts to deliver the
message to the consumer have transpired
without acknowledgement within the
session. Message is discarded unless the
message has the property
SonicMQ_preserveUndelivered set to
true.

Table 35: Reason Codes for Undelivered Queue Routing Messages

Reason Value Reason Marked as Undeliverable

UNDELIVERED_ROUTING_INVALID_DESTINATION 4 Message received by a broker from a
remote routing node has a message
destination that does not exist as a
global queue in the current routing
node.

Applies to dynamic routing of queue
messages only.

Table 36: Reason Codes for Undelivered Routing Messages (All Domains)

Reason Value Reason Marked as Undeliverable

UNDELIVERED_ROUTING_INVALID_NODE 3 The target routing node in the destination
cannot be found in the broker's list of
routing connections.

UNDELIVERED_ROUTING_NOT_ENABLED 2 The target routing node in the destination
cannot be found in the broker’s list of
routing connections.
Aurea Software, Inc. Confidential 364 Copyright © 2013 Aurea, Inc.

Undelivered Message Reason Codes
Table 37 lists the reason codes that occur only for undelivered topic messages. See the
chapter “Multiple Nodes and Dynamic Routing” in the Aurea SonicMQ Deployment Guide
for some examples of remote publishing of topic messages and remote subscribing to topic
messages.

UNDELIVERED_ROUTING_TIMEOUT 5 Message received by a broker cannot
establish a remote connection to the
destination routing node after trying for the
specified period of time.

UNDELIVERED_ROUTING_INDOUBT 6 Message is unacknowledged between
brokers, leaving the message in-doubt.
The brokers try to re-establish the
connection and resolve the situation.

UNDELIVERED_ROUTING_CONNECTION
_AUTHENTICATION_FAILURE

7 Routing connection username and
password were not authorized at a routing
node while connecting to the remote
broker.

UNDELIVERED_ROUTING_CONNECTION
_AUTHORIZATION_FAILURE

8 Routing connection username did not have
appropriate permissions to connect to the
specified routing node. (Route ACL)

UNDELIVERED_MESSAGE_TOO_LARGE_F
OR_QUEUE

9 Message is larger than the size of the
queue.

UNDELIVERED_ROUTING
_MULTI_TOPICS_NOT_SUPPORTED

27 A MultiTopic publish was attempted to a
remote node that does not support
multitopic PubSub—for example, a V6.0
broker.

Table 36: Reason Codes for Undelivered Routing Messages (All Domains)

Reason Value Reason Marked as Undeliverable

Table 37: Reason Codes for Undelivered Topic Routing Messages

Reason Value
Reason Marked as

Undeliverable

UNDELIVERED_ROUTING_TOPIC_MESSAGES
_NOT_SUPPORTED

18 Message could not be delivered
to the destination because the
remote node does not support
remote topic messages.

UNDELIVERED_ROUTING_SUBSCRIPTION
_AUTHORIZATION_FAILURE

19 Subscription request could not be
delivered to the destination
because the remote node denies
subscribe permission to the
routing user.
Aurea Software, Inc. Confidential 365 Copyright © 2013 Aurea, Inc.

Chapter 10: Guaranteeing Messages
Table 38 lists the reason codes that can occur for undelivered HTTP Direct routing
messages. See the chapter “HTTP Direct Acceptors and Routings” in the Aurea SonicMQ
Deployment Guide for information about HTTP Direct routing and examples of how to
implement it in your deployments.

UNDELIVERED_ROUTING_REMOTE_SUBSCRIPTION

_DELETED

20 Message has been marked
undelivered because the remote
subscription was deleted or has
expired.

UNDELIVERED_ROUTING_REMOTE_SUBSCRIPTIONS
_NOT_SUPPORTED

21 Subscription request could not be
delivered to the destination
because the remote node doesn't
support remote subscriptions.

Table 37: Reason Codes for Undelivered Topic Routing Messages

Reason Value
Reason Marked as

Undeliverable

Table 38: Reason Codes for Undelivered HTTP Direct Routing Messages

Reason Value Reason Marked as Undeliverable

UNDELIVERED_HTTP_GENERAL_ERROR 10 Message intended for dynamic routing
over HTTP was marked undeliverable
for unknown reasons, or for reasons not
covered by the other DMQ codes.

UNDELIVERED_HTTP_BAD_REQUEST 12 Message intended for dynamic routing
over HTTP was rejected by the
destination server because the format of
the HTTP request was not valid (for
example, missing a property).

UNDELIVERED_HTTP_AUTHENTICATION_FAIL
URE

13 Message intended for dynamic routing
over HTTP was rejected by the
destination server because the supplied
username/password or certificate was
invalid.

UNDELIVERED_HTTP_FILE_NOT_FOUND 14 Message intended for dynamic routing
over HTTP has been marked
undelivered.

UNDELIVERED_HTTP_REQUEST_TOO_LARGE 15 Message intended for dynamic routing
over HTTP was not sent because the
HTTP request was too large.
Aurea Software, Inc. Confidential 366 Copyright © 2013 Aurea, Inc.

Undelivered Message Reason Codes
Normally, HTTP Direct routing extensions are used when a SonicMQ broker is sending to
a non-Sonic Web server. However, there is nothing to stop you from using HTTP Direct to
talk to another broker that has inbound HTTP Direct acceptors. In this case, the additional
errors listed in Table 39 might occur.

Table 40 contains reason code that can occur for undelivered messages when an
undelivered destination has been defined by the user application. See Specifying a
Destination for Undelivered Messages on page 356.

UNDELIVERED_HTTP_INTERNAL_ERROR 16 Message intended for dynamic routing
over HTTP was not sent because the
destination service was unable to
process the request.

UNDELIVERED_JMS_QUEUE_NOT_FOUND 22 A replyTo destination is not found when
processing a reply in a HTTP Direct
Outbound scenario.

Table 38: Reason Codes for Undelivered HTTP Direct Routing Messages

Reason Value Reason Marked as Undeliverable

Table 39: Additional Reason Codes for Undelivered HTTP Direct Routing Messages

Reason Value Reason Marked as Undeliverable

UNDELIVERED_HTTP_PROTOCOL_NOT_SUP
PORTED

17 Message intended for dynamic routing
over HTTP has been marked undelivered
because the request was sent to an
unregistered URL (in other words, there is
no protocol handler listening for requests
on that URL).

UNDELIVERED_HTTP_HOST_UNREACHABLE 11 Message intended for dynamic routing
over HTTP has been marked undelivered
for one of the following reasons:

A connection cannot be made to the
HTTP destination

The request has timed out
Aurea Software, Inc. Confidential 367 Copyright © 2013 Aurea, Inc.

Chapter 10: Guaranteeing Messages
Note: If the undelivered destination resides in a different routing node and the message
can't be delivered there because of a DRA-related problem , the reason code is one
of the DRA-related codes in the progress.message.jclient.Constants class.

Table 40: Reason Codes That Relate To a User-Specified Dead Message Queue

Reason Value Reason Marked as Undeliverable

UNDELIVERED_JMS_QUEUE_NOT_FOUND 22 The undelivered destination is a queue and
that queue does not exist.

UNDELIVERED_QUEUE_FULL 23 The undelivered destination is a queue and
that queue is full. Note that if the
undelivered destination is a queue and the
size of the message exceeds the max size
of that queue the reason code is
UNDELIVERED_MESSAGE_TOO_LARG
E_FOR_QUEUE.

UNDELIVERED_TOPIC_FULL 24 The undelivered destination is a topic and
at least one of the subscribers for that topic
is flow controlling its publishers.
Note that even if a subscriber uses
FlowToDisk, it may flow control its
publishers (for example, if the maximum
topic database size has been exceeded)

UNDELIVERED_UNSUPPORTED_OVERRIDE_
DESTINATION

25 The undelivered destination is an HTTP
Direct destination.

UNDELIVERED_INVALID_PROPERTY_TYPE 26 When the undelivered destination is not set
by a compatible client application using a
correct setter method, this error could
occur.
Aurea Software, Inc. Confidential 368 Copyright © 2013 Aurea, Inc.

11
Recoverable File Channels

This chapter explains the recoverable file channel feature available with SonicMQ
installations containing ClientPlus. This chapter includes the following sections:

• About Recoverable File Channels for Large Messages on page 369

• Tips and Techniques for Using File Channels on page 389

About Recoverable File Channels for Large
Messages

SonicMQ installations that provide ClientPlus features have the option of using recoverable
file channels for very large messages—messages larger than 10 megabytes—where the
data content is stored in a file on the sender system. The receiver of such a message would
store the large message in a file on its system. Handling a very large message as a single
integral object puts a strain on system resources such as broker and client memory.

SonicMQ provides Point-to-point domains with a RecoverableFileChannel that is attached
to a standard JMS message. The receiver of such a message retrieves and performs
operations on the RecoverableFileChannel.

A RecoverableFileChannel is a unidirectional stream of information from a JMS client to a
JMS client, a peer-to-peer type of transfer, similar to FTP. State and recovery information
is stored on both the sending and receiving clients and is separate from state and recovery
information stored on brokers.
Aurea Software, Inc. Confidential 369 Copyright © 2013 Aurea, Inc.

Chapter 11: Recoverable File Channels
Figure 71: Large Message Moving in Fragments Across a File Channel

Figure 71 illustrates the basic steps in a file transfer:

1. The file sender creates a header message, gets an instance of a file channel, identifies
the file to transfer and then sends the header to the SonicMQ broker queue where
receivers listen (shown as, FileTransfer.Pickup).

2. The file receiver takes the header message of the queue and prepares a file target
location and a recovery log on it local disk.

3. The receiver indicates that it is ready to continue (start) the transfer. At this point, the
header message has completed its purpose and is discarded.

4. The sender fragments and packages a portion of the source file. The sender will
continue to do this until it reaches its defined window size at which point it waits for
acknowledgement.

5. When the transfer completes successfully the receiver lets the sender know that the
transfer is done.

Forwarding the Header Message

Receiving the header message does not obligate the initial receiver to participate in the
actual file transfer. The header message could be forwarded to another queue on another
broker where another receiver can take the message. The requirement is that the final
receiver—the one that intends to consume the large message by managing the channel
delivery—must be able to access global queues on the sender’s broker. The channel is
acted on by explicit acknowledgement followed by a call to Message.getChannel() to
retrieve the RecoverableFileChannel reference.

The forwarding application must take care that it takes steps to ensure that it doesn’t
forward the message and then get the channel. Figure 72 illustrates the sequence of events
in a file transfer across global queues.

File ReceiverSonicMQ
Broker

File Sender

 File Channel
Local Disk

C:\foo.file
myApp/Recovery1

Local Disk

/usr/bar
/user/recovery1

Queue
FileTransfer.Pickup

Header
Message

Step 1
Header

Message

Step 2

Step 4

Step 5

Step 3
Aurea Software, Inc. Confidential 370 Copyright © 2013 Aurea, Inc.

About Recoverable File Channels for Large Messages
Figure 72: File Transfer Across Accessible Global Queues on Two Brokers

Global Queues

When a connection is dropped you might want to establish a QueueConnection on a
different broker and recover the transfer. This is a good tactic when you are using the
Dynamic Routing Architecture provided that the broker is part of the same routing node.

If you connect to a different routing node, the transfer will not continue successfully.

Dynamic Routing Architecture

SonicMQ’s Dynamic Routing Architecture can use recoverable file channels when both
peer applications can access global queues of the other client’s broker.

Semantics of File Fragmentation, Transfer, and
Recovery

The mechanics of disassembling and reassembling files such that a transfer can be
resumed within the file require some semantic concepts. These methods involve primarily
to the Channel interface. Terms used in these methods include:

Timeout

When a JMS message is sent with a RecoverableFileChannel attached, the send call
blocks until a channel is established. This behavior helps manage channels because the
sender knows at send time whether or not a receiver has accepted the channel. If a channel
is not established in Timeout time, a JMSException is thrown with the error code:

progress.message.jclient.ErrorCodes.ERR_CHANNEL_TIMEOUT.

Retry Count and Retry Interval

When a fragment is sent, an acknowledgement is expected from the receiving client. If an
acknowledgement is not received in retryInterval time, the fragment is resent. This
continues retryCount times, at which time the ChannelListener callback is called with the
RFC_RETRY_TIMEOUT error code.

SonicMQ
Broker

One

File Sender

Queue
FileTransfer.PickupOne

Header
Message

Step 1

File Receiver

Header
Message

Step 2

SonicMQ
Broker

Two

 File Channel

Queue
FileTransfer.PickupTwo

Step 5

Step 3
Local Disk

/usr/bar
/user/recovery1

Step 4
Local Disk

C:\foo.file
myApp/Recovery1
Aurea Software, Inc. Confidential 371 Copyright © 2013 Aurea, Inc.

Chapter 11: Recoverable File Channels
These commands take effect immediately when called from within the ChannelListener
callback, when set before completeConnect() is executed, or before the channel is
sent.While these values can be set from outside the ChannelListener callback, they will
not take effect until the underlying code notices the change.

On the receiver, these methods can be used to timeout internal sender/receiver
communication:

• If a fragment is not received in retryCount * retryInterval time, the receiver’s
ChannelListener callback is executed.

• The retry count and retry interval values are used when there is a call to
completeConnect() on the receiver. If the sender does not respond, the receiver
attempts to contact the sender retryCount times, waiting for retryInterval time for
an acknowledgement. After that time, the completeConnect() call throws a
JMSException with the error code
progress.message.jclient.ErrorCodes.ERR_RETRY_TIMEOUT.

• During a recovery, if the other side of a recovery is unavailable, a JMSException is
thrown from the continueTransfer() call with the error code,
progress.message.jclient.ErrorCodes.ERR_RETRY_TIMEOUT.

Fragment Size

When the transfer breaks a large file into fragments, the fragments are sent, each expecting
an acknowledgement from the receiving client. Performance can be optimized by
configuring the fragment size. The larger the fragment size, the more memory needed on
the client and broker to transfer the message.

To determine an optimal fragment size setting, first determine the actual TCPIP packet size
for your environment, then make the fragment size a direct multiple of the TCPIP packet
size. For example, if the packet size is 512 bytes, make the fragment size 512, 1024, or
another multiple of 512 bytes. This method of determining fragment size optimizes the
amount of breakage of the message that is sent. For example, if the packet size were 512
bytes and you set the fragment size to 768 bytes, you send 33% more packets than
needed. This setting fills one packet to 512 bytes and the next to only 256, wasting the
remaining 256 bytes of that packet.

Window Size

The window size is the number of fragments that can be sent before an acknowledgement
must be received. The larger the window size, the more time will elapse before an
acknowledgement is required. A larger window size is preferred for messaging setups with
a high degree of latency between the sender and receiver. A larger window size could also
cause the sender to take more time before noticing the receiver is unavailable. A smaller
window size could cause the sending of the file to halt too often to wait for
acknowledgements from the receiving client.
Aurea Software, Inc. Confidential 372 Copyright © 2013 Aurea, Inc.

About Recoverable File Channels for Large Messages
ChannelID

Every channel has a unique channel ID that is assigned to it when the channel is
established. While this value is primarily for internal purposes, the channel ID is accessible
by the user to help associate information with a channel ID. The channel ID is available
across failures. The channelID is null until after the channel has been sent, or until
getChannel has been called on the receiver.

Canceling or Closing a Channel

When you cancel a transfer, you delete all recovery information.

When you close a transfer, you just stop the channel transfer. All recovery information is
preserved.

A call to cancel() or close() notifies the other side of the transfer that the channel has
been cancelled or closed. However, a broker or client failure could cause this notification
not to be delivered. If this occurs, the other side of the transfer eventually times out after
retryCount*retryInterval time. Then the application should cancel the transfer and
resend the header message.

Classes and Interfaces for Large Message
Transfers

The classes and interfaces to support large messages are the following:

Class:

• ConnectionFactory — The method that is essential to client local persistence is also
used with RecoverableFileChannels to set a local store directory for recovery
information for the channel. If this method is not set, the working directory is used to
store recovery information

• RecoverableFileChannelFactory — The constructor class for the recoverable file
channel in the method:

static RecoverableFileChannel
createRecoverableFileChannel(java.io.File file)

Interfaces: (progress.message.jclient)

• Message — Added methods for setting and getting channels on a message.

• QueueConnection — Added methods for getting reference to channels and working
with unfinished channels.

• Channel — Encapsulates the control and recovery logic for sending a message data
stream. A sender application instantiates an implementation of this class to send a
large message.

• channel.RecoverableFileChannelFactory — Creates recoverable file channels.

• channel.RecoverableFileChannel — A Channel implementation to send files on a
channel.
Aurea Software, Inc. Confidential 373 Copyright © 2013 Aurea, Inc.

Chapter 11: Recoverable File Channels
• ChannelListener — Defines a method for notifying a sender or receiver application
that a large message transmission has completed successfully.

• ChannelStatus — Enables queries to a channel for its status.

The methods that are relevant to recoverable file channels are listed in Table 41.

Table 41: Methods that Support Recoverable File Channels

Interface Method Description

Message void
setChannel(Channel
channel)

Adds channel to the message.

void
setChannel(Message
message)

Adds the channel associated with
message to this channel. This method
provides a technique for forwarding a
message to another destination with a
defined channel attached to a new
message.

boolean
hasChannel()

Returns true if this message has a
channel attached.

Channel
getChannel()

Retrieves the channel attached to this
message.

QueueConnection Channel
getChannel(String
channelID)

Returns the channel channelID.

boolean
hasUnfinishedChannels()

Tests whether the channel has any
unfinished channels.

Enumeration
getUnfinishedChannels()

Returns an Enumeration containing
Channel references which can be cast to
a RecoverableFileChannel. You can
iterate over the enumeration, checking
channel status, and recovering channels.

Enumeration
getUnfinishedChannelsIDs()

Returns an Enumeration of Strings
representing the ChannelIDs that can
retrieve specific channels with the
getChannel(String channelID) method.

boolean
hasUnfinishedChannel

(String
channelID)

Tests whether the channel channelID
exists.

ConnectionFactory void
setLocalStoreDirectory

(String name)

Sets a local store directory that to store
the recovery information for
RecoverableFileChannel.
Aurea Software, Inc. Confidential 374 Copyright © 2013 Aurea, Inc.

About Recoverable File Channels for Large Messages
Channel void
setTimeout

(long milliseconds)

Sets the timeout time of this channel to
milliseconds. Default is 60000— one
minute.

void
setRetryCount(int count)

Sets the count of times a fragment of
information will attempt to be sent before
timing out. Default is 10 attempts.

void
setRetryInterval

(long milliseconds)

Sets the retry interval milliseconds to wait
before attempting to retry to send or
receive a fragment. Default is 10000— ten
seconds.

void
setFragmentSize(int size)

Sets the size in bytes for each fragment to
transfer on this channel. Default is 1024
bytes.

void
setWindowSize(int size)

Sets the number of fragments to buffer to
size —an integer value of 3 or higher—to
allow that many fragments to await
acknowledgement before blocking the
send. Default is 10 fragments.

void
setUUID

(java.lang.String uuid,
 int timeToLive)

Sets the duplicate detection
uuid—universal unique id—to activate
duplicate detection for the channel.
timeToLive (in minutes) indicates how
long this UUID is reserved.

void
setChannelListener

(ChannelListener listener)

Sets channel listener listener on the
channel.

void
continueTransfer()

Continues the transfer of information
between the sending and receiving client.

java.lang.String
getChannelID()

Gets the channelID associated with this
channel.

long
getTimeout()

Gets the timeout time of the channel.

Table 41: Methods that Support Recoverable File Channels

Interface Method Description
Aurea Software, Inc. Confidential 375 Copyright © 2013 Aurea, Inc.

Chapter 11: Recoverable File Channels
Channel
(continued)

int
getRetryCount()

Gets the retry count.

long
getRetryInterval()

Gets retry interval.

int
getWindowSize()

Gets the window size for the transfer.

int
getFragmentSize()

Gets the size of the fragments on this
channel.

ChannelStatus
getChannelStatus()

Gets the current channel status. Returns
a ChannelStatus object that indicates the
current status of the channel.

void
completeConnect()

Completes the connection with the
sender. Starts the data transfer on the
channel.

void
close()

Closes the channel and stops the channel
transfer. Recovery information is
preserved.

void
completeTransfer()

Completes the transfer of the file. This
method is called from the
ChannelListener when the transfer is
done.

RecoverableFileChannel void
save(java.io.File file)

Saves the file associated with this
channel to file.

boolean
isSaving()

Tests whether this file channel is actively
saving information to a file.

void
cancel()

Cancels the channel. Closes the channel
and removes any recovery information.

void
setBlockSize(int size)

Sets the write buffer block size to size
bytes.

Default is windowSize * fragmentSize,
which is, when those parameters are also
defaulted, 10240 bytes. When security is
enabled, the actual value used is the
value entered rounded to the next 8 KB.

RecoverableFileChannel
(continued)

void
setDES

(java.security.Key key)

Set the channel to read and write the file
as DES encrypted with key.

Table 41: Methods that Support Recoverable File Channels

Interface Method Description
Aurea Software, Inc. Confidential 376 Copyright © 2013 Aurea, Inc.

About Recoverable File Channels for Large Messages
ChannelListener

A channel listener is set on a channel to inform an application asynchronously of status and
error conditions. If there is a problem transferring a file such as a timeout and there is no
ChannelListener or the program logic does not perform a continueTransfer in the
channel listener, the channel is implicitly cancelled in which case the QueueConnection’s
onException listener is called with
progress.message.jclient.ErrorCodes.ERR_CHANNEL_IMPLICITLY_CANCELLED.

continueTransfer() in the channel listener is valid only when the status is
RFC_RETRY_TIMEOUT. This means an application can increase the value of RetryCount or
RetryInterval so that after (count * interval) milliseconds has passed without receiving
any acknowledgement, the channel listener is called again. Any retries will be performed
after the ChannelListener returns. You might choose instead to close or cancel the
channel.

void
setDESede

(java.security.Key key)

Set the channel to read and write the file
as Triple DES encrypted with key.

ChannelListener void
onChannelStatus

(Channel channel,
java.lang.Exception e)

This is called by the channel whenever a
status change occurs in the channel.

ChannelStatus long
bytesTransferred()

Return the number of bytes that have
been transferred on this channel. The
value -1 is returned if unknown.

long
bytesToTransfer()

Return the number of bytes to transfer.
The value -1 is returned if unknown.

int
getStatus()

Return the current status of the channel.
See Table 42.

Table 41: Methods that Support Recoverable File Channels

Interface Method Description
Aurea Software, Inc. Confidential 377 Copyright © 2013 Aurea, Inc.

Chapter 11: Recoverable File Channels
The onChannelStatus method is called with a reference to the Channel in question, and an
Exception e that triggered this channel status call.

Important: Thread Safety — While an application should manipulate a channel while
inside a ChannelListener, the application can safely call a number of
methods from outside the ChannelListener thread without error:

Channel.close()

Channel.getChannelStatus() and any method of the ChannelStatus
object.

RecoverableFileChannel.cancel()

RecoverableFilechannel.isSaving()

The following methods can be called from outside the ChannelListener
callback but they might not take effect immediately:

Channel.setRetryCount()
Channel.setRetryInterval()

All other methods should not be considered thread safe and should only be
called within a ChannelListener or before the channel is established.

Channel Status

A channel status object is a user’s window into the current status of a channel. The channel
status object is retrieved by a getChannelStatus call on the
progress.message.jclient.Channel interface. The current channel state can be retrieved
by the channel.getChannelStatus().getStatus() method, then the application should
use a switch statement on the status code to set the course of action. Many channel
commands are not thread safe or are not valid when a channel is in a given state; therefore,
it is recommended that the developer put the logic that affects the transfer of the channel
within the ChannelListener. The ChannelStatus.getStatus indicates the status of the file
transfer as listed in Table 42.
Aurea Software, Inc. Confidential 378 Copyright © 2013 Aurea, Inc.

About Recoverable File Channels for Large Messages
Table 42: Error Codes Returned for Channel Status

Error Constant Meaning

RFC_TRANSFERRING The file is currently transferring.

RFC_TRANSFER_COMPLETE The file transfer is complete.

RFC_CANCELLED The file transfer was cancelled. This informative status indicates that
recovery information has been erased.

Note: The ChannelListener on a local client is not called if cancel
was called locally.

RFC_CLOSED The file transfer was closed. This informative status indicates that
local recovery information has not been erased so the channel can
be recovered from a queue connection at a later time.

Note: The ChannelListener on a local client is not called if close was
called locally.

RFC_WAITING_CONNECT The file transfer is waiting to connect to the remote client.

RFC_RETRY_TIMEOUT The file transfer is currently timed out. Method calls at this time
include:

• continueTransfer to continue trying to contact the remote client
for retryCount attempts at retryInterval.

• close to stop the transfer, close the channel, and retain
recovery information.

• cancel to stop the transfer, close the channel, and erase
recovery information.

• setRetryCount to change the retry count on the next
continueTransfer.

• setRetryInterval to change the retry interval on the next
continueTransfer.

RFC_PRECONNECT_ATTEMPT The file channel has been restored but continueTransfer() has not
been called.

RFC_DISCONNECT The QueueConnection to the broker has disconnected.

RFC_LOCAL_ERROR There has been a fatal error—such as an IOException while
attempting to access the file—on the local client. Examine the
Exception that is passed in to the ChannelListener to determine the
problem. The channel is closed, and the recovery information is
retained.

RFC_REMOTE_ERROR There has been a fatal error—such as running out of disk space—on
the remote client. Examine the Exception that is passed in to the
ChannelListener to determine the problem. The channel is closed,
and the recovery information is retained.
Aurea Software, Inc. Confidential 379 Copyright © 2013 Aurea, Inc.

Chapter 11: Recoverable File Channels
General Procedure for Large Message
Transfers

The establishment and use of channels is defined by the sending and receiving JMS
clients. The general steps for using a channel are as follows:

1. The sender:

a. Creates a QueueConnection where client persistence is not enabled.

b. Creates a nontransacted QueueSession.

c. Creates a QueueSender to a queue (local or remote).

d. Creates a JMS message of any type.

e. Instantiates a RecoverableFileChannel.

f. Calls Message.setChannel(RecoverableFileChannel).

g. Sends the message with the channel instance.

2. The receiver:

a. Creates a QueueConnection.

b. Creates a QueueSession in CLIENT_ACKNOWLEDGE, or
SINGLE_MESSAGE_ACKNOWLEDGE mode. The message could be in a transacted
session; however, you can only get the channel once the session commit is
called, an explicit acknowledgement.

c. Creates a QueueReceiver to the queue where the message with the channel
instance is available.

d. The receiver takes and acknowledges—acknowledge() or commit() when
transacted—the JMS Message.

Important: The acceptable acknowledgement modes require explicit acknowledgement
by calling Message.acknowledge(). You can not get a channel from a
message that is delivered on a session with AUTO_ACKNOWLEDGE or
DUPS_OK_ACKNOWLEDGE.

e. The receiver makes a call to Message.getChannel() to retrieve the
RecoverableFileChannel reference. This returns a reference to a Channel that
can be cast to a RecoverableFileChannel.

f. The receiver sets options for the transfer—such as RetryInterval and
RetryCount—and a callback.
Aurea Software, Inc. Confidential 380 Copyright © 2013 Aurea, Inc.

About Recoverable File Channels for Large Messages
g. A call is made to Channel.completeConnect(). The transfer of data from the
sender to the receiver starts in the channel.

h. A call is made to RecoverableFileChannel.save(File file).

Note: The Large Message mechanism is not recommended as the only communication
in an application. It is optimized for reliability across failures and is not the best
solution for messages that can be transferred as a single JMS message. Large
Message transfers involve protocol overhead and disk I/O that would not be
incurred in a normal JMS Message.

Creating a Recoverable File Channel

In the following excerpt from FileSender.java, a recoverable file channel is created bound
to a designated file and a unique identifier. The channel is added to any type of JMS
message by a setChannel method. The message property SenderFileName is set with the
absolute location of the disk-based file that is intended for transfer (for example,
c:\uploads\today.data). With everything ready, the header message—the message
with data about the file channel—is sent.

When a receiver acknowledges a message that has a channel, the receiver application
calls getChannel to retrieve the Channel reference. The receiver calls completeConnect()
to get the transfer underway. The data transfers from the sender to the receiver without any
explicit action required in the sender JMS send session or the receiver JMS receive
session. The channel listeners and the channel status provide the information for the
recovery logs as the transfer proceeds.

You can tune the transfer by using setters for the retry count, the retry interval (in
milliseconds), the message fragment size, and the window size—the number of fragments
(>3) that can be sent before the sender blocks to await acknowledgement from the receiver.
You might also want to use the ChannelStatus methods of bytesTransferred and
bytesToTransfer to estimate completion time.

FileSender Sample: sendNewMessage Pattern on page 382 shows the sendNewMsg pattern
in the FileSender sample.
Aurea Software, Inc. Confidential 381 Copyright © 2013 Aurea, Inc.

Chapter 11: Recoverable File Channels
FileSender Sample: sendNewMessage Pattern

//send new msg with a channel
try
{
javax.jms.TextMessage msg =
(javax.jms.TextMessage)session.createTextMessage("Test");

//create RecoverableFileChannel object and set ChannelListener to it
progress.message.jclient.channel.RecoverableFileChannel rfc =
progress.message.jclient.
channel.RecoverableFileChannelFactory.createRecoverableFileChannel(file);
rfc.setChannelListener(new LMSChannelListener());
//set Timeout to a channel, so if during 60sec the channel is not
established,
//ChannelListener will cancel it
rfc.setTimeout(60000);

//set a channel to a message
((progress.message.jclient.Message)msg).setChannel(rfc);

//set message property (name of a file being sent), which is used by
receiver
//to get file name
msg.setStringProperty("SenderFileName", file.getName());
//send message
System.out.println("\nTry to send header message and establish channel to
send file - "
+ file.getAbsolutePath());
sender.send(msg);
System.out.println(rfc.getChannelID() + " channel established!");

//begin to browse the transfer aurea
browseTransfer(rfc);
}
catch(javax.jms.JMSException jmse)
{
System.out.println(jmse.getMessage());
}
catch(Exception e)
{
System.out.println(e.getMessage());
}

Recovering an Interrupted Transfer

Each RecoverableFileChannel maintains a recovery file to ensure that it can be restarted
in the event of the interruption before completion. Fragments could be dropped during the
transfer due to broker failure or invocation of flow control, the recovery handles the
retransmission and ordering of message fragments.
Aurea Software, Inc. Confidential 382 Copyright © 2013 Aurea, Inc.

About Recoverable File Channels for Large Messages
Methods in the QueueConnection class initiate recovery. An application uses the
hasUnfinishedChannels method to check for recovery log files. If there are incomplete
transfers, the application can iterate through the channels, calling continueTransfer() to
reestablish the channel and continue the transfer from the last logged fragment.

Important: If a system failure occurs in the early stage of the transfer—within the channel
connection negotiation, before any information has transferred—it is possible
for the recovery logs to be corrupt. If the recovery logs are corrupt,
hasUnfinishedChannels() or hasUnfinishedChannel(String channelID)
might return true, yet getUnfinishedChannel(String channelID) could
return null.

Patterns for Recovery

The code samples in this section demonstrate two techniques for handling unfinished
channels:

• The sender gets the unfinished channels as an enumeration then iterates through the
list. For each unfinished channel, it sets up a listener then continues the transfer.

• The receiver gets the channel identifiers, using each one to try to get its channel
reference. When it is successful, it sets up the listener, continues the transfers and
resumes the file-save procedures. This technique lets you associate additional
information with a channel, as demonstrated in the FileReceiver sample where it
associates the filename.

FileSender Sample: RestoreChannels Pattern on page 383 shows the RestoreChannels
pattern in the FileSender sample.

FileSender Sample: RestoreChannels Pattern

private void restoreChannels()
{
try
{
// Check if there are any unfinished channels to restore
if(connection.hasUnfinishedChannels())
{
// Retrieve an enumeration of all available Channels of this client
Enumeration channels = connection.getUnfinishedChannels();

while(channels.hasMoreElements())
{
progress.message.jclient.channel.RecoverableFileChannel channel = null;
channel = (progress.message.jclient.
channel.RecoverableFileChannel)channels.nextElement();
try
{
// Set a channel listener
channel.setChannelListener(new LMSChannelListener());
System.out.println("\nTry to restore channel - " + channel.getChannelID());

Aurea Software, Inc. Confidential 383 Copyright © 2013 Aurea, Inc.

Chapter 11: Recoverable File Channels
// Continue the transfer
channel.continueTransfer();

//begin to browse the transfer aurea
browseTransfer(channel);
}
catch(javax.jms.JMSException jmse)
{
channel.cancel();
System.out.println(jmse.getMessage());
}
}
}
}
catch(javax.jms.JMSException e)
{
System.out.println(e.getMessage());
}
catch(IOException e)
{
e.printStackTrace();
}
}

The RestoreChannels pattern in the FileReceiver, shown in FileReceiver Sample:
RestoreChannels Pattern on page 384, is slightly different from the FileSender.

FileReceiver Sample: RestoreChannels Pattern

private void restoreChannels()
{
// First clean the property log file. There can be extra records
// (see comments in onMessage())
cleanPropFile();

try
{
// Check if there are any unfinished channels to restore
if(connection.hasUnfinishedChannels())
{
// Retrieve an enumeration of Strings contains all available channelIDs
Enumeration channelIDs = connection.getUnfinishedChannelIDs();
while(channelIDs.hasMoreElements())
{
String channelID = null;
progress.message.jclient.channel.RecoverableFileChannel channel = null;
String channelFile = null;
// Get the channelID
channelID = (String)channelIDs.nextElement();

// Retrieve the channel reference. If failed try the next element
channel = (progress.message.jclient.channel.
RecoverableFileChannel)connection.getChannel(channelID);
try
{

Aurea Software, Inc. Confidential 384 Copyright © 2013 Aurea, Inc.

About Recoverable File Channels for Large Messages
// Set a channel listener
channel.setChannelListener(new LMSChannelListener());

// Access our properties to print useful information
channelFile = saveDirName + File.separator + msgProp.getProperty(channelID
);

System.out.println("\nTry to restore channel -" + channelID
+ "- and save into file - " + channelFile);

// Continue the transfer
channel.continueTransfer();

//Check if channel was being saved before failure. If not, then we
//specify the file - channelFile (from property log file three strings
above) -
//where to save received fragments
if(!channel.isSaving())
channel.save(new File(channelFile));
}
catch(javax.jms.JMSException jmse)
{
channel.cancel();
System.out.println(jmse.getMessage());
}
}
}
}
...
}

Duplicate Detection for File Transfers

SonicMQ provides a mechanism for detection of duplicate messages to ensure that a
message is not sent more than once. You enable duplicate detection on file channels with
the Channel method setUUID(String uuid, int timeToLive).

The nature of large message transfers makes it important to test for duplicates at the
inception of the transfer. When a fatal error occurs during an ongoing file transfer, it might
be practical to have the entire file resent by a different client. But the application should
prevent two clients from sending the same large message at the same time.

When duplicate detection is set, a 32-character universally unique ID (UUID) is assigned
that relates to the message being sent. The timeToLive parameter of the method specifies
how long a channel transfer can be inactive before another channel with the same UUID
can be reused. After the transfer has completed, the UUID cannot be reused for a new
channel.
Aurea Software, Inc. Confidential 385 Copyright © 2013 Aurea, Inc.

Chapter 11: Recoverable File Channels
To distinguish between when the channel is to be active and when the channel has been
duplicated, two exceptions are defined:

• ChannelDuplicateDetectException is thrown if there has been a duplicate of a
message.

• ChannelActiveException is thrown if the channel is perceived to be active. This
exception has a getTime() method that returns when the channel might be inactive.

See theDuplicate Message Detection Overview on page 346 for more information.

Note: Duplicate detection is normally a sender issue. For multi-broker architectures, the
UUID registration is therefore resident on the sender’s broker. But file transfers
favor the receiver watching for duplicates so the UUID registration for file transfers
resides on the receiver’s broker.

An UUID-related exception can occur asynchronously during a transfer,
ERR_CHANNEL_UUID_IN_USE. This error can happen when the receiver, continually updating
the duplicate detection persistent storage mechanism on its broker, gets stressed such that
it cannot keep up notification that it is active. If another channel starts with that same UUID,
the error is thrown. You can minimize the chance of this occurring by setting the timeToLive
value on the UUID to a higher value. Rather than 1 (one minute), try 10 to allow the systems
to loosen up.

Security on File Transfers

Encryption can be used for file transfers so that is read and written DES or Triple DES
encryption using the key provided. The setter, setDES(java.security.Key key) or
setDESede(java.security.Key key), is called before the channel is established between
the sending and receiving clients—before the header message is sent, before
completeConnect() is called by the receiver, and before continueTransfer() is called on
recovery.

The sender’s key and receiver’s key are unrelated. The sender can send an unencrypted
file that the receiver encrypts before saving the file. Specifically:

• Setting DES or DESede on the sender implies that the local file is to be read using the
encryption type and key provided.

• Setting DES or DESede on the receiver implies that the file that is written on the
receiver system will use the stated encryption type and key provided.

Java Cryptography Extension (JCE), accessible from Sun’s Web site, is an important part
of DES encryption and some JVMs provide it while others do not. The Java Runtime
Environment (JRE) bundled with SonicMQ for installations under Windows NT includes
IBM’s JCE.
Aurea Software, Inc. Confidential 386 Copyright © 2013 Aurea, Inc.

About Recoverable File Channels for Large Messages
Using Multiple File Channels

When one client is using channels, the client might need to recover multiple channels. The
recovery method, continueTransfer(), blocks and times out when the sending or
receiving client is not available to continue the transfer.

Important: When several channels might be in use, do not let two or more clients
share a local store directory as the recovery information could be corrupted
for all the clients sharing the same local store directory.

Methods for handling unfinished channels are provided on the QueueConnection to manage
and iterate through unfinished channels.

See the recovery patterns in code excerpts from the samples at Recovering an Interrupted
Transfer on page 382.

Exception Handling for File Channels

When designing applications with recoverable file channels, create logic to handle common
error situations, which include:

• On the QueueSender.send() call

• On the Channel.completeConnect() call

• During recovery, on the Channel.continueTransfer call

• During an active file transfer

The Channel implementation provides ErrorCodes that isolate problem cases. These error
codes are listed in Table 43.

Table 43: Error Codes from the Channel Implementation

Error Constant Meaning

ERR_CHANNEL_TIMEOUT There has been a time out while attempting to
establish a channel.

ERR_CHANNEL_RETRY_TIMEOUT There has been a time out while attempting to
transfer the file.

ERR_CHANNEL_RECOVER_FILE_UNREADABLE The file to transfer is unreadable.

ERR_CHANNEL_IMPLICITLY_CANCELLED There is no channel listener and the channel
was canceled.

ERR_CHANNEL_INTERNAL_ERROR There has been an internal JMS Exception. Call
getLinkedException() to determine the
problem.

ERR_CHANNEL_IO_ERROR There has been an internal IO Exception. Call
getLinkedException() to determine the
problem.
Aurea Software, Inc. Confidential 387 Copyright © 2013 Aurea, Inc.

Chapter 11: Recoverable File Channels
Log Files

Log files are produced on both the sender and the receiver when a file transfer starts.
These logs enable recovery. Both the sender and the receiver use their logs to re-establish
contact. As such, if one of the participants in file transfers prefers to cancel unfinished
channels while the other intends to complete them, the logs do not exist to complete
recovery. The identity of the channel and the bytes transferred enable the receiver to
specify the point where recovery should resume.

ERR_CHANNEL_ALREADY_ESTABLISHED An attempt was made to establish a channel
with a sender that already has a channel
established.

ERR_CHANNEL_ACTIVE The channel is currently active. This is the error
code used with the ChannelActiveException.

ERR_CHANNEL_DUPLICATE The channel has been duplicated. This is the
error code used with the Channel Duplicate
Detect Exception.

ERR_CHANNEL_UUID_IN_USE Another channel successfully established a
channel using the UUID specified for this
channel. This might occur when applications
are under heavy load and the channel was
seen as inactive. The timeToLive value, ttl, in
the
setUUID(String uuid, int ttl) method might be
too small.

See Duplicate Detection for File Transfers on
page 385 for more information.

ERR_CHANNEL_FATAL_DUP_DETECT_EXCEPTI
ON

There was a fatal error while accessing
duplicate detection.

ERR_CHANNEL_TRANSFER_CLOSED The transfer was closed. Existing recovery
information is preserved.

ERR_CHANNEL_INVALID_KEY_TYPE The type of key presented for
encryption/decryption was not the type
expected.

ERR_CHANNEL_INVALID_DECRYPTION_KEY The key presented for encryption/decryption
was not valid.

ERR_CHANNEL_JCE_UNAVAILABLE The Java Cryptography Extensions were
required by setDES or setDESede and were
not available.

Table 43: Error Codes from the Channel Implementation

Error Constant Meaning
Aurea Software, Inc. Confidential 388 Copyright © 2013 Aurea, Inc.

Tips and Techniques for Using File Channels
These files and folders should never be shared. Two applications on the same system
should provide distinct folders. Note that the default folder name is the name of the current
working directory. You should make efforts to be more emphatic. For example, the samples
in ClientPlus/LargeMessageSupport are two applications in the same folder. The user
name provided in the startup of each application is assigned to the folder name for the
application so that the two applications do not share. You could hardwire a very specific
name into every sender and receiver application to ensure that recovery logs are distinct.

Tips and Techniques for Using File Channels
Some design and logic techniques make file transfers easier to work with, such as:

• Do not share local store directories across applications. If you do explicitly set the local
store directory, the application’s working directory is used to store recovery log files.
When multiple channel applications might run in that working directory, recovery files
can be damaged.

• The ChannelListener is only informed during a file transfer. The listener is tuned in to
the channel, not the sender and receiver sessions.

• While it is generally advised, all brokers within a routing node must have unique
names to use channels.

• You cannot enable client persistence mechanisms (see Client Persistence on
page 163) in the same connection that you intend to use recoverable file channels.

• The maximum file size supported is dependent the Java Virtual Machines running on
the participants’ systems. The general limit on JVM’s earlier than 1.2 is 2 Gigabytes.

• If a send() call times out, the header message can still be available on queues but the
receiver will experience an ERR_RETRY_TIMEOUT exception when it tries to establish the
channel. It is practical to set the timeToLive to the same value as the timeout of the
channel.

• Directory and files that are created on the sender and the receiver enable recovery. If
you delete the files or folders on either the sender or receiver, the other peer might
attempt recovery but it will not be achievable.
Aurea Software, Inc. Confidential 389 Copyright © 2013 Aurea, Inc.

Chapter 11: Recoverable File Channels
Aurea Software, Inc. Confidential 390 Copyright © 2013 Aurea, Inc.

12
SonicStream API

This chapter includes:

• About the SonicStream API on page 391

• Common SonicStreamFactory Semantics on page 393

• Stream Publisher Semantics on page 394

• Stream Subscriber Semantics on page 397

• Managing Flow Control on page 399

• Handling Errors on page 400

• Samples of SonicStreams on page 400

Important: This feature requires the SonicMQ installations of the participants in a
SonicStream transfer—the sending application, the broker, and the receiving
applications—are installed, upgraded, or updated to SonicMQ V2013.

About the SonicStream API
SonicMQ installations have the option of using the SonicStream API to send streams of
data to any number of interested applications, using SonicMQ as the transport mechanism,
yet with no dependency on serializing the objects to a file on the sending side.

The Sonic Stream API uses the JMS Publish and Subscribe messaging model to break a
byte stream of indeterminate length into a series of JMS BytesMessages. The message
size limit is set by the stream application.
Aurea Software, Inc. Confidential 391 Copyright © 2013 Aurea, Inc.

Chapter 12: SonicStream API
As illustrated in Figure 72, the sending application instance, the Stream Publisher, creates
an output stream instance, and then writes data into that stream. The Sonic Stream API, in
concert with the SonicMQ Client Runtime, uses a topic as the destination on the SonicMQ
Broker for its stream. Receiving application instances, the Stream Subscriber(s), create
input stream instances and use the SonicMQ Client Runtime to subscribe to that topic, and
then read data into their input stream instances. The StreamSubscriber application handles
the data received to complete the data transfer.

Figure 73: Sonic Publisher Sending a Stream to Multiple Stream Subscribers to
a Stream Topic

The SonicStream API is a lean process. Any requirements for handling interruption of a
stream on the receiver side must be accomplished by the user’s application code.

The size of the streamed data does need to be known as long as the sender application
moderates the flow of data into the stream and the receiver applications offload the
received streamed data out of their respective receiver applications at a rate that allows the
receiver applications to stay within their allotted memory limits

A notification topic can be established so that a StreamSubscriber can post alerts of error
conditions. The StreamPublisher’s listener can read and act on the information. See
NotificationTopic on page 393 for details.

Note: Scope of Usage of Sonic Streams:

The delivery mode is limited to non-persistent.

The subscriptions created by StreamSubscribers must be nondurable.

Sessions created by StreamPublishers and StreamSubscribers must be
nontransacted.

Sonic Stream functionality is only available for the SonicMQ Java client.

The advanced messaging feature of multitopic publish and multitopic subscribe are
not supported for SonicStream applications.

No support for recovery is provided to receivers

SonicMQ
Broker

StreamPublisher
Application Code Layer

JMS Client API J
M
S

C
O
N
N
E
C
T
I
O
N

SonicMQ
Client
Runtime

S
E
S
S
I
O
N

Stream Subscriber(s)
Application Code Layer

JMS Client API

SonicStreamAPI

SonicMQ
Client
Runtime

S
E
S
S
I
O
N

Data
Rec'd

J
M
S

C
O
N
N
E
C
T
I
O
N

Topic
StreamTopic

Sonic Input
Stream

Data
to

send

SonicStreamAPI

Sonic Output
Stream
Aurea Software, Inc. Confidential 392 Copyright © 2013 Aurea, Inc.

Common SonicStreamFactory Semantics
Common SonicStreamFactory Semantics
The following are the constructor signatures and the methods used by a Stream Publisher
and Stream Subscribers.

Constructors

The constructors for com.sonicsw.stream.SonicStreamFactory let you choose to set the
StreamTopic and the ApplicationName in the constructor:

• SonicStreamFactory()

• SonicStreamFactory(String streamTopic)

• SonicStreamFactory(String streamTopic, String.appName)

Methods

The setStreamTopic method can be used to set or reset the stream topic.

StreamTopic
• setStreamTopic(String topic)

• String getStreamTopic()

useTempStreamTopic

• useTempStreamTopic(boolean value)

Instead of specifying the StreamTopic, setting this method to the value true specifies that
a unique temporary topic be used to send and receive the SonicStream messages.

ApplicationName
• setApplicationName(String appName)

• String getApplicationName()

An application name can be added as a property to associated factory instances and
stream controllers. The default APPLICATION_NAME_PROPERTY is StreamsApp.

NotificationTopic
• setNotificationTopic(java.lang.String topic)

• String getNotificationTopic()

Method to set the topic to which all notification messages are sent and received by stream
controllers created through the factory instance. See Notifications on page 398 for more
information.
Aurea Software, Inc. Confidential 393 Copyright © 2013 Aurea, Inc.

Chapter 12: SonicStream API
SonicStream Interface

A SonicStream is a header message and a payload. The interface SonicStream lets you get
information:

• getHeaderMessage() — Gets the JMS Message that is sent as the first message of
the stream.

• getStreamId() — Gets the identifier that is used to distinguish a SonicStream
instance (and its associated segments) from other SonicStream instances.

• getInputStream() — Gets the java.io.InputStream instance of this SonicStream
instance.

• getOutputStream() — Gets the java.io.OutputStream instance of this SonicStream
instance.

• getNotificationDestination() — Gets the JMS Destination used by this
SonicStream instance. Data written to a SonicStream instance is published in the form
of JMS TextMessages to this Destination. Likewise, data will be received, in the form
of JMS TextMessages, from this Destination by a SonicStream instance.

• getStreamStatus() — Gets the current status of a SonicStream instance. The status
is returned as a StreamStatus object.

Stream Publisher Semantics
The sender application uses a factory method to create an output stream controller
instance. The topic used for publishing by the output stream instance can be passed in to
the factory method. The sender application is responsible for creating a JMS Connection
object, which is passed as an argument to the factory method. The session, producer, and
consumer (for handling notifications from receivers) objects are created by the stream
controller object.

The application gets an output stream instance from the controller, and then writes data to
the output stream instance. The application can choose to set and get properties on the
JMS message that is the stream header. The application can choose to monitor the aurea
of the data transfer by querying a stream status object obtained from the controller
instance.

When the stream instance is complete, the application closes the stream. Once the stream
is closed, the application can use the stream controller to create another stream.

When the application is complete, closing the stream controller closes the underlying JMS
session, producer and consumer. The JMS Connection object used by the stream is closed
by the sender application.
Aurea Software, Inc. Confidential 394 Copyright © 2013 Aurea, Inc.

Stream Publisher Semantics
SonicStreamFactory
• createSonicOutputStreamController(Connection con)

• createSonicOutputStreamController(Connection con,
Destination streamTopic,

Destination notifyTopic)

Creates an instance of a SonicOutputStreamController object that is used to create
stream instances.

SegmentSize
• setSegmentSize(int segmentSize)

• int getSegmentSize()

The SonicOutputStream supports the sending of data that is much larger than Sonic JMS
message size limits because the stream is broken down into a series of segments
(sometimes referred to as chunks.)

The segment size should be tuned to the buffer capacities on the broker. Set the number
of bytes in a segment as a positive integer value to a maximum of 10 MB, the maximum
supported message size for SonicMQ. The default segment size is 16384 bytes.

DeliveryMode
• setDeliveryMode(int mode)

• int getDeliveryMode()

On a sender, the delivery mode specifies the delivery mode of the BytesMessages that carry
the message segments.

The delivery mode is, by default, javax.jms.DeliveryMode.NON_PERSISTENT. If you are
using a security-enabled broker, the default is interpreted as NON_PERSISTENT_SYNC.

If you are using a broker that is not security-enabled, NON_PERSISTENT is interpreted as
NON_PERSISTENT_ASYNC, meaning that no acknowledgement is expected by the publisher.
You can set the DeliveryMode to
progress.message.jclient.DeliveryMode.NON_PERSISTENT_SYNC so that the publisher
method blocks to await acknowledgement by the broker.

The constant is typically used instead of the integer value:

• setDeliveryMode(DeliveryMode.NON_PERSISTENT_SYNC)
Aurea Software, Inc. Confidential 395 Copyright © 2013 Aurea, Inc.

Chapter 12: SonicStream API
SonicOutputStreamController Interface

Methods in the SonicOutputStreamController interface include:

• createStream(String id) — Creates a SonicOutputStream instance with an
identifier that will be in the header of every message sent through the stream.

• registerNotificationListener(SonicStreamListener listener) — Registers a
listener that will receive asynchronous notifications. Only a single notification listener
may be registered at a given time.

• registerExceptionListener(SonicStreamExceptionListener listener) —
Registers a listener that will receive notification of asynchronous exceptions. Only a
single exception listener may be registered at a given time.

The sending application should register one of each type of listener object with the output
stream controller so that it can be notified of any asynchronous notifications or exceptions.
The listener object handles notifications sent from any receiver applications, such as notice
of a corrupted stream or a dropped connection. The sending application is responsible for
handling such errors. For example, it might be appropriate for the sending application to
clear the stream, and then write the original data to the output stream again.

The sender uses the onStreamNotification(streamId, msg) method of the
SonicStreamListener interface to handle notification messages.

• SonicStream createStream(String id) — Creates a stream with the specified
identifier

• releaseStream(SonicStream ss) — Closes the specified Stream instance

• close() — Closes the stream managed by the controller instance, JMS objects
managed by the instance, and the controller itself

StreamStatus Interface

int getCurrentStreamStatus()

The StreamStatus interface provides methods to determine whether the stream has been
created, the transfer is in aurea, the transfer completed, and if a stream has encountered
an error.

The StreamStatus interface also provides methods that get stream information:

• String getStreamId() — Identifies the stream instance.

• long getTransferStart() — Time when the transfer started.

• long getSegmentDiscarded() — Segments discarded by the stream.

• long getBytesTransferred() — Bytes transferred in the stream.

• long getSegmentsTransferred() — Segments transferred in the stream.

• long getTransferEnd() — Time when the transfer ended.

• long getTransferTime() — Elapsed time of the transfer.
Aurea Software, Inc. Confidential 396 Copyright © 2013 Aurea, Inc.

Stream Subscriber Semantics
Stream Subscriber Semantics
The receiver application uses a factory method to create an input stream controller
instance, and is responsible for creating a JMS Connection object, passed in as an
argument to the factory method. The topic used by the output stream instance can be
passed to the factory method. The session, producer (for sending notifications to the
sender’s listener), and consumer objects are created by the stream controller object.

The application gets an instance of an input stream from the controller, and reads data from
it. It can choose to access and read properties from the JMS message used as the stream
header. The application can also choose to monitor the aurea of the data transfer by
querying a stream status object. When the application completes the reading of the stream
(that is, when a read call returns endOfStream), it can get another input stream from the
controller, or the application can close the stream.

When the application is complete, closing the stream controller closes the underlying JMS
session, producer and consumer. The JMS Connection object used by the stream is the
responsibility of the receiver application.

The receiving application instance does not have to re-assemble the segments from the
sender, as that is handled by the SonicInputStream implementation. The receiving
application receives the data in the same form as when it was written to the sending
application’s SonicOutputStream instance. (except in the event of a loss of connection or
broker anomaly.)

SonicStreamFactory
• createSonicInputStreamController(Connection con)

• createSonicInputStreamController(Connection con,
 Destination streamTopic,

 Destination notifyTopic)

Creates an instance of a SonicInputStreamController object that is then used to obtain
SonicInputStreams and to send notifications to the sender.

setDeliveryMode
• setDeliveryMode(int mode)

• int getDeliveryMode()

The delivery mode for the stream controller instance. On a stream receiver, the delivery
mode applies to the notifications it emits.

setReadAheadWindowSize
• setReadaheadWindowSize(int kbytes)

• int getReadaheadWindowSize()
Aurea Software, Inc. Confidential 397 Copyright © 2013 Aurea, Inc.

Chapter 12: SonicStream API
The ReadAheadWindow is a buffer on the receiver that helps to control memory consumption
by the input stream controller. The content of the buffer consists of segments that have
been read but not yet consumed by the application.

Set the number of kilobytes in the read ahead buffer as a positive integer value.
The default read ahead window size is 500 kilobytes.

setSegment Timeout
• setSegmentTimeout(int secs)

• int getSegmentTimeout()

Sets how many seconds the SonicInputStream will wait for a segment of an opened stream
to arrive. When the timeout expires, an exception is thrown by the SonicInputStream. The
default value is 60 seconds.

SonicInputStreamController Interface

Stream Handlers
• getNextStream(long timeToWait) — Returns the next available stream to be read.

• getNextFullStream(long timeToWait) — Returns the next available full stream to be
read. Note that use of this method will likely result in the use of more heap memory
than the getNextStream method, as the entire content of the SonicStream is
assembled in memory before the SonicStream may be read. An exception will be
thrown if the getNextFullStream method is invoked and the streams runtime detects
that there is not enough space to hold the stream. Applications should ensure that
enough space will be available by increasing the readahead window size via the
setReadaheadWindowSize method of SonicStreamFactory prior to creating a
SonicInputController instance.

• isFullStreamAvailable() — Boolean that indicates whether the entire content of a
SonicStream is available to be read.

• isPartStreamAvailable() — Boolean that indicates whether at least a portion of a
SonicStream is available to be read.

• releaseStream(SonicStream ss) — Closes the specified SonicStream instance and
releases its associated resources.

• close() — Closes all streams managed by the SonicInputStreamController
instance and closes the JMS objects created by the controller instance.

Notifications
• registerExceptionListener(SonicStreamExceptionListener

listener)

• buildSenderNotification(int type, SonicStreamException ex)

• buildSenderNotification(int type, SonicStream ss,
SonicStreamException ex)
Aurea Software, Inc. Confidential 398 Copyright © 2013 Aurea, Inc.

Managing Flow Control
In the event of a corrupted stream or a dropped connection, the receiver application can
send a notification to the sender application, as illustrated in Figure 73. The receiving
application can register a listener object with the input stream controller. The listener object
implementation must determine how to respond to the error condition.

A typical scenario is the listener object sends a notification from the input stream back to
the sending application’s stream object, indicating conditions such as an apparently corrupt
stream or an interrupted connection. If the sender application is designed to resend the
stream, the receiving application would clear the input stream by either closing the current
stream (and wait for the next stream), or close the controller (and then create a new
controller for a different stream topic, if appropriate).

If connection drops on the receiving application side, the receiving application is
responsible for restoring the connection. (If the loss of connection is intermittent, the stream
would realize missed segments which the broker would redeliver.) Once the connection is
restored, the input stream implementation is responsible for sending a notification to the
sending application. This notification is received by the listener registered with the sending
application's output stream instance. It is up to the sending application how to proceed
upon receipt of such a notification. The sending application might choose to write the
original data to the stream again, or it might write it so that the data will only be sent to the
receiving application instance(s) that did not get it.

StreamSubscriber Sending Notifications Back to the StreamPublisher

Managing Flow Control
A Stream Publisher might be flow-controlled at some point. While the expectation is that
flow-controlled situations are typically transient, some may be of a longer duration due to
bad connections or a slow network. To deal with such situations, an application can be
configured so that subscribers can override the FlowToDisk setting of the broker through a
setting on the ConnectionFactory used by the receiving application instance.

SonicMQ
Broker

StreamPublisher
Application Code Layer

JMS Client API

SonicMQ
Client
Runtime

Stream Subscriber(s)
Application Code Layer

JMS Client API

SonicStreamAPI

SonicMQ
Client
Runtime

S
E
S
S
I
O
N

Data
Rec'd

J
M
S

C
O
N
N
E
C
T
I
O
N

Topic
StreamTopic

Sonic Input
Stream

Data
to

send

SonicStreamAPI

Sonic Output
Stream

Topic
NotificationTopic

J
M
S

C
O
N
N
E
C
T
I
O
N

S
E
S
S
I
O
N

Aurea Software, Inc. Confidential 399 Copyright © 2013 Aurea, Inc.

Chapter 12: SonicStream API
Handling Errors
The design of SonicStreams takes into account that the application designers typically
know how they want to handle stream disruption. For example, if a receiver-side application
suffers a dropped connection and subsequently reconnects to the Broker, then the
receiver-side application instance would typically alert the sender-side of the disruption that
took place. And the sender-side application instance could then resend the original data to
the affected receiver-side application instance. Thus, the application could avoid resending
the data to all receivers; the sending side would resend it only to the receiver application
that did not receive the original data.

The JMS Connection supplied to the SonicStreamFactory should set the ping interval.

SonicStreams do not permit an application that uses multiple threads to access the same
stream instance. Only one thread should write to a single output stream instance, and only
one thread should read from a single input stream instance.

Samples of SonicStreams
Sonic provides sample applications that demonstrate SonicStream functionality that allows
a publisher to send large objects to multiple subscribers using SonicMQ messaging. The
Stream Publisher application supplies data to the SonicStreams runtime using the
java.io.OutputStream API while the Stream Subscriber applications receive the data
using the java.io.InputStream API.

There are two pairs of sample applications for the SonicStream API:

• SonicStreams — The StreamSender and StreamReceiver applications demonstrate
basic functionality where the sender sends a hashed memory object and the receiver
receives it.

• SonicStreams with Retry — The StreamSender_Retry and StreamReceiver_Retry
applications demonstrates advanced functionality. The sender sends streams, and
accepts requests for resend from stream receivers. Resending provides an example
of the handling of errors in stream transfers.
Aurea Software, Inc. Confidential 400 Copyright © 2013 Aurea, Inc.

Samples of SonicStreams
The sample applications are provided in source code text form so that you can use them
as a basis for your SonicStreams applications. The topic name StreamTopic is arbitrary.
The source code is extensively annotated with comments to help clarify their patterns and
behaviors.

Note: User authentication on security-enabled brokers — The connection to the broker
you use for these samples requires valid user credentials if you chose to enable
security when installing or configuring the broker. If security is enabled, you can
either setup the sample user identities specified in the command line for each
sample, or supply your own user identities. If you have not created or maintained
users, the default user is Administrator with the password Administrator.

Note: Hostname and port — The samples refer to localhost. If the broker where you
want to connect is on a host other than localhost, use that host’s name. The
default port defined at installation of the broker is 2506. Use a port number that
corresponds to an acceptor on the broker you want to use.

If your acceptor definition is not tcp://localhost:2506, you need to specify
the URL in a sample’s command line with the -b parameter, such as:

..\..\SonicMQ StreamReceiver -u user -p pwd -st StreamTopic -b
tcp://myHost:3456

SonicStreams Sample

In this pair of sample applications, you are guided to start the receiver application and then
start the sender application.

1. Start the SonicMQ broker you want to use in the sample.

2. Open a console window to
install_dir/MQ2013/samples/TopicPubSub/SonicStreams.

3. Enter:

• On a Windows system:
..\..\SonicMQ StreamReceiver -u user -p pwd -st StreamTopic

• On a UNIX or Linux system:
../../SonicMQ.sh StreamReceiver -u user -p pwd -st
StreamTopic

The StreamReceiver’s console window displays:

Waiting 120 sec. for a stream...

4. Open another console window to the same path.

5. Enter:

• On a Windows system:
..\..\SonicMQ StreamSender -u user -p pwd -st StreamTopic

• On a UNIX or Linux system:
../../SonicMQ.sh StreamSender -u user -p pwd -st StreamTopic
Aurea Software, Inc. Confidential 401 Copyright © 2013 Aurea, Inc.

Chapter 12: SonicStream API
The StreamSender’s console window displays:

Generated test data

Sending an object

Sending object: MyObject_1nnn

***Notification: Receiver StreamsApp started receiving
MyObject_1nnn

CompletedSend;

Stream MyObject_1nnn: bytesSent= 3189043 chunksSent= 392
time= 2173

***Notification: Receiver StreamsApp completed receiving
MyObject_1nnn

Sleeping 5 sec

The StreamReceiver’s console window displays:

Receiving Stream MyObject_1nnn

Received object of type java.util.Hashtable; Stream
MyObject_1nnn: bytesReceived= 3189043 chunks= 392 time= 2233

Received HashTable; htSize= 100000

Waiting 120 sec. for a stream...

The StreamSender’s console window displays:

***Notification: Receiver StreamsApp completed receiving
MyObject_1nnn

Sleeping 5 sec

Both applications wait for a few seconds.

The StreamSender’s console window displays:

Sending another object

Sending object: MyObject_2nnn

***Notification: Receiver StreamsApp started receiving
MyObject_2nnn

CompletedSend;

Stream MyObject_2nnn: bytesSent= 7189043 chunksSent= 880
time= 3395
Aurea Software, Inc. Confidential 402 Copyright © 2013 Aurea, Inc.

Samples of SonicStreams
The StreamReceiver’s console window displays:

Receiving Stream MyObject_2nnn

Received object of type java.util.Hashtable; Stream
MyObject_2nnn: bytesReceived= 7189043 chunks= 879 time= 3395

Received HashTable; htSize= 200000

The receiver application exits.

The StreamSender’s console window displays:

Sleeping 10 sec

***Notification: Receiver StreamsApp completed receiving
MyObject_2nnn

After the sleep period times out, the sender application exits.

You can extend this sample by:

• Starting more instances of the receiver application. On each of the receivers, add the
-n parameter to provide a unique Application Name in the notifications displayed in the
StreamSender’s console window.

• Modify StreamSender.java to define different object sizes, or establish different data
streams and modified handling of the received stream data. You can also adjust the
segment size to determine ideal segments for your stream data. Then compile and run
the changed files to evaluate your changes.

SonicStreams Sample With Retry

This pair of sample applications show how their retry logic handles the behaviors when you
start the sender before the receiver, and how interruptions to the sender, broker, and
receiver can be handled.

1. Start the SonicMQ broker you want to use in the sample.

2. Open a console window to
install_dir/MQ2013/samples/TopicPubSub/SonicStreams.

3. Enter:

• On a Windows system:

..\..\SonicMQ StreamReceiver_Retry -u user -p pwd -st
StreamTopic

• On a UNIX or Linux system:

../../SonicMQ.sh StreamReceiver_Retry -u user -p pwd -st
StreamTopic
Aurea Software, Inc. Confidential 403 Copyright © 2013 Aurea, Inc.

Chapter 12: SonicStream API
4. Open another console window to the same path.

5. Enter:

• On a Windows system:

..\..\SonicMQ StreamSender_Retry -u user -p pwd -st
StreamTopic

• On a UNIX or Linux system:

../../SonicMQ.sh StreamSender_Retry -u user -p pwd -st
StreamTopic

The sender streams consist of a few different hypothesized DataOutputStreams. Note that
there are occasional pauses in the sending and receiving of the streams to make the
demonstration behaviors easier to observe.

Console Information in an Uninterrupted Transfer

Note: The following sender and receiver listing of console information result when the
transfers complete successfully.

Items in bold are user actions. Lines with just ... indicate that a section of the
information was eliminated from this listing.

Sender
Start StreamSender_Retry
Attempting to create connection...
Created new controller; dest= StreamTopic
Sending stream: Stream_10000;dest= StreamTopic
***Notification: Receiver StreamsApp started receiving Stream_10000
Stream_10000: Wrote 1000
Stream_10000: Wrote 2000
Stream_10000: Wrote 3000
...
Stream_10000: Wrote 8000
Stream_10000: Wrote 9000
Stream_10000: Wrote 10000
CompletedSend; Stream Stream_10000: bytesSent= 80004 chunksSent= 83 time=
10205
Sending stream: Stream_20000;dest= StreamTopic
Stream_20000: Wrote 1000
***Notification: Receiver StreamsApp completed receiving Stream_10000
***Notification: Receiver StreamsApp started receiving Stream_20000
Stream_20000: Wrote 2000
Stream_20000: Wrote 3000
...
Stream_20000: Wrote 18000
Stream_20000: Wrote 19000
Stream_20000: Wrote 20000
CompletedSend; Stream Stream_20000: bytesSent= 160004 chunksSent= 163 time=
20309
Sending stream: Stream_40000;dest= StreamTopic
Stream_40000: Wrote 1000
***Notification: Receiver StreamsApp completed receiving Stream_20000
***Notification: Receiver StreamsApp started receiving Stream_40000
Aurea Software, Inc. Confidential 404 Copyright © 2013 Aurea, Inc.

Samples of SonicStreams
Stream_40000: Wrote 2000
Stream_40000: Wrote 3000
...
Stream_40000: Wrote 38000
Stream_40000: Wrote 39000
Stream_40000: Wrote 40000
CompletedSend; Stream Stream_40000: bytesSent= 320004 chunksSent= 323 time=
40510
Waiting 30000 for stream requests...
***Notification: Receiver StreamsApp completed receiving Stream_40000
Waiting 30000 for stream requests...
Waiting 30000 for stream requests...
...
Waiting 30000 for stream requests...
...
CRTL-C

Receiver
Start StreamReceiver_Retry
Attempting to create connection...
Created new controller; dest= StreamTopic
Sending retry request for streamId ALL to TheNotifyTopic
Waiting 60 sec for more Streams on topic StreamTopic
Receiving stream: Stream_10000
Stream_10000: Read 1000
Stream_10000: Read 2000
Stream_10000: Read 3000
...
Stream_10000: Read 8000
Stream_10000: Read 9000
Stream_10000: Read 10000
*** Completed successful receive; Stream Stream_10000: bytesReceived= 80004
chunksReceived= 83 time= 11196
Waiting 60 sec for more Streams on topic StreamTopic
Receiving stream: Stream_20000
Stream_20000: Read 1000
Stream_20000: Read 2000
Stream_20000: Read 3000
...
Stream_20000: Read 18000
Stream_20000: Read 19000
Stream_20000: Read 20000
*** Completed successful receive; Stream Stream_20000: bytesReceived=
160004 chunksReceived= 163 time= 21301
Waiting 60 sec for more Streams on topic StreamTopic
Receiving stream: Stream_40000
Stream_40000: Read 1000
Stream_40000: Read 2000
Stream_40000: Read 3000
...
Stream_40000: Read 38000
Stream_40000: Read 39000
Stream_40000: Read 40000
*** Completed successful receive; Stream Stream_40000: bytesReceived=
320004 chunksReceived= 323 time= 41521
Waiting 60 sec for more Streams on topic StreamTopic
No more streams available; ...
Performing retries: countToRetry= 0
Shutting down...
Aurea Software, Inc. Confidential 405 Copyright © 2013 Aurea, Inc.

Chapter 12: SonicStream API
Experimenting with Interruptions

When the receiver starts up, it sends a notification to the sender requesting all streams. If
the receiver detects an error, it will send a notification to the sender requesting a resend of
the stream to a temporary topic. If the connection is dropped, the receiver application will
reestablish the connection. The sender keeps a list of retry requests and services them one
at a time.

The following listings show the information in the sender and receiver console windows
when:

a. The stream receiver is stopped and then restarted.

b. The stream sender is stopped and then restarted.

c. The broker with the streamTopic is stopped and then restarted.

Console Information in an Transfer Where the
Receiver is Interrupted

Sender
Start StreamSender_Retry
Attempting to create connection...
Created new controller; dest= StreamTopic
Sending stream: Stream_10000;dest= StreamTopic
***Notification: Receiver StreamsApp started receiving Stream_10000
Stream_10000: Wrote 1000
Stream_10000: Wrote 2000
Stream_10000: Wrote 3000
...
Stream_10000: Wrote 8000
Stream_10000: Wrote 9000
Stream_10000: Wrote 10000
CompletedSend; Stream Stream_10000: bytesSent= 80004 chunksSent= 83 time=
10195
Sending stream: Stream_20000;dest= StreamTopic
Stream_20000: Wrote 1000
***Notification: Receiver StreamsApp retry request for streamId: ALL
replyDest= StreamTopic
Stream_20000: Wrote 2000
Stream_20000: Wrote 3000
...
Stream_20000: Wrote 18000
Stream_20000: Wrote 19000
Stream_20000: Wrote 20000
CompletedSend; Stream Stream_20000: bytesSent= 160004 chunksSent= 163 time=
20360
Sending stream: Stream_40000;dest= StreamTopic
***Notification: Receiver StreamsApp started receiving Stream_40000
Stream_40000: Wrote 1000
Stream_40000: Wrote 2000
Stream_40000: Wrote 3000
...
Stream_40000: Wrote 7000
Stream_40000: Wrote 8000
Aurea Software, Inc. Confidential 406 Copyright © 2013 Aurea, Inc.

Samples of SonicStreams
Receiver
Start StreamReceiver_Retry
Attempting to create connection...
Created new controller; dest= StreamTopic
Sending retry request for streamId ALL to TheNotifyTopic
Waiting 60 sec for more Streams on topic StreamTopic
Receiving stream: Stream_10000
Stream_10000: Read 1000
Stream_10000: Read 2000
Stream_10000: Read 3000
...
Stream_10000: Read 8000
Stream_10000: Read 9000
Stream_10000: Read 10000
*** Completed successful receive; Stream Stream_10000: bytesReceived= 80004
chunksReceived= 83 time= 20200
Waiting 60 sec for more Streams on topic StreamTopic
Receiving stream: Stream_20000
Stream_20000: Read 1000
Waiting 60 sec for more Streams on topic StreamTopic
***** Releasing duplicate stream Stream_10000
Waiting 60 sec for more Streams on topic StreamTopic
onStreamException: StreamId= Stream_10000; error: errorcode= 3
com.sonicsw.stream.SonicStreamException: Received segment 1 for
stream Stream_10000 ; stream does not exist; msg discarded
Receiving stream: Stream_20000
Stream_20000: Read 1000
Stream_20000: Read 2000
Stream_20000: Read 3000
...
Stream_20000: Read 8000
Stream_20000: Read 9000
Stream_20000: Read 10000
CTRL-C

Restart StreamReceiver_Retry
Attempting to create connection...
Created new controller; dest= StreamTopic
Sending retry request for streamId ALL to TheNotifyTopic
Waiting 60 sec for more Streams on topic StreamTopic
onStreamException: StreamId= Stream_20000; error: errorcode= 3
com.sonicsw.stream.SonicStreamException: Received segment 121 fo
r stream Stream_20000 ; stream does not exist; msg discarded
Receiving stream: Stream_40000
Stream_40000: Read 1000
Stream_40000: Read 2000
CTRL-C

Console Information in an Transfer Where the
Sender is Interrupted

Sender
Start StreamSender_Retry
Attempting to create connection...
Created new controller; dest= StreamTopic
Sending stream: Stream_10000;dest= StreamTopic
***Notification: Receiver StreamsApp started receiving Stream_10000
Aurea Software, Inc. Confidential 407 Copyright © 2013 Aurea, Inc.

Chapter 12: SonicStream API
Stream_10000: Wrote 1000
Stream_10000: Wrote 2000
Stream_10000: Wrote 3000
...
Stream_10000: Wrote 7000
Stream_10000: Wrote 8000
Stream_10000: Wrote 9000
Stream_10000: Wrote 10000
CompletedSend; Stream Stream_10000: bytesSent= 80004 chunksSent= 83 time=
19208
Sending stream: Stream_20000;dest= StreamTopic
Stream_20000: Wrote 1000
***Notification: Receiver StreamsApp completed receiving Stream_10000
***Notification: Receiver StreamsApp started receiving Stream_20000
Stream_20000: Wrote 2000
CRTL-C

Restart StreamSender_Retry
Attempting to create connection...
Created new controller; dest= StreamTopic
Sending stream: Stream_10000;dest= StreamTopic
Stream_10000: Wrote 1000
Stream_10000: Wrote 2000
Stream_10000: Wrote 3000
...
Stream_10000: Wrote 8000
Stream_10000: Wrote 9000
Stream_10000: Wrote 10000
CompletedSend; Stream Stream_10000: bytesSent= 80004 chunksSent= 83 time=
10135
Sending stream: Stream_20000;dest= StreamTopic
***Notification: Receiver StreamsApp started receiving Stream_20000
Stream_20000: Wrote 1000
Stream_20000: Wrote 2000
Stream_20000: Wrote 3000
...
Stream_20000: Wrote 13000
Stream_20000: Wrote 14000
Stream_20000: Wrote 15000
***Notification: Receiver StreamsApp retry request for streamId: ALL
replyDest= StreamTopic
Stream_20000: Wrote 16000
Stream_20000: Wrote 17000
Stream_20000: Wrote 18000
Stream_20000: Wrote 19000
Stream_20000: Wrote 20000
CompletedSend; Stream Stream_20000: bytesSent= 160004 chunksSent= 163 time=
29943
Sending stream: Stream_40000;dest= StreamTopic
Stream_40000: Wrote 1000
***Notification: Receiver StreamsApp started receiving Stream_40000
Stream_40000: Wrote 2000
Stream_40000: Wrote 3000
CTRL-C

Receiver
Start StreamReceiver_Retry
Attempting to create connection...
Created new controller; dest= StreamTopic
Sending stream: Stream_10000;dest= StreamTopic
Aurea Software, Inc. Confidential 408 Copyright © 2013 Aurea, Inc.

Samples of SonicStreams
***Notification: Receiver StreamsApp started receiving Stream_10000
Stream_10000: Wrote 1000
Stream_10000: Wrote 2000
Stream_10000: Wrote 3000
...
Stream_10000: Wrote 8000
Stream_10000: Wrote 9000
Stream_10000: Wrote 10000
CompletedSend; Stream Stream_10000: bytesSent= 80004 chunksSent= 83 time=
10195
Sending stream: Stream_20000;dest= StreamTopic
Stream_20000: Wrote 1000
***Notification: Receiver StreamsApp retry request for streamId: ALL
replyDest= StreamTopic
Stream_20000: Wrote 2000
Stream_20000: Wrote 3000
Stream_20000: Wrote 4000
...
Stream_20000: Wrote 18000
Stream_20000: Wrote 19000
Stream_20000: Wrote 20000
CompletedSend; Stream Stream_20000: bytesSent= 160004 chunksSent= 163 time=
20360
Sending stream: Stream_40000;dest= StreamTopic
***Notification: Receiver StreamsApp started receiving Stream_40000
Stream_40000: Wrote 1000
Stream_40000: Wrote 2000
Stream_40000: Wrote 3000
...
Stream_40000: Wrote 7000
Stream_40000: Wrote 8000

Console Information in an Transfer Where the Broker
is Interrupted

Sender
Start StreamSender_Retry
Attempting to create connection...
Created new controller; dest= StreamTopic
Sending stream: Stream_10000;dest= StreamTopic
Stream_10000: Wrote 1000
Stream_10000: Wrote 2000
Stream_10000: Wrote 3000
Stream_10000: Wrote 4000
***Notification: Receiver StreamsApp retry request for streamId: ALL
replyDest= StreamTopic
Stream_10000: Wrote 5000
Stream_10000: Wrote 6000
Stream_10000: Wrote 7000
Stream_10000: Wrote 8000
Stream_10000: Wrote 9000
Stream_10000: Wrote 10000
CompletedSend; Stream Stream_10000: bytesSent= 80004 chunksSent= 83 time=
10225
Sending stream: Stream_20000;dest= StreamTopic
***Notification: Receiver StreamsApp started receiving Stream_20000
Stream_20000: Wrote 1000
Stream_20000: Wrote 2000
Aurea Software, Inc. Confidential 409 Copyright © 2013 Aurea, Inc.

Chapter 12: SonicStream API
Stream_20000: Wrote 3000
onStreamException: StreamId= Stream_20000; error: errorcode= 7
com.sonicsw.stream.SonicStreamException: JMSException
Attempting to create connection...
Cannot connect to broker: localhost:2506. Pausing 10 seconds before retry.
Attempting to create connection...
Cannot connect to broker: localhost:2506. Pausing 10 seconds before retry.
...
Cannot connect to broker: localhost:2506. Pausing 10 seconds before retry.
Attempting to create connection...
Created new controller; dest= StreamTopic
Sending stream: Stream_40000;dest= StreamTopic
Stream_40000: Wrote 1000
***Notification: Receiver StreamsApp started receiving Stream_40000
Stream_40000: Wrote 2000
Stream_40000: Wrote 3000
...
Stream_40000: Wrote 8000
Stream_40000: Wrote 9000
CTRL-C

Receiver
Start StreamReceiver_Retry
Attempting to create connection...
Created new controller; dest= StreamTopic
Sending retry request for streamId ALL to TheNotifyTopic
Waiting 60 sec for more Streams on topic StreamTopic
onStreamException: StreamId= Stream_10000; error: errorcode= 3
com.sonicsw.stream.SonicStreamException: Received segment 33 for
 stream Stream_10000 ; stream does not exist; msg discarded
Receiving stream: Stream_20000
Stream_20000: Read 1000
Stream_20000: Read 2000
onStreamException: StreamId= Stream_20000; error: errorcode= 7
com.sonicsw.stream.SonicStreamException: JMSException
Attempting to create connection...
Cannot connect to broker: localhost:2506. Pausing 10 seconds before retry.
Attempting to create connection...
...
Cannot connect to broker: localhost:2506. Pausing 10 seconds before retry.
Attempting to create connection...
Created new controller; dest= StreamTopic
Sending retry request for streamId ALL to TheNotifyTopic
Waiting 60 sec for more Streams on topic StreamTopic
Receiving stream: Stream_40000
Stream_40000: Read 1000
Stream_40000: Read 2000
Stream_40000: Read 3000
...
Stream_40000: Read 8000
CTRL-C
Aurea Software, Inc. Confidential 410 Copyright © 2013 Aurea, Inc.

13
Hierarchical Name Spaces

This chapter provides information about hierarchical name spaces, which allow you to
create a hierarchy of contents by delimiting nodes when you name a topic. This feature can
be useful in the naming and management of topics. This chapter contains the following
sections:

• About Hierarchical Name Spaces on page 411

• Publishing a Message to a Topic on page 413

• Broker Management of Topic Hierarchies on page 414

• Subscribing to Nodes in the Topic Hierarchy on page 415

• Examples of a Topic Name Space on page 420

About Hierarchical Name Spaces
Hierarchical name spaces are a topic-grouping mechanism available with SonicMQ. When
you use topics in the Pub/Sub domain, the publisher, broker, and subscriber all adhere to
the JMS standards. But SonicMQ extends topic management in a way that adds virtually
no overhead when publishing, yet provides faster access, easier filtering, and flexible
subscriptions. By delimiting nodes when naming a topic, a hierarchy of contents is created
at the broker.
Aurea Software, Inc. Confidential 411 Copyright © 2013 Aurea, Inc.

Chapter 13: Hierarchical Name Spaces
Advantages of Hierarchical Name Spaces

Naming conventions become cumbersome to work with when long strings are passed
around as identifiers. SonicMQ offers the ability to use a naming and directory service with
the naming and management of topics. As a result, topics are easier to specify and control
for clients and are correspondingly faster to manage and control by the broker.

While a topic hierarchy can be flat (linear), it typically builds from one or more root topics,
adding other topics in levels of parent-child relationships to create a hierarchical naming
structure.

The SonicMQ administrator can set and monitor security with the same template character
devices to assure that the scope of message permissions is appropriate for each user
individually and as a member of one or more groups. See the Aurea SonicMQ Deployment
Guide to learn how security can control access to topic name spaces.

In most messaging systems, there is a one-level structure, as shown in Figure 74.

Figure 74: Topic Structure Without Hierarchies

Without hierarchies, many topics are stacked onto one level. When many topics are used,
it gets increasingly difficult to maintain access to the naming structure and to denote topic
relationships.

Hierarchical name spaces in SonicMQ use a parent-child subordinated folder structure, as
shown in Figure 75.
Aurea Software, Inc. Confidential 412 Copyright © 2013 Aurea, Inc.

Publishing a Message to a Topic
Figure 75: Topic Structure with Hierarchies

With hierarchies, a topic named SalesData.France.Paris denotes a content node in a
hierarchical structure that can participate in selection mechanisms that refer to its depth in
the structure (third-level), the name of the node itself (Paris), and its memberships (Paris
is a member of France and a member of SalesData, among others).

Meaningful names in a topic hierarchy offer many other advantages for message retrieval
and security authorization, as discussed later in this chapter.

Publishing a Message to a Topic
Structuring useful topic hierarchies optimizes the management of the hierarchy for the
broker and its accessibility by subscribers.

Publishing a message to a topic encourages use of hierarchy delimiters and deprecates the
use of a few special characters and topic names.

Topic Notation that Enables Topic Hierarchies

Hierarchical name spaces use the same notation as fully qualified packages and classes:
period-delimited strings. Security controls whether or not an authenticated user has
permission to publish to a topic content node.

See the Aurea SonicMQ Deployment Guide to learn how security can control publication to
topic content nodes.

Reserved Characters When Publishing

Some characters and strings are reserved for special use:

• Delimit the hierarchical nodes with . (period). For example, the Chat sample uses the

topic name jms.samples.chat.

• Do not use * (asterisk), $ (dollar sign), or # (pound) in topic names.

• Reserve $SYS and $ISYS for administrative topics.

For example, the Chat sample uses the topic name jms.samples.chat.
Aurea Software, Inc. Confidential 413 Copyright © 2013 Aurea, Inc.

Chapter 13: Hierarchical Name Spaces
Topic Structure, Syntax, and Semantics

There are few constraints on a topic hierarchy. SonicMQ supports:

• Unlimited number of topics at any content node

• Unlimited depth to the hierarchy (period-separated strings)

• Unlimited number of topic hierarchies

• Long name for any topic node and any topic

• Long name for the complete string that defines a specific node

Compact, balanced structures always outperform bulky unwieldy hierarchical structures.
There are, however, some naming constraints:

• The name must be one or more characters in length with neither leading nor trailing
blank space. Embedded spaces are acceptable.

• The topic hierarchies rooted at $SYS and $ISYS are reserved for the broker's system
messages.

Note: For more information on $SYS and $ISYS, see the Aurea SonicMQ Configuration
and Management Guide.

Topic Syntax and Semantics

The following naming conventions apply to topic naming:

• Case sensitive — Topic names are case sensitive (like the Java language). For
example, SonicMQ recognizes ACCOUNTS and Accounts as two different topic names.

• Spaces in names — Topic names can include the space character. For example,
accounts payable. Spaces are treated just like any other character in the topic name.

• Empty string — A topic level can be an empty string. For example, a..c is a
three-level topic name whose middle level is empty. The root node is not a content
node, so just an empty string (“ “) is not a valid topic level for publication.

Note: The value null indicates an absence of content, or a zero-length string. The
Unicode null character (\x0000) is not a null in this convention.

Broker Management of Topic Hierarchies
Topic hierarchies empower the broker in two significant ways:

• Selection and filtering of topics is, for most purposes, already accomplished. Access
to multiple topics is indexed for much faster retrieval than flat naming systems.

• Security that would otherwise be set for each topic individually can be established for
a content node and, optionally, its subordinate nodes.
Aurea Software, Inc. Confidential 414 Copyright © 2013 Aurea, Inc.

Subscribing to Nodes in the Topic Hierarchy
Subscribing to Nodes in the Topic Hierarchy
Subscriptions are created in the JMS standard way with the Topic and the
TopicSubscriber methods. As shown in Figure 76, to get messages published for U S A
Credit, use the topic name Credit.U S A.

Figure 76: Subscribing to the Topic Credit.U S A

While hierarchical topics enable powerful security and accelerate the retrieval of topics by
the broker, SonicMQ topic hierarchies enable unique multiple topic subscriptions, allowing
you to:

• Subscribe to many topics quickly

• Subscribe to topics whose complete name is unknown

• Traverse topic structures in powerful ways

When you use topic hierarchies, message selectors—an inherently slow and recurring
process—can often be eliminated.

Template Characters

Wild cards are special characters in a sample string that are interpreted when evaluating
a set of strings to form a list of qualified names. In this case, however, the special
characters are referred to as template characters because the entire string and its special
characters can be stored for later evaluation by durable subscriptions and security
permissions. The selection of topic names is dynamic, evaluated every time the topic is
requested.

The period (.) delimiter is used together with the asterisk (*) and the pound (#)template
characters when subscriptions are fulfilled. Using these characters avoids having to
subscribe to multiple topics and offers benefits to managers who might need to see
information or events across several areas. Client applications can only use template
characters when subscribing to a set of topics or binding a set of topics to a message
handler. Messages must be published on fully specified topic names.

Using template characters is somewhat different from using the usual wild cards, as
discussed below.
Aurea Software, Inc. Confidential 415 Copyright © 2013 Aurea, Inc.

Chapter 13: Hierarchical Name Spaces
There are two SonicMQ template characters:

• asterisk (*) — Selects all topics at this content node.

• pound (#) — Selects all topics at this content node and the subordinate hierarchy
(when used in the end position) or the superior hierarchy (when used in the first
position).

The intent of the template characters is to allow a set of managed topics to exist in a
message system in a way that lets subscribers choose broad subscription parameters that
will include preferred topics and avoid irrelevant topics.

There are some constraints:

• Unlike shell searches, you cannot qualify a selection, such as Alpha.B*.Charlie. You
can use Alpha.*.Charlie. At a content level, a template character precludes using
other template characters.

• The # symbol can only be used once. It is placed in the first node position or in the

last node position. You can use Alpha.#, or *.*.Charlie.#, or #.Beta.Charlie, or just
#, but not #.Beta.#. If use only #, you receive not only messaging traffic, but also
management messages sent between the domain manager and the broker.

• Character replacement, as used in shell searches with the question mark character

(?), is not allowed.

SonicMQ will deliver a message to more than one message handler if the message’s topic
matches bindings from multiple handlers.

The content levels in the topic name space consider the root level ““ as level 0.

Using Template Characters in Symmetric
Hierarchies

When hierarchical structures are strictly defined, simple templates can be used. For
example, the topic hierarchy shown in Figure 77 appears to strictly assign business
functions—Credit, Delivery, Orders, and Warehousing—to first-level (parent) nodes and a
standard set of country names—Australia, France, USA—to second-level (child) nodes.
Aurea Software, Inc. Confidential 416 Copyright © 2013 Aurea, Inc.

Subscribing to Nodes in the Topic Hierarchy
Figure 77: Symmetric Topic Structure

Template Character for All Topics at a Content Level

Using the strict topic hierarchy shown in Figure 77, a client application could subscribe to
each of the three topic nodes for Credit.

By using a template character, the application can subscribe to all second-level Credit
topics by subscribing to Credit.*, a subscription that will deliver messages sent to these
destinations:

• Credit.Australia

• Credit.France

• Credit.U S A

Template Character for a Topic at a Content Level

A subscription to the topic expression *.U S A in the hierarchy in Figure 77 selects all U S
A topics at the second level of the hierarchy.
This subscription will deliver messages sent to these destinations:

• Credit.U S A

• Orders.U S A

Using Template Characters in Asymmetric Topic
Hierarchies

When there are several topic levels, as shown in Figure 78, subscribing to all the U S A
topics is complicated by an inconsistent topic-naming structure.
Aurea Software, Inc. Confidential 417 Copyright © 2013 Aurea, Inc.

Chapter 13: Hierarchical Name Spaces
Figure 78: Asymmetric Topic Structure

In this case, the # template character can be used to subscribe to the
U S A topic levels in the hierarchy regardless of intervening nodes, such that #.U S A
subscribes to topics at these destinations:

• SalesData.U S A

• SalesForce.U S A

• Support.CallCenter.U S A

Without this ability, you would have to subscribe to both *.U S A and
..U S A to create the same subscriptions.

Note: When you use the "#" template character as the leading character in an
expression, you can inadvertently reveal messages in unseen lower levels.

Template Character for Subscribing to All Topics

Subscribing to the topic name # will receive all messages, including the reserved system
topics $SYS and $ISYS.

Template Character for All Topics Under a Topic
Hierarchy

When it is not known how deep the topic structure extends and all subordinate topics are
of interest, appending name.# extends the subscriptions to all topics at or below that
level—for example, Support.# subscribes to:

• Support.CallCenter

• Support.CallCenter.Australia
Aurea Software, Inc. Confidential 418 Copyright © 2013 Aurea, Inc.

Subscribing to Nodes in the Topic Hierarchy
• Support.CallCenter.France

• Support.CallCenter.U S A

• Support.SupportEngineer

• Support.WebKnowledgeBase

plus any subordinate levels below those topic nodes.

The MessageMonitor sample displays all the messages that are published on the broker
host by subscribing to jms.samples.#. The sample does not subscribe to #, because such
a subscription would include management messages that are not relevant to the sample.

Template Character for All Topics Above a Topic
Hierarchy

When the deepest node name is known but the number of intervening levels is not certain,
using #.name enables any number of levels to be accessed. For example, #.Support
subscribes to:

• Online.Europe.Support

• ISV.EMEA.France.Paris.Support

• HQ.Support

Multiple Template Characters in an Expression

Some template characters can be combined in a single expression.
You can:

• Use only one template character at a topic level.
(Support.**.U S A is invalid.)

• Use the pound sign only once in an expression. (#.U S A.# is invalid.)

Examples of multiple template characters in an expression are:

• Use #.U S A.* to subscribe to just the topics at U S A nodes however deep in the topic
structure, but not messages at #.U S A.

• Use *.*.U S A.* to subscribe to just the topics at level 4 U S A nodes, but not those
at *.*.U S A.
Aurea Software, Inc. Confidential 419 Copyright © 2013 Aurea, Inc.

Chapter 13: Hierarchical Name Spaces
Examples of a Topic Name Space
The hypothetical topic hierarchy shown in Figure 79 has nodes that might represent levels
of responsibility in the enterprise.

Figure 79: A Sample Hierarchy of Topics

Publishing Messages to a Hierarchical Topic

The publisher produces messages to a single fully qualified topic, such as:

static final String MESSAGE_TOPIC = "Credit.U S A.Customers";

Business cases where a publisher might use a hierarchical topic are:

• Requests for regular credit updates about suppliers are routed to
Credit.U S A.Suppliers and use JMSReplyTo mechanisms.

• Messages that are sent to credit agencies at secure Internet topics
Credit.U S A.Customers and Credit.U S A.Suppliers should be accessible only by
authorized applications.

• Credit agencies can respond to credit requests through the special topic Credit.U S
A.Reviews. Use a Reviews topic to get secure responses to credit requests without
synchronous blocks.
Aurea Software, Inc. Confidential 420 Copyright © 2013 Aurea, Inc.

Examples of a Topic Name Space
• As orders are processed through application software, any problems or delays send a
message to the appropriate sales force beeper number listed in the application. The
message producer uses the topic Orders.U S A.BeeperSend, attaching the beeper
number as the JMSCorrelationID or SonicMQ-supplied message property.

• Messages are sent that outline expected shipping needs to topics like
#.Ohare.CallForBids.

Subscribing to Sets of Hierarchical Topics

Subscribers to topics can also specify a fully qualified topic:

private static final String MESSAGE_TOPIC = "Credit.U S A";

or use template characters to subscribe to sets of topics:

private static final String MESSAGE_TOPIC = "Credit.*";

Business cases where a subscriber gains advantage by using template characters to
subscribe to hierarchical topics are:

• Accounting subscribes to Credit.U S A.Customers.Reviews but the auditor
subscribes to Credit.U S A.# to watch all credit activity.

• By listening to Credit.U S A.*.Reviews the application gets only the
U S A responses to all types of credit requests without synchronous blocks.

• A communications service monitors the brokers at its limited-access read-only topics:
*.U S A.BeeperSend and then executes the download.
Aurea Software, Inc. Confidential 421 Copyright © 2013 Aurea, Inc.

Chapter 13: Hierarchical Name Spaces
Aurea Software, Inc. Confidential 422 Copyright © 2013 Aurea, Inc.

14
Distributed Transactions Using
XA ResourcSes

This chapter provides information about using distributed transactions and the XAResource
class. This chapter includes the following sections:

• About Distributed Transactions on page 423

• Interfaces for Distributed Transactions on page 427

• In-doubt Global Transactions on page 429

• Distributed Transactions Models on page 432

• Running the Distributed Transaction Sample on page 438

About Distributed Transactions
Distributed transaction processing (DTP) allows a set of messages from heterogeneous
sessions to form a composite transaction.

An example of a distributed transaction is a transfer of funds between bank accounts.
Withdrawal from one account and deposit into another account comprise one balanced
transaction. Every effort must be taken to assure that the transaction—even though it might
involve two different banks can—and likely will—complete successfully. If it cannot
succeed, no part of it can be recorded.
Aurea Software, Inc. Confidential 423 Copyright © 2013 Aurea, Inc.

Chapter 14: Distributed Transactions Using XA ResourcSes
General Properties of a Transaction

A distributed transaction is characterized by the same properties as a simple transaction (a
series of messages sent and/or received on one session thread):

• Atomic — Either all of the work in the transaction must complete, or none of the work
must complete.

• Consistent — The transaction ensures that all participants in the transaction are in
the same state.

• Isolated — A transaction executes in isolation and does not affect other concurrent
transactions.

• Durable — A transaction will not be lost subsequent to a system failure.

These properties are often referred to as ACID properties.

Transaction Types

A single SonicMQ application can contain both local and global transactions.

Local Transaction

A local transaction involves a single resource manager. In SonicMQ, a transaction
performed in a session with the transacted parameter set to true is a local transaction.

Global Transaction

A global transaction involves dispersed resources in the transaction. It is often referred to
as a distributed transaction. A distributed transaction system typically relies on an external
transaction manager to coordinate the participants in a transaction.

Components of Distributed Transactions

Distributed transactions have as many as five components. Each contributes to the
distributed transaction processing system by implementing different sets of transaction
APIs and functionalities. The Java Transaction Service (JTS) describes these components
as follows:

• A transaction manager provides the services and management functions required to
support transaction demarcation, transactional resource management,
synchronization, and transaction context propagation.

• An application server (or TP monitor) provides the infrastructure that supports the
application run-time environment including transaction state management. An
example of such an application server is an EJB server.
Aurea Software, Inc. Confidential 424 Copyright © 2013 Aurea, Inc.

About Distributed Transactions
• A resource manager (RM) is an entity that manages data or some other kind of
resource through a resource adapter. SonicMQ is a resource manager, implementing
a transaction resource interface—the XAResource interface of the Java Transaction
API (JTA)—that the transaction manager uses to communicate transaction
association, transaction completion, and recovery work.

• A transactional application in an application server environment relies on the
application server to provide transaction management support through transaction
attribute settings—for example, an application developed using the Enterprise
JavaBeans (EJB) component architecture. In addition, other standalone Java client
programs might want to control their transaction boundaries using a high-level
interface provided by the application server or the transaction manager.

• A communication resource manager (CRM) supports transaction context
propagation and access to the transaction service for incoming and outgoing requests.

From the transaction manager’s perspective, the actual implementation of the transaction
services does not need to be exposed. Only high-level interfaces need to be defined to
allow transaction demarcation, resource enlistment, synchronization, and recovery process
to be driven by the users of the transaction services.

Using XA Resources

A SonicMQ application has access to all the required components for distributed
transactions. When a SonicMQ application imports javax.transaction.xa, the
XAResource and XID classes are included so that—together with the XA connection
factories, connections, and sessions in javax.jms—the Java Transaction API is enabled.

A SonicMQ application initiates a transaction by using the JTA to communicate with the
transaction manager. The RM uses the XA protocol to connect to the transaction manager
(TM), as shown in Figure 80.

Figure 80: Resource Manager Connected to a Transaction Manager

As RMs on diverse threads will participate in the distributed transaction, it is crucial that the
TM establish and maintain the state of the transaction as it evolves. A transaction context
logically envelopes all the operations performed on transactional resources during the
transaction.

An application server can bring additional resources into the transaction, referred to as
resource enlistment. In Figure 81, another RM is participating in xid1 in an XA connection
to the same TM as the owner.

Resource
Manager

Transaction
ManagerXA
Aurea Software, Inc. Confidential 425 Copyright © 2013 Aurea, Inc.

Chapter 14: Distributed Transactions Using XA ResourcSes
Figure 81: Enlistment of a Second RM to a Distributed Transaction

The transaction context and resource enlistment can extend to other transaction managers,
as shown in Figure 82.

Figure 82: Distributed Transaction with Multiple Transaction Managers

Messages sent in the transaction context are not permanently recorded. Messages
received in the transaction context are not acknowledged until the owner ends the
transaction demarcation and passes control to its TM. This TM can coordinate with the
other involved TMs and Resource Managers to prepare and commit the global transaction.

The transaction owner explicitly ends the global transaction. If the transaction involved a
single transaction manager, the act of telling the TM to commit or rollback the transaction
would handle the transaction state on all the participating branches.

A global transaction that involves multiple resource managers needs a two-phase commit
protocol to request that the participants prepare for completion, and, when all are prepared,
perform the commitment. It is possible that a failure during the commitment process leaves
the state of the global transaction indoubt.

Two Phase Commit

When the transaction manager prepares the transaction, each participating resource
manager is polled to see if commitment is likely to succeed.

In Figure 83, both resource managers, when commanded to prepare their contribution to
transaction xid1, responded positively. The global commit for xid1 by the owner’s
transaction manager commits each branch of the global transaction.

Resource
Manager

Transaction
Manager

Resource
Manager

XA XA

RM 31

TM 3

RM 32

RM 21

TM 2

RM 22
Resource

Manager 11

Transaction
Manager 1

Resource
Manager 12

XA XA
Aurea Software, Inc. Confidential 426 Copyright © 2013 Aurea, Inc.

Interfaces for Distributed Transactions
Figure 83: Two-phase Commit That Completed Successfully

In Figure 84, one of the resource managers indicated that its portion of the global
transaction could not be completed. As a result, a global rollback is issued for each branch
of xid1.

Figure 84: Two-phase Commit That Completed Unsuccessfully

Interfaces for Distributed Transactions
SonicMQ supports the JTA XAResource interface and JMS XA SPI.

javax.transaction.xa Interfaces

The Java Transaction API (JTA) mapping of the industry standard XA interface based on
the X/Open CAE Specification provides, among other features:

• An external transaction manager and sophisticated application capability to
demarcate global transactions

• Assignment of a session to a distributed transaction

• Preparation and commitment of one or more transactions

• Recovery of a transaction in aurea

Phase 1: Prepare

Released

Phase 2: Commit

Ready !

Phase 1: Prepare

Released

Phase 2: Commit

Ready !

Resource
Manager

Resource
Manager

Transaction
Manager

Application Commit

Phase 1: Prepare

Discarded

Phase 2: Rollback

Not Acceptable

Phase 1: Prepare

Discarded

Phase 2: Rollback

Ready !

Resource
Manager

Resource
Manager

Transaction
Manager

Application Commit
Aurea Software, Inc. Confidential 427 Copyright © 2013 Aurea, Inc.

Chapter 14: Distributed Transactions Using XA ResourcSes
The interfaces in javax.transaction.xa are XAResource, Xid, and XAException. See
Sun’s online JavaDoc at
http://java.sun.com/products/jta/javadocs-1.0.1/index.html for the
exposed fields, methods and constructors in these interfaces.

JMS XA SPI Interface

The JMS service provider interface for XA exposes XAResource to application servers and
expert JMS clients (through its XAConnectionFactory, XAConnection and XASession)
thereby providing access to the regular JMS counterpart (such as a Session object) and
coordinating the regular session and XAResource through XASession.

The hierarchy of the JMS XA interfaces, as shown in Figure 85, is similar to non-XA
connections and sessions.

Figure 85: XASessions in XAConnections from XAConnectionFactories

XAConnectionFactory

XASonicMQ exposes its JTS support through the JMS XAConnectionFactory which
distributed transactions—and possibly application servers—use to create XASessions.

An XAConnectionFactory object is an administered object similar to a ConnectionFactory.
See Connection Factories and Connections on page 142 for information about lookup as a
serialized object in a file store or on a JNDI LDAP server.

XAConnection

An XAConnection is similar to a Connection except that is by definition transacted. You can
choose a default or a specified user identity.
Aurea Software, Inc. Confidential 428 Copyright © 2013 Aurea, Inc.

In-doubt Global Transactions
Base the ConnectID for an XAConnection on Its Connection

• An XAConnection’s connectID is the connectID of the Connection, prefixed by “XAC_”.
In this code sample, c’s connectID is “myConID” and xac’s connectID is “XAC_myConID”:

XAConnectionFactory xacf =

new progress.message.jclient.xa.XAConnectionFactory (url, “myConID”, …
) ;

XAConection xac = xacf.createXAConnection();

Connection c = xac;

Load Balancing Is Inactive for an XA Client

Load balancing offers the ability to connect to another broker when a broker is overloaded.
But the nature of a global transaction is that the originating thread and the xid are mapped
to a specific broker. To accommodate global transactions, load-balancing is turned off in
the client by default. If an XA client turns on load-balancing, a JMSException is thrown
when you create XA connections.

XASession

The XASession interface provides access to the Session object and a
javax.transaction.xa.XAResource object which controls the session's transaction
context. A client uses the JMS Session obtained from the XASession to perform its JMS
work. The XAResource is used to assign the session to a distributed transaction, and to
prepare and commit (or roll back) work on the transaction transparently. What appears as
a regular JMS Session is actually controlled by the transaction management of the
underlying XASession.

In-doubt Global Transactions
If a global transaction succeeded in phase one of the two-phase commit, the physical
connections could fail such that part of the global transaction is recorded and part of it is
indeterminate. The commitment might have been executed but failed before notifying the
TM. Table 86 illustrates an in-doubt transaction that occurs during a two-phase commit.
Aurea Software, Inc. Confidential 429 Copyright © 2013 Aurea, Inc.

Chapter 14: Distributed Transactions Using XA ResourcSes
Figure 86: In-doubt Transaction During Two-Phase Commit

In this case, one branch of the global transaction might have been committed while the
other branch did not.

SonicMQ Can Complete In-doubt Transaction
Branches

SonicMQ provides administrative capabilities to members of the TxnAdministrator group
to review and manipulate the uncommitted branches. For more information about
transaction administrators and resolution of indoubt transaction branches in the Aurea
SonicMQ Configuration and Management Guide.

Access Control Group for Transaction
Administrators

The SonicMQ administrative tools can assign users to a special purpose user group,
TxnAdministrators, to view and handle indoubt transactions. See the Aurea SonicMQ
Configuration and Management Guide for information about the transaction administrators.

Transaction Recovery

If the transaction owner becomes unable to continue, a transaction manager can invoke a
recover method to a resource manager to determine the identity (xidnnn) and status of
transaction branches.

The TMSTARTRSCAN, TMENDRSCAN and TMNOFLAGS flags are supported in the implementation
of the XAResouce.recover(int flag) method in compliance with the XA specification. A
given recovery scan must be made by the same XAResource instance.

The following examples illustrate how these flags return results from the recover method:

Phase 1: Prepare

Phase 2: Commit

Ready !

Phase 1: Prepare

Released

Phase 2: Commit

Ready !

Resource
Manager

Resource
Manager

X

Transaction
Manager

Application Commit
Aurea Software, Inc. Confidential 430 Copyright © 2013 Aurea, Inc.

In-doubt Global Transactions
Example 1: TMNOFLAGS

When recover(TMNOFLAGS) is called without having called recover(TMSTARTRSCAN), all
in-doubt transaction Xids are retrieved. This is the preferred technique for recovery.

The recovery scan state after recover(TMNOFLAGS) is called is unchanged.

Example 2: TMSTARTRSCAN Then TMNOFLAGS

When recover(TMSTARTRSCAN) is followed by recover(TMNOFLAGS), the result is that all
Xids are returned in recover(TMSTARTRSCAN) and no Xids are returned in subsequent
recover(TMNOFLAGS) calls.
The recovery scan state is scanStarted.

Example 3: TMSTARTRSCAN Already Called

When recover(TMSTARTRSCAN) has already been called—whether or not followed by
recover(TMNOFLAGS)—and you then call recover(TMENDRSCAN), the result is that all Xids
are returned in recover(TMSTARTRSCAN) and no Xids are returned in the
recover(TMENDRSCAN) call.
The recovery scan state is scanFinished.

Example 4: Orphaned Branches

When any of the following have been called:

• recover(TMSTARTRSCAN) regardless of any previous recover(...) calls

• recover(TMNOFLAGS) after recover(TMENDRSCAN)

• recover(TMENDRSCAN) without calling recover(TMSTARTRSCAN)
(This could throw XAException, but the implementation tolerates it.)

In all these cases, the result returned is the full set of prepared orphan branch’s Xids.

You can set a flag to include both TMSTARTRSCAN and TMENDRSCAN (as allowed by X/Open
XA spec) or a flag to include only TMENDRSCAN.

In either case, the recovery scan state is scanFinished.

Note: The SonicMQ administrative tools provide techniques for handling transactions
that did not complete correctly by accessing the indoubt branches.
Aurea Software, Inc. Confidential 431 Copyright © 2013 Aurea, Inc.

Chapter 14: Distributed Transactions Using XA ResourcSes
Distributed Transactions Models
Distributed transactions can allow:

• SonicMQ to participate in transactions controlled by an application server that involves
other resources such as a database

• SonicMQ to participate in a distributed transaction

• One SonicMQ transaction be composed of PTP and Pub/Sub messages

SonicMQ Integrated with an Application Server

When a SonicMQ client is integrated with a JTA-capable application server, as shown in
Figure 87, the application server has a transaction manager. The application server uses
JMS XA SPI, using the XAConnectionFactory, XAConnection, and XASession to get a
reference to the XAResource, giving the XAResource to the Transaction Manager so that it
begins, ends, prepares, and commits transaction work.

Inside SonicMQ, it is communicating with the SonicMQ server to let clients coordinate with
the broker. This is transparent to the application server.

The Enterprise JavaBean (EJB) is not aware of the XA activity. The EJB only invokes
userTransaction.begin and expects the application server to do the work.

The EJB might choose to use a container-managed transaction which means that
everything is managed by the application server.

Figure 87: SonicMQ Integrated with an Application Server

Sample Code: Global Transaction When Integrated
With Application Server

Using a Message Driven Bean on page 433 describes the significant work for performing a
global transaction when SonicMQ is integrated with an application server. The sections
show how to use a Message Driven Bean.

Application Server

SonicMQ Client

JMS XA SPI

Application Client
(EJB, Messaging...)

XA Resource

Transaction Manager

SonicMQ
Broker
Aurea Software, Inc. Confidential 432 Copyright © 2013 Aurea, Inc.

Distributed Transactions Models
A Message Driven Bean (MDB) is in effect a message listener. The code appears as
standard JMS methods that are intercepted by the application server. The transaction is
managed by the application server which commits it when the onMessage terminates.

Using a Message Driven Bean

public void onMessage(Message message)
{
try
{
InitialContext ctx = new InitialContext();
ConnectionFactory cf
=(ConnectionFactory)ctx.lookup("XAConnectionFactory");
Connection c = cf.createConnection();
Session s = c.createSession (false, Session.AUTO_ACKNOWLEDGE);
Topic topic = s.createTopic(“SampleT1");
MessageProducer pub = s.createProducer(topic);
TextMessage msgt = s.createTextMessage();
pub.send(msgt);

Queue queue = s.createQueue("SampleQ2");
MessageProducer sender = s.createProducer(queue);
TextMessage msgq = s.createTextMessage();
sender.send(msgq);
c.close();
// ****************** Oracle Connection *******************
DataSource ds = (DataSource) ctx.lookup("java:comp/env/jdbc/tebsource");
java.sql.Connection dbConn = ds.getConnection();
Statement s = dbConn.createStatement();
s.executeUpdate ("insert into sonic_artist values('100','Bob Smith')");
dbConn.close();

} catch(Exception e) {
e.printStackTrace();
}
} //onMessage()

SonicMQ Directly Used with a Transaction
Manager

When standing alone, a JMS application, as shown in Figure 88, can use the JMS XA SPI
to get an XA connection and an XA session that will get an XA resource reference for the
transaction manager.
Aurea Software, Inc. Confidential 433 Copyright © 2013 Aurea, Inc.

Chapter 14: Distributed Transactions Using XA ResourcSes
Figure 88: SonicMQ Directly Accessing a Transaction Manager

Sample Code: Global Transaction Using Transaction
Manager

The following code describes the significant work for performing a global transaction using
a transaction manager. After the application gets a reference to a Transaction Manager,
the sections show how to:

• Produce messages in both domains under transactional control

• Complete the transaction across the session boundaries

• Shutdown the Object Request Broker (ORB)

Produce Messages in a Transaction

The TM is instructed to start a new transaction and associate it with the current thread:

...
try
{
tm.begin();
Transaction txn = tm.getTransaction();

The transaction manager is instructed to provide the XAResources for the session:

XAConnectionFactory xacf =
new progress.message.jclient.xa.XAConnectionFactory(url);
 XAConnection xtc = xacf.createXAConnection(user, password);
Connection c = xtc;
XASession xas = xtc.createXASession();
XAResource xar = xas.getXAResource();

Then enlist the resource:

txn.enlistResource(xar);

Messages are produced in each session:

...
pub.send(msg1);
sender.send(msgA);

JMS Application

SonicMQ Client

JMS XA SPI XA Resource

Transaction Manager

SonicMQ
Broker
Aurea Software, Inc. Confidential 434 Copyright © 2013 Aurea, Inc.

Distributed Transactions Models
The resources are delisted:

...
txn.delistResource(xar, XAResource.TMSUCCESS);
} catch(Exception e)
{
tm.rollback();
}

Complete the Transaction

The transaction manager is instructed to start a two-phase commit:

...
try
{
tm.commit();
} catch(Exception e)
{
e.printStackTrace();
}

At the application level, the transaction work is done. The transaction manager handles the
preparation of the branches and the commit or rollback. If the prepares fail, the exception
is thrown. If the commit succeeds, a return indicates successful commitment. If there are
indoubt branches, the TM can work on the commit unless the TM or resource manager
crashes. A TM recovery will resume the transaction work.

SonicMQ Performing DTP Without a
Transaction Manager

Because the XA interface and the protocols are public, application developers can do all
the work that is handled by the transaction manager directly in their code. Figure 89 shows
the simple diagram where the application directly calls the JMS XA SPI and references the
XA Resource. The developer will be responsible for the preparation and commit (or
rollback) of the transaction.
Aurea Software, Inc. Confidential 435 Copyright © 2013 Aurea, Inc.

Chapter 14: Distributed Transactions Using XA ResourcSes
Figure 89: SonicMQ Performing DTP Without a Transaction Manager

This constrains the application from the benefits of distributed transaction branches yet, for
cases where two sessions, one PTP and one Pub/Sub, need to coordinate in a transaction,
this model might be appropriate.

Sample Code: Global Transaction Without
Transaction Manager

The following code describes the significant work for performing a global transaction
without using a transaction manager. The sections show how to:

• Create the XAResource for a Point-to-point session

• Create the XAResource for a Publish and Subscribe session

• Produce messages in both sessions under transactional control

• Complete the transaction across session boundaries

Create XAResource for PTP

The XAConnectionFactory gets an XAConnection, which then gets a reference to a
standard Connection. The Connection is the context for the JMS work:

...
XAConnectionFactory xaqcf =
new progress.message.jclient.xa.XAConnectionFactory (url);

XAConnection xaqc = xaqcf.createXAConnection(user, password);

Connection qc = xaqc;

An XASession is created, which then gets the XAResource. The methods of the XAResource
are now accessible. A regular Session is created for the standard procedures of creating a
queue and a sender in the context of the XASession:

XASession xaqs = xaqc.createXASession();
XAResource xarq = xaqs.getXAResource();
Session qs = xaqs.getSession();
Queue q = qs.createQueue(“SampleQ1”);
MessageProducer sender = qs.createProducer(q);

JMS Application

SonicMQ Client

JMS XA SPI XA Resource

SonicMQ
Broker
Aurea Software, Inc. Confidential 436 Copyright © 2013 Aurea, Inc.

Distributed Transactions Models
Create XAResource for Pub/Sub

The Pub/Sub domain is set up in a similar way:

...
XAConnectionFactory xatcf =
new progress.message.jclient.xa.XAConnectionFactory(url);

XAConnection xatc = xatcf.createXAConnection(user, password);

Connection tc = xatc;

XASession xats = xatc.createXASession();
XAResource xart = xats.getXAResource();
Session ts = xats.getSession() ;
Topic t = ts.createTopic(“SampleT1”) ;
MessageProducer pub = ts.createProducer(t) ;
...

Produce Messages

The transaction and its branches are distinguished in the sample code through the xid—an
object that the application must create—whose first digit indicates the transaction identity
and second digit represents the branch qualifier. The XAResource for both branches is
started, messages are sent in both sessions, and then the XAResource calls the same
identifiers to end the transaction branches:

...
try
{
xarq.start(xid11, XAResource.TMNOFLAGS);
xart.start(xid12, XAResource.TMNOFLAGS);
...
pub.send(msg1);
sender.send(msgA);
...
xarq.end(xid11, XAResource.TMSUCCESS);
xart.end(xid12, XAResource.TMSUCCESS);

If anything goes wrong, both branches roll back:

} catch(JMSException e) {
xarq.rollback(xid11);
xart.rollback(xid12);
}
Aurea Software, Inc. Confidential 437 Copyright © 2013 Aurea, Inc.

Chapter 14: Distributed Transactions Using XA ResourcSes
Complete the Transaction

To perform a two-phase commit, each branch is told to prepare. If they return successful,
both branches are committed:

...
try
{
xarq.prepare(xid11);
xart.prepare(xid12);
xarq.commit(xid11, false);
xart.commit(xid12, false);

If either prepare failed, the transaction branches would roll back:

} catch(JMSException e)
{
xarq.rollback(xid11);
xart.rollback(xid12);
}

If the first commit succeeded but the second failed, an in-doubt transaction would exist.

Running the Distributed Transaction Sample
The distributed transaction sample application demonstrates programmatic functions. A
Producer console window establishes a distributed transaction, then publishes a message
to a topic in one session and sends a message to a queue in another session. A Consumer
console window participates in the distributed transaction with a topic subscriber and a
queue receiver.

Note: The broker value defaults to localhost:2506. If your broker is at a remote location
or on a different port, you must add the -b broker:port parameter.
If security is enabled on the broker you must use different, established user names
and include the -p password parameter with each user’s password.

Be sure the SonicMQ container is running before executing any of the SonicMQ samples.
See Starting the SonicMQ Container and Management Console on page 70 for instructions
about starting SonicMQ. For more detailed information on working with the Sonic
Management Console, see the Aurea SonicMQ Configuration and Management Guide
Aurea Software, Inc. Confidential 438 Copyright © 2013 Aurea, Inc.

Running the Distributed Transaction Sample
To create a distributed transaction:

1. Open a console window at the directory:

SonicMQ-install-dir\samples\DistributedTransaction\XASample

This will be your Producer window.

2. Enter the following command in the Producer window:

..\..\SonicMQ XASample -u Producer -qs SampleQ1 -tp SampleT1

The sample starts and displays the command options when only producers—qs is the
queue sender and tp is the topic publisher—are specified.

3. Type START and press ENTER.

You are notified: XA start xid1...

4. Type text such as One and press ENTER.

5. Type more text such as Another and press ENTER.

6. Type END and press ENTER.

You are notified: XA end xid1...

The messages are demarcated as global transaction xid1. A global transaction can now
be started.

To create the receivers for a distributed transaction:

1. Open a console window at the directory:

SonicMQ-install-dir\samples\DistributedTransaction\XASample

This will be your Consumer window.

2. Type:

..\..\SonicMQ XASample -u Consumer -qr SampleQ1 -ts SampleT1

The sample starts and displays the command options when only consumers—qr is the
queue receiver and ts is the topic durable subscriber—are specified.

3. Type STARTR and press ENTER.

You are notified: xidR1 start ...

4. Type FROMQ and press ENTER.

Nothing happens. The messages that comprise the global send transaction have been
demarcated but are not yet committed, and are unavailable to receivers.
Aurea Software, Inc. Confidential 439 Copyright © 2013 Aurea, Inc.

Chapter 14: Distributed Transactions Using XA ResourcSes
To commit or rollback the distributed transaction:

1. In the Producer window, you can perform any of the following three actions to
complete the transaction:

• Type 1PC and press ENTER.

You are notified: XA commit xid1 DONE

• Type PREP and press ENTER.

You are notified: XA prepare xid1 done!

Then type 2PC and press ENTER.

You are notified: XA commit xid1 DONE

• If you want the transaction to terminate the transaction without actually sending
any of its messages:

Type ROLLBACK and press ENTER.

You are notified: XA rollback xid1 DONE

When you have committed a transaction, you can go to the Consumer window consume
the messages.

To consume messages from a distributed transaction:

1. In the Consumer window, type FROMQ and press ENTER.

You receive the first message from the queue: <Producer send> One.

2. Type FROMT and press ENTER.

You receive the first message from the topic:

DurableSubscriber: <Producer pub> One.

3. Type FROMQ and press ENTER.

You receive the second message from the queue:

<Producer send> Another.

4. Type FROMT and press ENTER.

You receive the second message from the topic:

DurableSubscriber: <Producer pub> Another.
Aurea Software, Inc. Confidential 440 Copyright © 2013 Aurea, Inc.

Running the Distributed Transaction Sample
5. Type ENDR and press ENTER.

You are notified: xidR1 END. This marks the end of the consumer’s receiving of
messages.

6. You can now close the Producer and Console Windows, and stop the SonicMQ
container.

This sample application demonstrated a distributed transaction between a Producer and a
Consumer. The Producer established the distributed transaction and then performed either
a one- or two-phase commit to send the messages to a queue in one session, and to
publish the messages to a topic in another session. The Consumer participated in the
distributed transaction with both a queue receive and a topic subscriber. The Consumer
was able to receive the message sent to the queue and the message sent to the topic.
Aurea Software, Inc. Confidential 441 Copyright © 2013 Aurea, Inc.

Chapter 14: Distributed Transactions Using XA ResourcSes
Aurea Software, Inc. Confidential 442 Copyright © 2013 Aurea, Inc.

A
Using the Sonic JNDI SPI

This appendix describes programming using

the Sonic service provider implementation (SPI) for the Java Naming and Directory
Interface (JNDI). It contains the following sections:

• Overview of the JNDI SPI on page 443

• Sonic JNDI SPI Samples on page 447

Important: Permission Denied Issues for Older Clients — If you are using JNDI SPI
clients and your domain enforces management permissions (a feature
introduced in V7.5), the JNDI SPI clients should be upgraded to at least V7.5
to avoid the potential of spurious ConfigurePermissionsDenied exceptions
which could deny JNDI access.

Overview of the JNDI SPI
The Sonic JNDI SPI uses the Directory Service as the underlying store.

The Sonic SPI implements the javax.naming.Context interface. Management and client
applications can use this interface to lookup and store JNDI compatible objects
(serializable or referenceable), including SonicMQ JMS Administered object
implementations for JMS connection factories and destinations.
Aurea Software, Inc. Confidential 443 Copyright © 2013 Aurea, Inc.

Chapter A: Using the Sonic JNDI SPI
The JNDI SPI can support two roles:

• An administrator who has read/write permission (the ability to create contexts and
store objects)

• A read-only role that is limited to lookup and listing abilities

See the “Security” section in the chapter “JMS Administered Objects Tool” in the Aurea
SonicMQ Configuration and Management Guide for information about the requirements
and setup for these roles.

JNDI defines the way an initial context is obtained; obtaining a Sonic context follows these
same techniques. Code Sample 27 provides a simple demonstration of JNDI programming
with the Sonic SPI. The sample shows:

• Creating a JNDI environment (hash table) with Sonic SPI specific values and
additional properties

• Obtaining an initial context

• Using the context to perform a lookup of a JMS Queue destination object

Programming with the Sonic JNDI SPI

Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,
 "com.sonicsw.jndi.mfcontext.MFContextFactory");
env.put(Context.PROVIDER_URL, “tcp://localhost:2506");
env.put("com.sonicsw.jndi.mfcontext.domain", "Domain1");
env.put("com.sonicsw.jndi.mfcontext.idleTimeout", "60000");
env.put(Context.SECURITY_PRINCIPAL, "Administrator");
env.put(Context.SECURITY_CREDENTIALS, "Administrator");

Context ctx = new InitialContext(env);
..
Queue queue = (Queue)ctx.lookup(“queues/Q1”);
..

Note: The JNDI SPI and the environment properties do not have accompanying
JavaDoc.

In certain applications and application servers, it is not possible to program the custom
environment properties to configure the JNDI InitialContext. For these circumstances,
Sonic supports parameter extensions to the connection URL in the following syntax:

protocol://host:port?domain=name&idleTimeout=int \
&requestTimeout=int&connectTimeout=int&nod

e=name
Aurea Software, Inc. Confidential 444 Copyright © 2013 Aurea, Inc.

Overview of the JNDI SPI
The one or more parameter-value pairs can be in any order. For example:

tcp://localhost:2506?domain=aurea
tcp://localhost:2506?domain=aurea&idleTimeout=60000
tcp://localhost:2506?domain=aurea&connectTimeout=20000
tcp://localhost:2506?idleTimeout=60000&domain=aurea&connectTimeout=20000

Using Sonic-specific properties as parameters of the PROVIDER_URL would be as shown:

Using Sonic JNDI SPI with URL Parameters

Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,
 "com.sonicsw.jndi.mfcontext.MFContextFactory");
env.put(Context.PROVIDER_URL,

“tcp://localhost:2506?domain=aurea&idleTimeout=60000");
env.put(Context.SECURITY_PRINCIPAL, "Administrator");
env.put(Context.SECURITY_CREDENTIALS, "Administrator");

Context ctx = new InitialContext(env);
..
Queue queue = (Queue)ctx.lookup(“queues/Q1”);
..

Table 44 lists describes the values that should be assigned to the standard JNDI
environment when using the Sonic SPI.

Table 44: Standard Environment Properties for the Sonic JNDI SPI

Property (by constant name) Description

javax.naming.Context.INITIAL_CONTEXT_
FACTORY

The fully qualified class name of the Sonic SPI
context factory that will be used to create the initial
context
("com.sonicsw.jndi.mfcontext.MFContextFactory")

javax.naming.Context.PROVIDER_URL The SonicMQ compliant URL string that describes
how to connect to the Domain Manager broker(s)
(default "tcp://localhost:2506")

javax.naming.Context.SECURITY_PRINCIP
AL

The SonicMQ principal (username) that has
permission to connect to the Domain Manager
broker(s) and publish/subscribe to the messaging
subjects used for JNDI communications with the
Directory Service (see the “Security” section in the
chapter “JMS Administered Objects Tool” in the
Aurea SonicMQ Configuration and Management
Guide). This property must be specified only if
security is enabled on the management node.

javax.naming.Context.SECURITY_CREDE
NTIALS

The password associated with the
SECURITY_PRINCIPAL.
Aurea Software, Inc. Confidential 445 Copyright © 2013 Aurea, Inc.

Chapter A: Using the Sonic JNDI SPI
Table 45 lists custom environment properties you can use with the Sonic JNDI SPI:

The Sonic JNDI SPI sample applications provide examples of Java and JavaScript
applications that use the SPI. The following sections discuss these sample applications.

Table 45: Custom Environment Properties and URL Parameters for Sonic JNDI SPI

Property (PROVIDER_URL parameter in
bold) Description

com.sonicsw.jndi.mfcontext.domain The Sonic domain name to access (default
“Domain1”)

com.sonicsw.jndi.mfcontext.idleTimeout A connection idle timeout in milliseconds (default
value is “300000”— five minutes; the minimum value
is “60000”— one minute). The connection to the
Directory Service will be dropped if no activity takes
place on the connection within the given timeout. If
the connection has been dropped, it will be
transparently reestablished on subsequent activity
(you may notice a small delay).

com.sonicsw.jndi.mfcontext.requestTimeout A request timeout in milliseconds (default "30000"). If
a JNDI request—for example, bind, lookup, and so
on—takes longer than the request timeout the
request will fail. The requesting application will be
thrown a javax.naming.NamingException with the
root cause indicating a timeout condition.

Depending on fault tolerance settings, the overall
time before request failure may be some factor
greater than the value of this property (as the request
timeout will be applied to each fault tolerant option).

com.sonicsw.jndi.mfcontext.connectTimeout Elapsed time in milliseconds (default "10000"). The
connect timeout is used to control the time to make
an initial connection to the Domain Manager
broker(s) and allowed time to reconnect in the event
of a transient connection failure.

com.sonicsw.jndi.mfcontext.node A Dynamic Routing Architecture (DRA) node through
which JNDI communications with the Directory
Service will be delegated (default none). Client
applications may not be provided direct access to the
Domain Manager broker(s), rather such
communications will be delegated via other brokers
using DRA.
Aurea Software, Inc. Confidential 446 Copyright © 2013 Aurea, Inc.

Sonic JNDI SPI Samples
Sonic JNDI SPI Samples
SonicMQ provides sample applications to help you get started with the JNDI API. These
samples are included in your SonicMQ installation, and located in the management runtime
samples directory at: MQ2013_install_root\samples\Management\jndiAPI\

The following subdirectories provide Java and JavaScript samples:

• java — Java examples showing how to organize and store JMS administered objects
in the Directory Service-based JNDI store provided with this SonicMQ installation

• js — javascript examples showing how to organize and store JMS administered
objects in the Directory Service-based JNDI store provided with this SonicMQ
installation

These directories contain scripts that run the samples or configure the environment in
which to run the samples.

All samples directories have a readme.txt file that describes the contents more completely.
Where appropriate, the readme.txt file contains instructions for running more complex
samples.

Java JNDI SPI Sample

The Java-based Command Line Interface (CLI) sample is located in the directory
MQ2013_install_root\samples\Management\jndiAPI\java. This sample
demonstrates using the Sonic JNDI SPI. The application provides a simple command line
interface that can be easily extended to add new, more specific commands for use in your
applications.

This sample shows:

• Creating the initial context (and the environment setting required)

• Various typical calls on the context in order to manage Sonic JMS Administered
objects

For more information about the features of this sample, see the comments in the file
JndiCLI.java.

Important: To execute the CLI sample you must already have installed the SonicMQ
container.
Aurea Software, Inc. Confidential 447 Copyright © 2013 Aurea, Inc.

Chapter A: Using the Sonic JNDI SPI
To run the CLI sample:

1. Start the default broker for the container.

2. Open a console window to the following directory:

MQ2013_install_root\samples\Management\jndiAPI\java

3. Enter the appropriate command for your platform and administrative user:

• For Windows, enter:

..\..\..\Mgmt JndiCLI Domain1 tcp://localhost:2506
Admin_user Admin_pwd

• For UNIX or Linux:

sh ../../../Mgmt.sh JndiCLI Domain1 tcp://localhost:2506
Admin_user Admin_pwd

Note: If you add a property on the command line and also as a parameter to the URL,
the URL parameter will prevail.

Note: When using multiple parameters, some shells require that the complete URL
statement be placed within quotes. For example:

>..\..\..\Mgmt JndiCLI Domain1
"tcp://localhost:2506?requestTimeout=60000&idleT

imeout=100000"
Administrator Administrator

4. In the CLI shell you can get command help by typing a command followed by a
question mark (?) character. For example:

> create context ?

You can navigate around subcontext trees by moving a single subcontext at a time using
the command change context (or cc).
Aurea Software, Inc. Confidential 448 Copyright © 2013 Aurea, Inc.

Sonic JNDI SPI Samples
The following CLI commands are supported by this sample application:

> {change context|cc} {/|..|<subcontext name>}
> {make context|mc} <subcontext name>
> {remove context|rc} <subcontext name>
> list
> lookup <name>
> bind tcf <name> <attribute=value>[,<attribute=value>...]
> bind qcf <name> <attribute=value>[,<attribute=value>...]
> bind topic <name> <topic name>
> bind queue <name> <queue name>
> unbind <name>
> exit

JavaScript JNDI API Samples

SonicMQ provides JavaScript JNDI API samples in the directory
MQ2013_install_root\samples\Management\jndiAPI\js. This directory includes the
following sample scripts:

• List.js — Demonstrates how to list the bindings in the root context of SonicMQ’s
JNDI SPI

• CreateContext.js — Demonstrates how to create a subcontext in the root context of
SonicMQ’s JNDI SPI

• DestroyContext.js — Demonstrates how to destroy a subcontext in the root context
of SonicMQ’s JNDI SPI

• BindTopic.js — Demonstrates how to bind a JMS Administered object (a Topic) in
the root context of SonicMQ’s JNDI SPI

• UnbindTopic.js — Demonstrates how to unbind a JMS Administered object (a Topic)
in the root context of SonicMQ’s JNDI SPI

• Common.js — Contains utility functions used by the samples in this directory

Each script assumes the installation default values were selected for domain name,
container name, broker port, etc. If you made non-default selections during installation, you
must modify the scripts appropriately.

Important: To execute the JavaScript samples you must already have installed the
SonicMQ container.

To run the JavaScript proxy samples:

1. Start the default broker for the container.

2. Open a console window to the following directory:

MQ2013_install_root\samples\Management\jndiAPI\js

3. Enter the appropriate command for your platform:
Aurea Software, Inc. Confidential 449 Copyright © 2013 Aurea, Inc.

Chapter A: Using the Sonic JNDI SPI
• For Windows, enter:
..\..\..\jsRun <scriptfile>

• For UNIX or Linux, enter:
sh ../../../jsRun.sh <scriptfile>

Note: Equivalent Java-based samples can be found in the directory:
MQ2013_install_root\samples\Management\jndiAPI\java
Aurea Software, Inc. Confidential 450 Copyright © 2013 Aurea, Inc.

B
Using Client Tracing Logs

This appendix describes how SonicMQ Java clients can generate a log of key JMS API
calls through aspect-oriented tracing of JMS API trace points. The functionality of aspect
tracings are included in the SonicMQ development and client environments, and are easily
enabled in the SonicMQ sample applications.

This appendix has the following sections:

• Overview of SonicMQ JMS API Tracing on page 451

• Enabling JMS Tracing on page 452

• Trace Levels on page 452

• Exploring Tracing in the SonicMQ Sample Applications on page 453

Overview of SonicMQ JMS API Tracing
Aspects are useful during development of Java applications to facilitate debugging, testing
and performance tuning of applications.

Traditionally you would code trace points in an application to expose a problem, and then
remove those trace points when the application is ready for distribution. With AspectJ it is
easy to both preserve the work of designing a good set of JMS trace points in a Java
application, and disable the tracing when it is not being used. The tracing in SonicMQ is an
aspect specifically for JMS tracing mode.

Java developers can use tracing to track an application’s JMS usage patterns, and thereby
detect issue such as leaking JMS artifacts, or not closing transactions. This section will
describe the scope of tracings, the settings available, and how to implement tracing in the
sample applications and the Sonic Diagnostics Framework.
Aurea Software, Inc. Confidential 451 Copyright © 2013 Aurea, Inc.

Chapter B: Using Client Tracing Logs
Tracing has no overhead when it is not in use. Load-time weaving—adding the tracing code
when the class is being loaded by the class loader—means that the aspect was not present
when the application was compiled. So when load-time weaving is not configured, the
application performs as if tracing code did not exist.

Even if you do not typically perform tracing functions, aurea Sonic technical support might
request that you run tracings to expose reported application problems.

See the Eclipse AspectJ web site, http://www.eclipse.org/aspectj, for more
information.

Enabling JMS Tracing
The functionality of SonicMQ tracing is contained in three libraries distributed in the
sonic_install_dir/MQ2013/lib directory:

• aspectjrt.jar

• aspectjweaver.jar

• sonic_tracing.jar

When you put sonic_tracing.jar on an application’s CLASSPATH, the classloader loads all
three of these libraries.

The tracing aspect using AspectJ is enabled by configuring load-time weaving. Specify this
in the following Java option:

-javaagent:%SONICMQ_LIB%\aspectjweaver.jar

Trace Levels
There are four trace levels available:

Trace
level Tracing functions

0 • None.

32 • Exception tracing.

64 • Exception tracing.

• Entry tracing.

128 • Exception tracing.

• Entry tracing.

• Instance, argument and exit tracing
Aurea Software, Inc. Confidential 452 Copyright © 2013 Aurea, Inc.

Exploring Tracing in the SonicMQ Sample Applications
Setting the Trace Level in Applications

After you have enabled JMS tracing, set the trace level for an application with the Java
system property SonicMQ.DEBUG_NAME. For example:

-DSonicMQ.DEBUG_NAME=tracing.jms:32

Exploring Tracing in the SonicMQ Sample
Applications

SonicMQ’s sample applications are located in the
sonic_install_dir/MQ2013/samples directory. The generic application startup
scripts SonicMQ.bat (Windows) and SonicMQ.sh (UNIX/Linux) reference the installation’s
environment settings and set up the command line to handle the application name and its
parameters. Those files now include the required settings to implement tracing but the
setting is commented out by default.

The tail of the file—shown here for Windows—highlights the commented line you need to
change:

...
rem
rem Uncomment the following set command to enable SonicMQ JMS API entry
tracing.
rem set SONICMQ_SAMPLE_TRACE_LEVEL=64

if "%SONICMQ_SAMPLE_TRACE_LEVEL%"=="" (
 "%SONICMQ_JRE%"

-cp ".;%SONICMQ_CLASSPATH%;%SOAP_CLASSPATH%"
%SONICMQ_SSL_SAMPLES_CLIENT% %*

) else (
 "%SONICMQ_JRE%"

-javaagent:"%WEAVER_JAR%"
-cp

".;%TRACING_CLASSPATH%;%SONICMQ_CLASSPATH%;%SOAP_CLASSPATH%"
%SONICMQ_SSL_SAMPLES_CLIENT%
-DSonicMQ.DEBUG_NAME=tracing.jms:%SONICMQ_SAMPLE_TRACE_LEVEL% %*

Remove the comment mark (rem) from the line and save the file to enable all samples that
use this script to implement and display tracings.

Using Tracing in the Sample Application Chat

The following code sections show how tracings display in a simple Hello world. use of the
sample sonic_install_dir/MQ2013/samples/TopicPubSub/Chat.
Aurea Software, Inc. Confidential 453 Copyright © 2013 Aurea, Inc.

Chapter B: Using Client Tracing Logs
No Tracing (and Tracing Level 0)

Running the sample application without tracing, the output looks like this:

C:\Program Files\aurea\Sonic\MQ8.0\samples\TopicPubSub\Chat>..\..\SonicMQ
Chat -u SALES

Enter text messages to clients that subscribe to the jms.samples.chat
topic.
Press Enter to publish each message.

Hello world.

SALES: Hello world.

Ctrl+C

This output would be the same when tracing is enabled at level 0. As this example threw
no exceptions, the tracing level of 32 would generate similar output.

Exception Tracing

Setting tracing to level 32 displays exceptions as in this case of specifying a non-existent
broker port:

C:\Program Files\aurea\Sonic\MQ8.0\samples\TopicPubSub\Chat>
..\..\SonicMQ Chat -u SALES -b localhost:25006

[timestamp] exiting Connection
javax.jms.ConnectionFactory.createConnection(String, String)
 exception: javax.jms.JMSException: java.net.ConnectException:
Connection refused: connect: localhost:25006
 at
progress.message.jimpl.JMSExceptionUtil.createJMSException(JMSExceptionUtil.java
:42)
 at progress.message.jimpl.Connection.<init>(Connection.java:954)
 at
progress.message.jclient.ConnectionFactory.createConnection(ConnectionFactory.java:
2140)
 at Chat.chatter(Chat.java:53)
 at Chat.main(Chat.java:225)
Caused by: [104] progress.message.client.ENetworkFailure:
java.net.ConnectException: Connection refused: connect: localhost:25006
 at
progress.message.zclient.Connection.connectWithRecoveryOpt(Connection.jav
a:1096)

... 12 more
Aurea Software, Inc. Confidential 454 Copyright © 2013 Aurea, Inc.

Exploring Tracing in the SonicMQ Sample Applications
Entry Tracing

The following shows the display when the Chat sample is set to trace level 64 and throws
no exceptions:

C:\Program Files\aurea\Sonic\MQ8.0\samples\TopicPubSub\Chat>
..\..\SonicMQ Chat -u SALES
[timestamp] entering Connection
javax.jms.ConnectionFactory.createConnection(String, String)
[timestamp] entering Session javax.jms.Connection.createSession(boolean,
int)
[timestamp] entering Session javax.jms.Connection.createSession(boolean,
int)
[timestamp] entering Topic javax.jms.Session.createTopic(String)
[timestamp] entering MessageConsumer
javax.jms.Session.createConsumer(Destination)
[timestamp] entering void
javax.jms.MessageConsumer.setMessageListener(MessageListener)
[timestamp] entering MessageProducer
javax.jms.Session.createProducer(Destination)
[timestamp] entering void javax.jms.Connection.start()

Enter text messages to clients that subscribe to the jms.samples.chat
topic.
Press Enter to publish each message.

Hello world.

[timestamp] entering TextMessage javax.jms.Session.createTextMessage()
[timestamp] entering void javax.jms.TextMessage.setText(String)
[timestamp] entering void javax.jms.MessageProducer.send(Message)
[timestamp] entering void Chat.onMessage(Message)
[timestamp] entering String javax.jms.TextMessage.getText()

SALES: Hello world.

Ctrl+C

[timestamp] entering void javax.jms.Connection.close()

Instance, Argument and Exit Tracing

The following shows the display when the Chat sample is set to trace level 128 and throws
no exceptions:

C:\Program Files\aurea\Sonic\MQ8.0\samples\TopicPubSub\Chat>
..\..\SonicMQ Chat -u SALES
[timestamp] exiting progress.message.jclient.ConnectionFactory(String)
 return: progress.message.jclient.ConnectionFactory@185572a
[timestamp] entering Connection
javax.jms.ConnectionFactory.createConnection(String, String)
 instance: progress.message.jclient.ConnectionFactory@185572a
 arguments: SALES, password
[timestamp] exiting Connection
javax.jms.ConnectionFactory.createConnection(String, String)
 return: progress.message.jimpl.Connection@158291
Aurea Software, Inc. Confidential 455 Copyright © 2013 Aurea, Inc.

Chapter B: Using Client Tracing Logs
[timestamp] entering Session javax.jms.Connection.createSession(boolean,
int)
 instance: progress.message.jimpl.Connection@158291
 arguments: false, 1
[timestamp] exiting Session javax.jms.Connection.createSession(boolean,
int)
 return: jimpl.Session
[timestamp] entering Session javax.jms.Connection.createSession(boolean,
int)
 instance: progress.message.jimpl.Connection@158291
 arguments: false, 1
[timestamp] exiting Session javax.jms.Connection.createSession(boolean,
int)
 return: jimpl.Session
[timestamp] entering Topic javax.jms.Session.createTopic(String)
 instance: jimpl.Session
 arguments: jms.samples.chat
[timestamp] exiting Topic javax.jms.Session.createTopic(String)
 return: jms.samples.chat
[timestamp] entering MessageConsumer
javax.jms.Session.createConsumer(Destination)
 instance: jimpl.Session
 arguments: jms.samples.chat
[timestamp] exiting MessageConsumer
javax.jms.Session.createConsumer(Destination)
 return: progress.message.jimpl.TopicSubscriber@f3552f
[timestamp] entering void
javax.jms.MessageConsumer.setMessageListener(MessageListener)
 instance: progress.message.jimpl.TopicSubscriber@f3552f
 arguments: Chat@f20434
[timestamp] exiting void
javax.jms.MessageConsumer.setMessageListener(MessageListener)
[timestamp] entering MessageProducer
javax.jms.Session.createProducer(Destination)
 instance: jimpl.Session
 arguments: jms.samples.chat
[timestamp] exiting MessageProducer
javax.jms.Session.createProducer(Destination)
 return: progress.message.jimpl.TopicPublisher@1352367
[timestamp] entering void javax.jms.Connection.start()
 instance: progress.message.jimpl.Connection@158291
[timestamp] exiting void javax.jms.Connection.start()

Enter text messages to clients that subscribe to the jms.samples.chat
topic.
Press Enter to publish each message.

Hello world.

[timestamp] entering TextMessage javax.jms.Session.createTextMessage()
 instance: jimpl.Session
[timestamp] exiting TextMessage javax.jms.Session.createTextMessage()
 return: progress.message.jimpl.TextMessage@1cfd3b2
[timestamp] entering void javax.jms.TextMessage.setText(String)
 instance: progress.message.jimpl.TextMessage@1cfd3b2
 arguments: SALES: Hello world.
[timestamp] exiting void javax.jms.TextMessage.setText(String)
[timestamp] entering void javax.jms.MessageProducer.send(Message)
 instance: progress.message.jimpl.TopicPublisher@1352367
 arguments: progress.message.jimpl.TextMessage@1cfd3b2
[timestamp] exiting void javax.jms.MessageProducer.send(Message)
Aurea Software, Inc. Confidential 456 Copyright © 2013 Aurea, Inc.

Exploring Tracing in the SonicMQ Sample Applications
[timestamp] entering void Chat.onMessage(Message)
 instance: Chat@f20434
 arguments: progress.message.jimpl.TextMessage@3727c5
[timestamp] entering String javax.jms.TextMessage.getText()
 instance: progress.message.jimpl.TextMessage@3727c5
[timestamp] exiting String javax.jms.TextMessage.getText()
 return: SALES: Hello world.

SALES: Hello world.

[timestamp] exiting void Chat.onMessage(Message)

Ctrl+C

[timestamp] entering void javax.jms.Connection.close()
 instance: progress.message.jimpl.Connection@158291
Aurea Software, Inc. Confidential 457 Copyright © 2013 Aurea, Inc.

Chapter B: Using Client Tracing Logs
Aurea Software, Inc. Confidential 458 Copyright © 2013 Aurea, Inc.

A

Index
urea
A

access control lists 37, 40
applied to multitopics 341
propagation of changed permissions 215

ACID properties of a transaction 424

acknowledgement mode 206, 210
AUTO_ACKNOWLEDGE 207
CLIENT_ACKNOWLEDGE 207
DUPS_OK_ACKNOWLEDGE 207
lazy 207
SINGLE_MESSAGE_ACKNOWLEDGE

207, 301

active ping 161

administered objects
ConnectionFactories 143
definition 152
destinations 217
readFile 159

administrative notification 221

ANSI C 42

APIs
JNDI 68, 443
SonicStream 391

applet 42

application
server 227, 424

application/x-sonicmq-* 244

asynchronous 269, 286

authentication
consumer 40
in samples 70
producer 37
SSL

client certificates 136
username and password 134

authorization
consumer 40
in samples 70
producer 37

AUTO_ACKNOWLEDGE 207

B

broker properties
PREFERRED_ACTIVE 187

broker storage
NON_PERSISTENT_REPLICATED

messages 192

brokers
failure 163
management

destination parameters 267
topic hierarchies 413

starting in UNIX 46, 72
starting in Windows 46, 71

browsing queues 293
sample 88

BytesMessage type 232
Software, Inc. Confidential 459 Copyright © 2013 Aurea, Inc.

Index

Aurea
C

C clients 42

CAA-FF 187

channel 370

channel ID 373, 382

characters
reserved

in a Subscription name 313
in destination names 263
in topic names 214, 311

restricted 66
template 413, 416

Chat sample application 74, 124

chunks 395

clearProperties 258

client persistence 109, 163
fault-tolerant connections 182
under flow control 163

client reconnect timeout 177

CLIENT_ACKNOWLEDGE 207

ClientPlus 85, 109
client persistence 163
large message support 369

clients
identifier 145
session 205

clusters 32
behavior of shared subscriptions 328
global subscriptions 335

commit 94, 210
in a global transaction 426

communication resource manager 425

compiling samples 73, 123

ConnectionFactories
administered objects 153
definition 143

connections 132
consumer 227
definition 35
fault-tolerant 172
identifier 145
multiple 202
retry when broken 98
starting, stopping, closing 201

consumers

connection 227

content ID 244

content type 243, 244

Continuous Availability
client connection 172

CorrelationID 250, 266
sample 113

count, maximum delivery attempts 149,
150, 151, 209

count, prefetch 292

createBrowser 294

createDurableSubscriber 313

createMessage 233, 312

createQueue 213

createQueueConnection 160

createStream 396

createSubscriber 313

createTopic 213

D

DataHandler 238, 243

dead message 347

dead message queue 345, 347, 352
default properties 350
enabling features 349
full 355
monitoring 349
notification factor 350
persistence 268
programming 295
QoS level 41
reason code 105, 246
sample 99
specifying a preferred destination 356
system 348
using MultipartMessage 245
wrapping problem messages 242

DeadMessages sample application 99

delivery mode
default value 252
message header field 249
NON_PERSISTENT 347
NON_PERSISTENT_REPLICATED 187
on the broker 268
PERSISTENT 267, 268, 347
Software, Inc. Confidential 460 Copyright © 2013 Aurea, Inc.

Index

Aurea So
producer parameter 312

delivery mode (SonicStream API) 395

destination factory
creating a multitopic 338

destinations 249
administered objects 153, 217
temporary 112, 279

Distributed Transaction sample application
438

distributed transactions 211

DMQ
See dead message queue

Document Object Model 80, 129, 234, 236

DocumentBuilder 234

dropped connection 163
sample 96

duplicate message detection 212

DUPS_OK_ACKNOWLEDGE 207

durable subscriptions
creating 57
definition 313
handling on the broker 269
multitopic 342
QoS 39
sample 106
unsubscribing 314

DurableChat sample application 106

dynamic routing architecture
undelivered reason codes 363
with a dead message queue 99

E

encryption 37
per message 253, 266

enumeration for queue browsing 294

events
flow control 221
notify undelivered 295

expiration 251, 267, 269, 298
QoS level 39

expired message 347, 348

extended type 242, 253

F

FastForward 187

fault tolerant client 172

fault-tolerant connections 172
client persistence 182
NON_PERSISTENT_REPLICATED

delivery mode 191

file transfers 85

filters 271

flow control 220
disabling 223
events 221
multitopics 343
producers using client persistence 163
shared subscriptions 330

flow to disk 223

fragments 372

FT_REPLICATE_NON_PERSISTENT 187

G

getPropertyNames 258

global subscription 333
multitopic 340
shared 333

group ID 257

group identifier 117

guaranteeing delivery 349

H

header message 370

headers
default header field values 252
message 249
SOAP 247

hierarchical name spaces 411
as message filters 313

HierarchicalChat sample application 121

host
remote 74

hostname 144

HTTP Direct
multitopic 343
ftware, Inc. Confidential 461 Copyright © 2013 Aurea, Inc.

Index

Aurea
HTTP tunneling 138

HTTPS 138

I

identifier
client 145
connection 145

indoubt
messages 364
transaction state 426

indoubt message 348

initial connect timeout 148, 177

instanceof operator 85

J

J2EE 30, 229

Java 31
applet 42
client 41
JRE 31
JVM 31
Transaction API 427
Transaction Service 424

JAXP 234

JMS provider 32

JMS_SonicMQ message properties 351

JMS_SonicMQ_ExtendedType 242

JMSX properties 255

JMSXDeliveryCount 208, 255

JMSXUserID 255

JNDI
lookup of destinations 217
lookup of topics 264, 311

JNDI SPI 68, 443

JNDI SPI sample applications 447

JRE, installed 31

JVM 31

L

large message support 85, 369

latency 263

lazy acknowledgement 207

listeners 270
channel 382
message 286
rejection 164
SonicStream

exception 396
notification 396

local store 163, 165

LocalStore sample application (PTP) 111

LocalStore sample application (Pub/Sub)
111

log
local store 163, 369

loop test 123

M

management APIs
JNDI SPI 68, 443

MapMessage
enhancing the sample 125
sample application 78, 125
type 233

MaxDeliveryCount 364

message
body

setting and getting 260
Text 130
XML (DOM format) 129

dead 347
delivery

PTP 286
expired 347, 348
file fragments 372
groups

sample 117
indoubt 348
JMS_SonicMQ properties 351
large 369
NON_PERSISTENT 347
ordering 262

PTP 285
Pub/Sub 310

parts 238
PERSISTENT 267, 268, 347
properties 253
reliability 262

PTP 286
Pub/Sub 310

selectors 271
Software, Inc. Confidential 462 Copyright © 2013 Aurea, Inc.

Index

Aurea So
on QueueBrowser 294
on server for topics, option 271
sample 116

types 212, 232
undeliverable 347
undelivered 348, 363

handling 353
types 355

unroutable 348

Message Driven Beans 229

message property
maximum length 253

message selectors
maximum length 271

Message type 232

MessageGroupTalk sample application 117

MessageID 249

MessageMonitor sample application 90

MessagePart 238, 244

MIME 243

monitoring interval 221

MultipartMessage type 233, 238

multitopic 336

MultiTopicChat sample application 76

N

name spaces 411
NameSpaceAware 235

network failure 163

noLocal 313, 314

NON_PERSISTENT
message 347
upgrade to REPLICATED 187

NON_PERSISTENT_REPLICATED 187

notification factor 350

notification topic (SonicStream API) 393

notify undelivered 253, 299

NoWait 270, 288

null
in comparison tests 275
in topic naming 414

O

object model 34

ObjectMessage type 233

one-to-many 33

one-to-one 33

P

parts 238

peer-to-peer 85, 369

pending queue 257

persistence
local 109, 163, 369
message delivery mode 249
on the broker 268
QoS options 38

PERSISTENT
message 267, 268, 347

ping interval 161

point-to-point 33

poison message scenario
handling by limiting redelivery 208

port 145

PREFERRED_ACTIVE broker property 187

prefetch
count 292
threshold 292

preserve undelivered 253

priority
default value 252
header field 251
on the broker 268
publish parameter 312
QoS level 39

producers 35, 264

properties
dead message 105

propertyExists 258

protocols 133, 144

proxy servers 138

publish 252, 312
multitopic 336
ftware, Inc. Confidential 463 Copyright © 2013 Aurea, Inc.

Index

Aurea
publish and subscribe 33

publishers 264, 311

Q

QoP cache size 341

quality of protection 36
applied to multitopics 341

quality of service 36
sample 95

client persistence 109
durable subscription 95
persistent storage 95
reliable connection 95

queue
dead messages 352

QueueMonitor sample application 88

queues
browser 52, 293
browser sample 88
listener 286
set up 284

R

readAheadWindow (SonicStream API) 398

readFile 159

reason codes 363

receivers 269, 287
message selectors 49, 52
multiple 286

reconnect
in client persistence 164

recoverable file channel 85, 369

recovery
client local stores 163, 369
file channel 382

redelivered 38, 250

redelivery
NON_PERSISTENT_REPLICATED 190

redelivery limit 149, 209

RejectionListener 164

rejections 166

releaseStream 396

ReliableTalk sample application 97, 110,
111

remote host 74

remote publishing 333
global subscriptions 333
multitopic 340
shared subscriptions 333

remote subscribing (global) 333

ReplyTo 250, 266

request and reply 279
QoS level 39, 41

Request and Reply sample application
(PTP) 113

Request and Reply sample application
(Pub/Sub) 114

requestor 113, 114

resources
enlistment 425
manager 425

restricted characters 66

retry count 371

retry interval 371

rollback 93
definition 210

RoundTrip sample application 123, 124

routing
problems causing non-delivery 364

routing node 32

routing statistics 257

RSA Security 134

S

samples
Chat (Pub/Sub) 74

extended for common topics 124
Distributed Transaction 438
DurableChat (Pub/Sub) 106

extended for common topics 124
HierarchicalChat (Pub/Sub) 121
JNDI SPI 447
LocalStore (PTP) 109, 111
LocalStore (Pub/Sub) 111
MapMessage (PTP) 78
MapMessages (PTP)

extended for other data types 125
Software, Inc. Confidential 464 Copyright © 2013 Aurea, Inc.

Index

Aurea So
MessageGroupTalk(PTP)) 117
MessageMonitor (Pub/Sub) 90
MultiTopicChat (Pub/Sub) 76
QueueMonitor (PTP) 88
ReliableTalk (PTP) 97, 110, 111
Request and Reply (PTP) 113
Request and Reply (Pub/Sub) 114
RoundTrip (PTP) 123, 124

extended for various behaviors 124
SelectorChat (Pub/Sub) 116
SelectorTalk (PTP) 116
SonicStreams

StreamReceiver 400
StreamSender 400

Talk (PTP) 75
Transacted Messages (PTP) 92
Transacted Messages (Pub/Sub) 93
using DeadMessages application (PTP)

99
XA 438
XMLChat (Pub/Sub) 79
XMLDOMChat (Pub/Sub) 82
XMLMessage (PTP) 81
XMLMessage (Pub/Sub)

extended with additional data 127
XMLSAXChat(PubSub) 83
XMLSAXTalk (PTP) 81
XMLTalk (PTP) 79

SAX 234, 236

SAX parser 234

SAX XML parser 80

scripts
batch files 73
for compiling modified samples 73
for running samples 73
shell scripts 73

security
in samples 69
in topic name spaces 412

segment (SonicStream API) 395

selector string 116

SelectorChat sample application 116

selectors
maximum length 271

SelectorTalk sample application 116

send 252

serialized Java objects 158

server session pool 228

sessions

client 205
definition 35, 132, 205
multiple 206
objects 212
pool 229
queue 48
topic 54
transacted 210

shared subscriptions 319
flow control 330
flow to disk 330
multitopic 342

SINGLE_MESSAGE_ACKNOWLEDGE
207, 301

SOAP 83, 238, 247

socket connect timeout 148, 177

SonicStream API 391

split delivery (multitopic) 339

SQL 116

SQL92 271

SSL 134
JSSE 134
RSA 134

status
channel 378

store directory 164

stream topic 393

StreamMessage type 233

subscribe
multitopic 336

subscribers
definition 313
message selectors 57
No Local Delivery 58

subscriptions
durable 57
shared 319

support, technical 28

synchronous 269, 286

syntax
message selector string 272
topic names 413

system dead message queue 348
ftware, Inc. Confidential 465 Copyright © 2013 Aurea, Inc.

Index

Aurea
T

Talk sample application 75

TCP 133

TCP_RESET 163

technical support 28

template characters 413, 416
topics 263, 311

temporary destination 112, 279

TextMessage type 233

threads 257

threshold, prefetch 292

time to live 355

timeout
client reconnect 177
connection retries 165
in client persistence 164
in transacted sessions 211
initial connect 148, 177
on a file channel sender 371
on a receiver 269
on receiveNoWait 270, 288
on synchronous receive 287
socket connect 148, 177

timestamp 249
undelivered 253

time-to-live
default value 252
DurableChat sample 109
message property 253
on the broker 269
publish parameter 312

TopicRequestor 280

topics
common in samples 124
definition 310
hierarchical name spaces 263, 311
hierarchy 411

transacted sessions
definition 210
session parameter 206

TransactedChat sample application 93

TransactedTalk sample application 92

transactions
context 425
distributed 211

effect of
NON_PERSISTENT_REPLICATED
192

global 424
local 424
transaction manager 424

TTL
See time to live

two-phase commit 426

type 250, 266

U

undeliverable message 347

undelivered
notify 41, 101, 253
preserve 41, 101, 253
reason codes 253, 299, 363
timestamp 253

undelivered destination
message properties 359

undelivered message 348
handling 353
override

destination name 357
destination type 357

types 355

undelivered message reason codes 363

UNDELIVERED_DELIVERY_LIMIT_EXCE
EDED 208, 364

unfinished channel 382

unroutable message 348

unsubscribe 314

URL 144

username 145

UUID 212

V

valueOf method 259

W

wildcards 122

window size 372
Software, Inc. Confidential 466 Copyright © 2013 Aurea, Inc.

Index

Aurea So
X

XA sample application 438

XAResource 425

X-HTTP-* properties 256

XID 425

XML message
create method 219
enhanced sample 127
sample application 79

XML parser 80

XMLMessage sample application (PTP) 81

XMLMessage sample application (Pub/Sub)
127

XMLMessage type 233, 234

XMLSAXChat sample application 83

XMLSAXTalk sample application 81

XMLTalk sample application 79
ftware, Inc. Confidential 467 Copyright © 2013 Aurea, Inc.

Index

Aurea
Software, Inc. Confidential 468 Copyright © 2013 Aurea, Inc.

	Aurea SonicMQ® Application Programming Guide 2013
	Preface
	About This Guide
	Typographical Conventions
	Aurea Sonic Documentation
	SonicMQ Documentation
	Other Documentation in the SonicMQ Product Family

	Worldwide Technical Support

	Overview
	Java Message Service
	JMS: Key Component of the Java Platform for the Enterprise
	JMS Version 1.1 Specification
	Java Development Environment

	Programming Concepts
	Clients Connect to the SonicMQ Broker
	SonicMQ Is a JMS Provider
	SonicMQ Messaging Models
	JMS Version 1.1 Unification of Messaging Models
	SonicMQ Object Model
	ConnectionFactory
	Connection
	Session
	MessageConsumer and MessageProducer
	Destination
	Message

	Quality of Service and Protection
	Clients
	Java Client
	JMS Test Client
	HTTP Direct Protocol Handlers
	Java Applet
	.NET Client
	C/C++ Clients
	COM Client

	SonicMQ API

	Using the JMS Test Client
	Testing Point-to-point Messaging
	Starting the SonicMQ Container and Broker
	Opening the JMS Test Client
	Establishing Connection to the SonicMQ Broker
	Establishing a Queue Session
	Creating Queue Senders and Queue Receivers
	Sending and Receiving Messages
	Browsing Messages on a Queue

	Testing Publish and Subscribe Messaging
	Establishing a Topic Session
	Creating Publishers and Subscribers to Topics
	Publishing Messages
	Receiving Messages on Subscribed Topics

	Examining the SonicMQ JMS Samples
	About SonicMQ Samples
	Other Samples Available
	Extending the Samples
	How Security Impacts Client Activities

	Running the SonicMQ Samples
	Starting the SonicMQ Container and Management Console
	Opening Client Console Windows
	Using the Sample Scripts
	Using the SonicMQ Samples in a Sonic Workbench Installlation
	Using the SonicMQ Samples with a non-default Broker

	Chat and Talk Samples
	Chat Application (Pub/Sub)
	Talk Application (PTP)
	Reviewing the Chat and Talk Samples

	MultiTopicChat Sample
	Setting Up MultiTopic Sessions
	Demonstrating MultiTopic Publish and Subscribe

	Samples of Additional Message Types
	Map Messages (PTP)
	XML Messages
	XMLDOMTalk (PTP)
	XMLSAXTalk (PTP)
	XMLDOMChat (Pub/Sub)
	XMLSAXChat (Pub/Sub)

	Decomposing Multipart Messages
	Reviewing the Additional Message Type Samples

	Sample of Channels for Large Message Transfers
	Reviewing the Large Message Transfer Sample

	Message Traffic Monitor Samples
	QueueMonitor Application (PTP)
	MessageMonitor Application (Pub/Sub)

	Transaction Samples
	TransactedTalk Application (PTP)
	TransactedChat Application (Pub/Sub)
	Reviewing the Transaction Samples

	Reliable, Persistent, and Durable Messaging Samples
	Reliable Connections
	ReliableTalk Application (PTP)
	ReliableChat Application (Pub/Sub)

	Persistent Storage Application (PTP)
	DurableChat Application (Pub/Sub)
	Continuous Producer Demonstrating Client Persistence
	Local Store Sample (PTP)
	Local Store Sample (Pub/Sub)

	Reviewing Reliable, Persistent, and Durable Messaging

	Request and Reply Samples
	Request and Reply (PTP)
	Request and Reply (Pub/Sub)
	Reviewing the Request and Reply Samples

	Selection, Group, and Wild Card Samples
	Message Selection: SelectorTalk and SelectorChat
	SelectorTalk Application (PTP)
	SelectorChat Application (Pub/Sub)

	MessageGroupTalk (PTP)
	HierarchicalChat Application (Pub/Sub)
	Reviewing the Selection, Group, and Wild Card Samples

	Test Loop Sample
	QueueRoundTrip Application (PTP)

	Enhancing the Basic Samples
	Use Common Topics Across Clients
	Trying Different RoundTrip Settings
	Modifying the MapMessage to Use Other Data Types
	Modifying the XMLMessage Sample to Show More Data

	SonicMQ Connections
	Overview of SonicMQ Connections
	Protocols
	TCP
	SSL
	Using SSL on the Client
	Authentication
	Setting Cipher Suites

	HTTP
	HTTPS
	sonicrn:///

	JVM Command Options
	HTTP Tunneling through an Authenticating Proxy
	Specifying Credentials
	NTLM Authentication

	HTTP Forward Proxy
	HTTPS Forward Proxy
	HTTPS Tunneling Through an Authenticating Forward Proxy

	SSL/HTTPS
	Nagle Algorithm
	HTTP Map Host to IP

	Connection Factories and Connections
	Connection Factories
	URL
	ConnectID
	Username and Password
	ClientID
	Load Balancing
	Alternate Connection Lists
	Obtaining the Connected Broker URL or Node Name
	Setting Server-based Message Selection
	Setting a Socket Connect Timeout
	Setting QoP Cache Size
	Setting the Maximum DeliveryCount
	Setting to Minimize Subscriber Traffic
	Enabling Message Compression

	Connecting to SonicMQ Directly
	Connecting to SonicMQ Using Administered Objects
	Advantages of Using JMS Administered Objects
	Lookup and Use of Administered Objects
	Lookup Using the Sonic JNDI SPI
	Using the LDAP JNDI SPI

	Connecting to SonicMQ Using Serialized Factories
	Setting Up Serialized Objects
	Using Serialized Objects

	Connections
	Creating a Connection
	Creating and Monitoring a Connection
	Handling Exceptions on the Connection

	Client Persistence
	Using Client Persistence
	Rejection Listener
	Coding Limitations

	Asynchronous Message Delivery
	Delivery Mode Behavior
	Reliability of Produced Messages
	Synchronous Message Reliability
	Asynchronous Message Reliability

	Ordering of Asynchronously Produced Messages
	Delivery Doubt Window
	Close Behavior
	Close Timeout

	RejectionListener Semantics

	Fault-Tolerant Connections
	How Fault-Tolerant Connections are Initially Established
	ConnectionFactory Methods for Fault-Tolerance
	Enabling Fault-Tolerant Connections
	Client Transaction Buffers
	Specifying Connection Timeouts

	Connection Methods for Fault-Tolerance
	Handling Connection State Changes
	Getting the URL of the Current Broker

	Reconnect Errors
	Load Balancing Considerations
	Acknowledge and Forward Considerations
	Forward and Reverse Proxies
	Client Persistence and Fault-Tolerant Connections
	JMS Operation Reliability and Fault-Tolerant Connections
	Reconnect Conflict
	JMS Connection Reconnect Conflict
	Durable Subscriber Reconnect Conflict

	Message Reliability
	NON_PERSISTENT_REPLICATED Delivery Mode
	Failures That Cause Message Loss or Duplication
	Setting the Default Delivery Mode for a Message Producer
	Redelivery of NON_PERSISTENT_REPLICATED Messages
	Nondurable Subscribers of NON_PERSISTENT_REPLICATED Messages
	Broker Storage of NON_PERSISTENT_REPLICATED Messages
	Effect of Broker Restart on NON_PERSISTENT_REPLICATED Messages
	NON_PERSISTENT_REPLICATED Messages in Transactions
	Using NON_PERSISTENT_REPLICATED in acknowledgeAndForward
	Using NON_PERSISTENT_REPLICATED Delivery Mode on Non-Fault Tolerant Connections

	Modifying the Chat Example for Fault-Tolerance
	Running the Modified Chat Example

	Starting, Stopping, and Closing Connections
	Starting a Connection
	Stopping a Connection
	Closing a Connection

	Using Multiple Connections
	Communication Layer

	SonicMQ Client Sessions
	Overview of Client Sessions
	Naming Sessions
	Acknowledgement Mode
	Recover
	Limiting Redelivery from Queues

	Explicit Acknowledgement
	Transacted Sessions
	Broker-managed Timeouts on Transacted Sessions

	Distributed Transactions
	Duplicate Message Detection

	Session Objects
	Creating a Destination
	Destination Objects
	Destination Name Syntax
	Effects of Access Control
	Temporary Queues
	Using a Lookup for Destinations

	Creating a MessageProducer
	Creating a MessageConsumer
	Creating a Message
	Closing a Session

	Flow Control
	Using Client Persistence and Wait Time When Flow Controlled
	Flow Control Management Notifications
	Monitoring Intervals
	Notification Interface

	Disabling Flow Control

	Flow to Disk
	Using Sessions and Consumers
	Multiple Sessions on a Connection
	Creating Session Objects and the Listeners
	Starting the Connection

	JMS Messaging Domains
	Integration with Application Servers
	Connection Consumer
	Server Session
	Message Driven Beans
	Shared Subscriptions

	XA Resources

	Messages
	About Messages
	Message Type
	Creating a Message
	Working with XML Messages
	JAXP Support
	JAXP Interfaces
	DOM Support
	SAX Support

	Working With Messages That Have Multiple Parts
	Composition of a MultipartMessage
	MultipartMessage Type
	Parts of a MultipartMessage
	MessagePart Subclass
	Header of the MultipartMessage or a Part

	Using Multipart Messages to Wrap Problem Messages
	Wrapping a Problem SonicMQ Message Within a Message
	Receiving a Wrapped Problem Message

	Interacting with Business-to-Business Multipart Types

	Message Structure
	Message Header Fields
	Setting Header Values When Sending/Publishing

	Message Properties
	Provider-defined Properties (JMS_SonicMQ)
	Per Message Encryption

	JMS-defined Properties (JMSX)
	User-defined Properties
	Determining the Pending Queue for Messages

	Setting Message Properties
	Property Methods
	Checking Whether a Property Exists
	Clearing Message Properties
	Setting the Property Type
	Getting Property Names
	Getting Property Values

	Message Body
	Setting the Message Body
	Getting the Message Body

	Message Producers and Consumers
	About Message Producers and Message Consumers
	Message Ordering and Reliability
	Destinations
	Steps in Message Production
	Create a Session
	Create the Producer on the Session
	Create the Message Type and Set Its Body
	Set Message Header Fields
	Set the Message Properties
	Elect Per Message Encryption
	Produce the Message

	Message Management by the Broker
	Message Receivers, Listeners, and Selectors
	Message Receiver
	Receive
	Receive with Timeout
	Receive No Wait

	Message Listeners
	Message Selection
	Server-based or Client-based Topic Message Selectors
	Scope of Message Selectors
	Message Selector Syntax
	Comparing Exact and Inexact Values

	Steps in Listening, Receiving, and Consuming Messages
	Implement the Message Listener
	Create the Destination and Consumer, Then Listen
	Handle a Received Message
	Get Message Properties
	Consume the Message
	Acknowledge the Message

	Reply-to Mechanisms
	Temporary Destinations Managed by a Requestor Helper Class
	Requestor Application
	Replier Application
	Design for Handling Requests
	Writing a Topic Requestor

	Producers and Consumers in JMS Messaging Domains

	Point-to-point Messaging
	About Point-to-point Messaging
	Message Ordering and Reliability in PTP
	Message Ordering
	Message Delivery

	Using Multiple MessageConsumers
	Message Queue Listener
	MessageConsumer
	Receive
	Receive with Timeout
	Receive No Wait

	Using Message Grouping
	Illustration of Message Grouping
	Broker Settings for Message Grouping
	Initial Message Dispatch
	Group Idle Timeout

	Message Producers for Message Grouping
	Creating and Sending to a Message Group
	Requesting the Broker to Unassign a Message Group

	Message Consumers for Message Grouping

	Setting Prefetch Count and Threshold
	Browsing a Queue
	Handling Undelivered Messages
	Setting Important Messages to be Saved if They Expire
	Setting Small Messages to Generate Administrative Notice

	Life Cycle of a Guaranteed Message
	Setting the Message to Be Preserved
	Setting the Message to Generate an Administrative Event
	Sending the Message
	Letting the Message Get Delivered or Expire
	Post-processing Expired Messages
	Processing Enqueued Expired Messages
	Sending Administrative Notification

	Getting Messages Out of the Dead Message Queue

	Detecting Duplicate Messages
	Forwarding Messages Reliably
	Dynamic Routing with PTP Messaging
	Administrative Requirements
	Application Programming Requirements
	Message Delivery with Dynamic Routing

	Clusterwide Access to Queues
	Sending to Clusterwide Queues
	Receiving from Clusterwide Queues
	Browsing Clusterwide Queues
	Message Selectors with Clusterwide Queues
	Clustered Queue Availability When Broker is Unavailable

	Publish and Subscribe Messaging
	About Publish and Subscribe Messaging
	Message Ordering and Reliability in Pub/Sub
	General Services
	Message Ordering
	Reliability

	Topic
	MessageProducer (Publisher)
	Creating the MessageProducer
	Creating the Message
	Sending Messages to a Topic

	MessageConsumer (Subscriber)
	Durable Subscriptions
	Clusterwide Access to Durable Subscriptions
	Message Order with Clusterwide Durable Subscriptions
	Availability of Clusterwide Durable Subscription After Reconnecting

	Dynamic Routing with Pub/Sub Messaging
	Administrative Requirements
	Application Programming Requirements
	Message Delivery with Remote Publishing

	Shared Subscriptions
	Features of Using Shared Subscriptions in Your Applications
	Usage Scenarios for Shared Subscriptions
	Fault Resilience
	Highly-Variable Processing Times
	Pure Load-balancing

	Defining Shared Subscription Topic Subscribers
	Message Delivery to a Broker with Shared Subscriptions
	Single Broker Behavior with Shared Subscriptions
	Cluster Behavior with Shared Subscriptions
	Shared Subscriptions and Flow Control

	JMS Interactions with Shared Subscriptions
	Shared Subscriptions with Remote Publishing and Subscribing

	MultiTopics
	Format of a MultiTopic String
	MultiTopic String Format
	Examples of MultiTopic Strings

	Creating MultiTopics
	Using a Session Object to Create a MultiTopic
	Using a DestinationFactory Object to Create a MultiTopic

	Adding Component Topics to a MultiTopic
	Publishing and Subscribing to MultiTopics
	Splitting MultiTopic Delivery
	Remote Publishing
	Global Subscriptions
	MultiTopics and Access Control Lists (ACLs)

	MultiTopic Considerations
	JMSReplyTo
	QoP and Per Message Encryption
	Durable Subscriptions
	Shared Subscriptions
	HTTP Direct
	Basic and SOAP
	Flow Control

	Guaranteeing Messages
	Introduction
	Duplicate Message Detection Overview
	SonicMQ Extensions to Prevent Duplicate Messages
	Support for Detecting Duplicate Messages

	Dead Message Queue Overview
	What Is an Undeliverable Message?
	Using the Dead Message Queue
	Guaranteeing Delivery
	Enabling Dead Message Queue Features

	Monitoring Dead Message Queues
	Default DMQ Properties
	JMS_SonicMQ Message Properties Used for DMQ
	Setting the Message Property to Preserve If Undelivered

	Handling Undelivered Messages
	Sample Scenarios in Handling Dead Messages
	Preserving Expired Messages and Throwing an Admin Notice
	Using High Priority and Throwing an Admin Notice

	What To Do When the Dead Message Queue Fills Up
	Undelivered Messages Due to Expired TTL

	Specifying a Destination for Undelivered Messages
	How to Specify an Undelivered Destination
	JMS_SonicMQ_destinationUndelivered Message Property
	Changes to JMS Headers
	Message Properties for Undelivered Destinations
	Undelivered Messages and Message Expiration

	Failure to Forward Undelivered Messages to the Undelivered Destination
	Publish Permission Check
	Undelivered Message Notifications
	Undelivered Destinations for DRA Messages
	Undelivered Destinations Without a Node Name
	Undelivered Destinations With a Node Name
	Required Routing Definitions

	Undelivered Message Reason Codes

	Recoverable File Channels
	About Recoverable File Channels for Large Messages
	Forwarding the Header Message
	Global Queues
	Dynamic Routing Architecture
	Semantics of File Fragmentation, Transfer, and Recovery

	Classes and Interfaces for Large Message Transfers
	ChannelListener
	Channel Status

	General Procedure for Large Message Transfers
	Creating a Recoverable File Channel
	Recovering an Interrupted Transfer
	Patterns for Recovery

	Duplicate Detection for File Transfers
	Security on File Transfers
	Using Multiple File Channels
	Exception Handling for File Channels
	Log Files

	Tips and Techniques for Using File Channels

	SonicStream API
	About the SonicStream API
	Common SonicStreamFactory Semantics
	Constructors
	Methods
	StreamTopic
	ApplicationName
	NotificationTopic

	SonicStream Interface

	Stream Publisher Semantics
	SonicStreamFactory
	SegmentSize
	DeliveryMode

	SonicOutputStreamController Interface
	StreamStatus Interface

	Stream Subscriber Semantics
	SonicStreamFactory
	setDeliveryMode
	setReadAheadWindowSize
	setSegment Timeout

	SonicInputStreamController Interface
	Stream Handlers
	Notifications

	Managing Flow Control
	Handling Errors
	Samples of SonicStreams
	SonicStreams Sample
	SonicStreams Sample With Retry
	Console Information in an Uninterrupted Transfer
	Experimenting with Interruptions
	Console Information in an Transfer Where the Receiver is Interrupted
	Console Information in an Transfer Where the Sender is Interrupted
	Console Information in an Transfer Where the Broker is Interrupted

	Hierarchical Name Spaces
	About Hierarchical Name Spaces
	Advantages of Hierarchical Name Spaces

	Publishing a Message to a Topic
	Topic Notation that Enables Topic Hierarchies
	Reserved Characters When Publishing
	Topic Structure, Syntax, and Semantics
	Topic Syntax and Semantics

	Broker Management of Topic Hierarchies
	Subscribing to Nodes in the Topic Hierarchy
	Template Characters
	Using Template Characters in Symmetric Hierarchies
	Using Template Characters in Asymmetric Topic Hierarchies
	Template Character for Subscribing to All Topics
	Template Character for All Topics Under a Topic Hierarchy
	Template Character for All Topics Above a Topic Hierarchy
	Multiple Template Characters in an Expression

	Examples of a Topic Name Space
	Publishing Messages to a Hierarchical Topic
	Subscribing to Sets of Hierarchical Topics

	Distributed Transactions Using XA ResourcSes
	About Distributed Transactions
	General Properties of a Transaction
	Transaction Types
	Local Transaction
	Global Transaction

	Components of Distributed Transactions
	Using XA Resources

	Interfaces for Distributed Transactions
	javax.transaction.xa Interfaces
	JMS XA SPI Interface
	XAConnectionFactory
	XAConnection
	XASession

	In-doubt Global Transactions
	SonicMQ Can Complete In-doubt Transaction Branches
	Access Control Group for Transaction Administrators
	Transaction Recovery
	Example 1: TMNOFLAGS
	Example 2: TMSTARTRSCAN Then TMNOFLAGS
	Example 3: TMSTARTRSCAN Already Called
	Example 4: Orphaned Branches

	Distributed Transactions Models
	SonicMQ Integrated with an Application Server
	Sample Code: Global Transaction When Integrated With Application Server

	SonicMQ Directly Used with a Transaction Manager
	Sample Code: Global Transaction Using Transaction Manager

	SonicMQ Performing DTP Without a Transaction Manager
	Sample Code: Global Transaction Without Transaction Manager

	Running the Distributed Transaction Sample

	Using the Sonic JNDI SPI
	Overview of the JNDI SPI
	Sonic JNDI SPI Samples
	Java JNDI SPI Sample
	JavaScript JNDI API Samples

	Using Client Tracing Logs
	Overview of SonicMQ JMS API Tracing
	Enabling JMS Tracing
	Trace Levels
	Setting the Trace Level in Applications

	Exploring Tracing in the SonicMQ Sample Applications
	Using Tracing in the Sample Application Chat
	No Tracing (and Tracing Level 0)
	Exception Tracing
	Entry Tracing
	Instance, Argument and Exit Tracing

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

