_fﬁg{}eua

ADVANTAGE

\'-. ./I
4
V.
/
~— > .//

SonicMQ®
Application Programming Guide

Aurea SonicMQ® Application Programming Guide 2013

Copyright © 2013 Aurea, Inc. All Rights Reserved. These materials and all Aurea Software, Inc. software products are
copyrighted and all rights are reserved by Aurea, Inc. This document is proprietary and confidential. No part of this
document may be disclosed in any manner to athird party without the prior written consent of Aurea Software, Inc. The
information in these materials is subject to change without notice, and Aurea Software, Inc. assumes no responsibility for
any errors that may appear therein.

Actional®, Actional (and design)®, SOAPscope®, SOAPstation®, Mindreef®, DataXtend®, Sawvion®, Sawvion (and
design)®, Sawvion BusinessManager®, Dynamic Routing Architecture®, Sonic®, Sonic ESB®, Sonic Integration
Workbench®, Sonic Orchestration Server®, SonicM Q®, and SonicXQ® areregistered trademarks of Aurea, Inc., inthe U.S.
and/or other countries. Actional Agent™, Actional Intermediary™, Actional Management Server, DataXtend Semantic
Integrator", Pantero’, Savvion BizLogic'", Savvion BizPulse™, Savvion BizRules', Savvion BizSolo™", Savvion BPM
Portal™, Savvion BPM Studio™, Savvion BusinessExpert'', Savvion BusinessManager ', Savvion Process Asset
Manager ", ProcessEdge™, Savvion Process Modeler”, Sonic Continuous Availability Architecture™, Sonic Database
Service'™", and Sonic Workbench™ are trademarks or service marks of Aurea, Inc., in the U.S. and other countries.

Oracle and Java are registered trademarks of Oracle and/or its affiliates.

All other marks contained herein are for informational purposes only and may be trademarks of their respective owners.

Third Party Acknowledgments: One or more products in the Aurea Sonic 2013 release includes third party components
covered by licenses that require that the following documentation notices be provided:

Aurea Sonic 2013 incorporates Another Tool for Language Recognition v2.7.4. Such technologies are subject to the
following terms and conditions: ANTLR Software License http://www.antlr.org/rights.html We reserve no legal rightsto the
ANTLR--itisfully inthe public domain. Anindividual or company may do whatever they wish with source code distributed
with ANTLR or the code generated by ANTLR, including the incorporation of ANTLR, or its output, into commercial
software. We encourage usersto devel op softwarewith ANTLR. However, we do ask that credit isgiven to usfor developing
ANTLR. By "credit", we mean that if you use ANTLR or incorporate any source code into one of your programs
(commercial product, research project, or otherwise) that you acknowledge this fact somewhere in the documentation,
research report, etc... If you like ANTLR and have developed a nice tool with the output, please mention that you devel oped
it using ANTLR. In addition, we ask that the headers remain intact in our source code. Aslong as these guidelines are kept,
we expect to continue enhancing this system and expect to make other tools available as they are compl eted.

Aurea Sonic 2013 incorporates Apache Ant-Contrib 1.0B3. Such technology is subject to the following terms and
conditions: The Apache Software License, Version 1.1 - Copyright (c) 2001-2003 Ant-Contrib project. All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following
conditions are met: 1. Redistributions of source code must retain the above copyright notice, thislist of conditions and the
following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. The end-user
documentation included with the redistribution, if any, must include the following acknowledgement: "This product
includes software developed by the Ant-Contrib project (http://sourceforge.net/projects/ant-contrib).” Alternately, this
acknowledgement may appear in the software itself, if and wherever such third-party acknowledgements normally appear.
4. The name Ant-Contrib must not be used to endorse or promote products derived from this software without prior written
permission. For written permission, please contact ant-contrib-devel opers@lists.sourceforge.net. 5. Products derived from
this software may not be called " Ant-Contrib" nor may "Ant-Contrib" appear in their names without prior written permission
of the Ant-Contrib project. THIS SOFTWARE IS PROVIDED TAS IS' AND ANY EXPRESSED OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE ANT-CONTRIB
PROJECT OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Aurea Sonic2013 incorporates BasicLoginjava, SimpleCallbackHandlerjava, SimplePasswordUser.java,
SampleLoginModule.java, SamplePrincipal.java from Sun Microsystems, Inc. These technologies are subject to the
following terms and conditions: Copyright 2000-2002 Sun Microsystems, Inc. All Rights Reserved. Redistribution and use
in source and binary forms, with or without modification, are permitted provided that the following conditions are met: -
Redistributions of source code must retain the above copyright notice, thislist of conditions and the following disclaimer. -
Redistribution in binary form must reproduce the above copyright notice, thislist of conditions and the foll owing disclaimer
in the documentation and/or other materials provided with the distribution. Neither the name of

Sun Microsystems, Inc. or the names of contributors may be used to endorse or promote products derived from this software
without specific prior written permission. This software is provided "AS IS," without a warranty of any kind. ALL
EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE HEREBY EXCLUDED. SUN AND ITS LICENSORS SHALL NOT BE LIABLE FOR ANY DAMAGES OR
LIABILITIES SUFFERED BY LICENSEE AS A RESULT OF OR RELATING TO USE, MODIFICATION OR
DISTRIBUTION OF THE SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL SUN OR ITS LICENSORS BE
LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR FOR DIRECT, INDIRECT, SPECIAL,
CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE
THEORY OF LIABILITY, ARISING OUT OF THE USE OF OR INABILITY TO USE SOFTWARE, EVEN IF SUN HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. You acknowledge that Software is not designed,
licensed or intended for use in the design, construction, operation or maintenance of any nuclear facility.

Aurea Sonic 2013 incorporates Colt cern.colt* packages v1.0.3 (cal420-20040626). Such technology is subject to the
following terms and conditions: Packages cern.colt , cern.jet*, cern.clhep - Copyright (c) 1999 CERN - European
Organization for Nuclear Research. Permission to use, copy, modify, distribute and sell this software and its documentation
for any purpose is hereby granted without fee, provided that the above copyright notice appear in al copies and that both
that copyright notice and this permission notice appear in supporting documentation. CERN makes no representati ons about
the suitability of this software for any purpose. It is provided "asis" without expressed or implied warranty.

Aurea Sonic 2013 incorporates Crimson v1.1.3. Such technology is subject to the following terms and conditions: The
Apache Software License, Version 1.1. Copyright (c) 1999-2003 The Apache Software Foundation. All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following
conditions are met: 1. Redistributions of source code must retain the above copyright notice, thislist of conditions and the
following disclaimer. 2. Redistributionsin binary form must reproduce the above copyright notice, thislist of conditionsand
the following disclaimer in the documentation and/or other materials provided with the distribution. 3. The end-user
documentation included with the redistribution, if any, must include the following acknowledgment: "This product includes
software developed by the * Apache Software Foundation (http://www.apache.org/)." Alternately, this acknowledgment
may appear in the software itself, if and wherever such third-party acknowledgments normally appear. 4. The names
"Xerces" and "Apache Software Foundation” must not be used to endorse or promote products derived from this software
without prior written permission. For written permission, please contact apache@apache.org. 5. Products derived from this
software may not be called "Apache", nor may "Apache" appear in their name, without prior written * permission of the
Apache Software Foundation. THIS SOFTWARE IS PROVIDED “AS IS" AND ANY EXPRESSED OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE APACHE
SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

This software consists of voluntary contributions made by many individuals on behalf of the Apache Software Foundation
and was originally based on software copyright (c) 1999, International Business Machines, Inc., http://www.ibm.com. For
more information on the Apache Software Foundation, please see <http://www.apache.org/>.

Aurea Sonic 2013 incorporates DSTC Xs3P version 1.1 from DSTC Pty Ltd. Aurea will, at Licensee's request, provide

copies of the source code for this third party technol ogy, including modifications, if any, made by Aurea. Aureamay charge
reasonable shipping and handling charges for such distribution. Licensee may also obtain the source code through
http://www.aurea.com/3rdparty by following the instructions set forth therein. - DSTC Public License. The contents of this
file are subject to the DSTC Public License Version 1.1 (the 'License’) (provided herein); you may not use thisfile except in
compliance with the License. Software distributed under the License is distributed on an 'AS IS basis, WITHOUT
WARRANTY OF ANY KIND, either express or implied. See the License for the specific language governing rights and
limitations under the License. The Original Code is xs3p. The Initial Developer of the Original Code is DSTC. Portions
created by DSTC are Copyright (c) 2001, 2002 DSTC Pty Ltd. All Rights Reserved.

Aurea Sonic 2013 incorporates Jing 20030619 and Trang 20030619. Such technology is subject to the following terms and
conditions: Copyright (c) 2002, 2003 Thai Open Source Software Center Ltd. All rights reserved. Redistribution and usein
source and binary forms, with or without modification, are permitted provided that the following conditions are met:
Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
Redistributionsin binary form must reproduce the above copyright notice, thislist of conditions and the following disclaimer
in the documentation and/or other materials provided with the distribution. Neither the name of the Thai Open Source
Software Center Ltd nor the names of its contributors may be used to endorse or promote products derived from this software
without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Aurea Sonic 2013 incorporates Model Objects Framework v2.0 from Model Objects Group. Such technology is subject to
the following terms and conditions: The Model Objects Group Software License, Version 1.0 - Copyright (c) 2000-2001
Model Objects Group. All rights reserved. Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above
copyright notice, thislist of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the
above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution. 3. The end-user documentation included with the redistribution, if any, must include the
following acknowledgement: "This product includes software developed by the ModelObjects Group
(http://www.model objects.com)." Alternatively, this acknowledgement may appear in the software itself, if and wherever
such third-party acknowledgements normally appear. 4. The name "M odel Objects’ must not be used to endorse or promote
products derived from this software without prior written permission. For written permission, please contact
djacobs@modelobjects.com. 5. Products derived from this software may not be caled "ModelObjects’, nor may
Model Objects' appear in thier name, without prior written permission of the Model Objects Group. THIS SOFTWARE IS
PROVIDED "ASIS' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE MODEL OBJECTS GROUPOR ITSCONTRIBUTORSBE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

Aurea Sonic 2013 incorporates Mozilla Rhino v1.5R3. The contents of this file are subject to the Netscape Public License
Version 1.1 (the "License"); you may not use thisfile except in compliance with the License. You may obtain a copy of the
License at http://www.mozilla.org/NPL/ and acopy is provided below. Software distributed under the Licenseisdistributed
onan"ASIS" basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License for the specific
language governing rights and limitations under the License. The Original Code is Mozilla Communicator client code,

released March 31, 1998. The Initial Developer of the Original Code is Netscape Communications Corporation. Portions
created by Netscape are Copyright (C) 1998-1999 Netscape Communications Corporation. All Rights Reserved. Aurea
will, at Licensee's request, provide copies of the source code for thisthird party technology, including modifications, if any,
made by Aurea. Aureamay charge reasonable shipping and handling chargesfor such distribution. Licensee may also obtain
the source code through http://www.aurea.com/3rdparty by following the instructions set forth therein.

Aurea Sonic 2013 incorporates NET Security Library v1.0. Such technologies are subject to the following terms and
conditions: Copyright (c) 2002-2003, The KPD-Team All rights reserved. http://www.mentalis.org/ Redistribution and use
in source and binary forms, with or without modification, are permitted provided that the following conditions are met: -
Redistributions of source code must retain the above copyright notice, thislist of conditions and the following disclaimer. -
Neither the name of the KPD-Team, nor the names of its contributors may be used to endorse or promote products derived
from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT
HOLDERS AND CONTRIBUTORS "ASIS' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE. Copyright (c) 2002-2003, The KPD-Team.

Aurea Sonic 2013 incorporates OpenSAML Java Distribution v1.0.1. Such technology is subject to the following terms and
conditions: The OpenSAML License, Version 1. Copyright (¢) 2002 - University Corporation for Advanced Internet
Development, Inc. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met: Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer. Redistributions in binary form must reproduce the above
copyright notice, thislist of conditions and the following disclaimer in the documentation and/or other materials provided
with the distribution, if any, must include the following acknowledgment: "This product includes software developed by the
University Corporation for Advanced Internet Development http://www.ucaid.edu Internet2 Project. Alternately, this
acknowledgement may appear in the software itself, if and wherever such third-party acknowledgments normally appear.
Neither the name of OpenSAML nor the names of its contributors, nor Internet2, nor the University Corporation for
Advanced Internet Development, Inc., nor UCAID may be used to endorse or promote products derived from this software
without specific prior written permission. For written permission, please contact opensaml @opensaml.org. Products
derived from this software may not be called OpenSAML, Internet2, UCAID, or the University Corporation for Advanced
Internet Development, nor may OpenSAML appear in their name, without prior written permission of the University
Corporation for Advanced Internet Development. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS
AND CONTRIBUTORS "AS IS" AND WITH ALL FAULTS. ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, AND NON-INFRINGEMENT ARE DISCLAIMED AND THE ENTIRE RISK OF
SATISFACTORY QUALITY, PERFORMANCE, ACCURACY, AND EFFORT IS WITH LICENSEE. IN NO EVENT
SHALL THE COPYRIGHT OWNER, CONTRIBUTORS OR THE UNIVERSITY CORPORATION FOR ADVANCED
INTERNET DEVELOPMENT, INC. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Aurea Sonic 2013 incorporates OpenSSL toolkit v0.9.8i. Such technologies are subject to the following terms and
conditions: LICENSE ISSUES The OpenSSL toolkit stays under adual license, i.e. both the conditions
of the OpenSSL License and the original SSL eay license apply to the toolkit. See below for the actual licensetexts. Actually
both licenses are BSD-style Open Source licenses. In case of any license issues related to OpenSSL please contact openss-
core@openssl.org.

OpenSSL License

Copyright (c) 1998-2008 The OpenSSL Project. All rights reserved. Redistribution and use in source and binary forms, with
or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, thislist of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software must display the following acknowledgment: "This
product includes software devel oped by the OpenSSL Project for usein the OpenSSL Toolkit. (http://www.openssl.org/)"

4, The names "OpenSSL Toolkit" and "OpenSSL Project” must not be used to endorse or promote products derived from
this software without prior written permission. For written permission, please contact openssl-core@openssl.org.

5. Products derived from this software may not be called "OpenSSL" nor may "OpenSSL" appear in their names without
prior written permission of the OpenSSL Project.

6. Redistributions of any form whatsoever must retain the following acknowledgment: "This product includes software
developed by the OpenSSL Project for use in the OpenSSL Toolkit (http://www.openssl.org/)" THIS SOFTWARE IS
PROVIDED BY THE OpenSSL PROJECT “AS IS' AND ANY EXPRESSED OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESSFOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR ITS
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

This product includes cryptographic software written by Eric Young (eay@cryptsoft.com). This product includes software
written by Tim Hudson (tjh@cryptsoft.com).

Original SSLeay License Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) All rights
reserved. This package is an SSL implementation written by Eric Young (eay@cryptsoft.com). The implementation was
written so as to conform with Netscapes SSL. This library is free for commercial and hon-commercia use as long as the
following conditions are aheared to. The following conditions apply to all code found in this distribution, be it the RC4,
RSA, lhash, DES, etc., code; not just the SSL code. The SSL documentation included with this distribution is covered by
the same copyright terms except that the holder is Tim Hudson (tjh@cryptsoft.com). Copyright remains Eric Young's, and
as such any Copyright notices in the code are not to be removed. If this package is used in a product, Eric Young should be
given attribution asthe author of the parts of the library used. This can bein the form of atextual message at program startup
or in documentation (online or textual) provided with the package. Redistribution and use in source and binary forms, with
or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the copyright notice, thislist of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software must display the following acknowledgement: "This
product includes cryptographic software written by Eric Young (eay @cryptsoft.com)" The word ‘cryptographic’ can be left
out if the rouines from the library being used are not cryptographic related :-).

4. If you include any Windows specific code (or a derivative thereof) from the apps directory (application code) you must
include an acknowledgement: "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" THIS
SOFTWARE IS PROVIDED BY ERIC YOUNG TAS IS' AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESSFOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE

LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE. The licence and distribution terms for any publically available version or derivative
of this code cannot be changed. i.e. this code cannot simply be copied and put under another distribution licence [including
the GNU Public Licence]

Aurea Sonic 2013 incorporates Saxon XSLT and XQuery Processor v8.9.0.4 from Saxonica Limited
(http://www.saxonica.com/) which is available from SourceForge (http://sourceforge.net/projects/saxon/). Aurea will, at
Licensee's request, provide copies of the source code for this third party technology, including modifications, if any, made
by Aurea. Aurea may charge reasonabl e shipping and handling charges for such distribution. Licensee may also obtain the
source code through http://www.aurea.com/3rdparty by following theinstructions set forth therein. - MozillaPublic License
Version 1.0 (the "License"); you may not use thisfile except in compliance with the License. You may obtain a copy of the
License at http://www.mozilla.org/MPL and it is provided below. Software distributed under the License is distributed on
an "AS IS' basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License for the specific
language governing rights and limitations under the License. The Original Code of Saxon comprises al those components
which are not explicitly attributed to other parties. Thelnitial Devel oper of the Original CodeisMichael Kay. Until February
2001 Michael Kay was an employee of International Computers Limited (now part of Fujitsu Limited), and origina code
developed during that time was released under this license by permission from International Computers Limited. From
February 2001 until February 2004 Michael Kay was an employee of Software AG, and code devel oped during that time was
released under this license by permission from Software AG, acting asa" Contributor”. Subsequent code has been devel oped
by Saxonica Limited, of which Michael Kay isaDirector, again acting asa"Contributor”. A small number of modules, or
enhancements to modul es, have been devel oped by other individuals (either written specially for Saxon, or incorporated into
Saxon having initially been released as part of another open source product). Such contributions are acknowledged
individually in comments attached to the relevant code modules. All Rights Reserved.

Aurea Sonic 2013 incorporates Xalan Java X SLT Parser v2.4.1 from the Apache Foundation. Such technology is subject to
the following terms and conditions: The Apache Software License, Version 1.1 - Copyright (¢) 1999 The Apache Software
Foundation. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above
copyright notice, thislist of conditions and the following disclaimer in the documentation and/or other materials provided
with the distribution. 3. The end-user documentation included with the redistribution, if any, must include the following
acknowl|edgment: "This product includes software developed by the Apache Software Foundation
(http://lwww.apache.org/)." Alternately, this acknowledgment may appear in the software itself, if and wherever such third-
party acknowledgments normally appear. 4. The names "Xalan" and "Apache Software Foundation" must not be used to
endorse or promote products derived from this software without prior written permission. For written permission, please
contact apache@apache.org. 5. Products derived from this software may not be called "Apache", nor may "Apache" appear
in their name, without prior written permission of the Apache Software Foundation. THIS SOFTWARE IS PROVIDED
“AS IS" AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES,
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

This software consists of voluntary contributions made by many individuals on behalf of the Apache Software Foundation
and was originally based on software copyright (c) 1999, L otus Devel opment Corporation., http://www.lotus.com. For more

information on the Apache Software Foundation, please see <http://www.apache.org/>.

Aurea Sonic 2013 incorporates Xerces v2.6.2 from the Apache Foundation. Such technology is subject to the following
terms and conditions: The Apache Software License, Version 1.1 - Copyright (¢) 1999-2004 The Apache Software
Foundation. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above
copyright notice, thislist of conditions and the following disclaimer in the documentation and/or other materials provided
with the distribution. 3. The end-user documentation included with the redistribution, if any, must include the following
acknowledgment: "This product includes software developed by the Apache Software Foundation
(http://lwww.apache.org/)." Alternately, this acknowledgment may appear in the software itself, if and wherever such third-
party acknowledgments normally appear. 4. The names "Xerces' and "Apache Software Foundation" must not be used to
endorse or promote products derived from this software without prior written permission. For written permission, please
contact apache@apache.org. 5. Products derived from this software may not be called "Apache", nor may "Apache" appear
in their name, without prior written permission of the Apache Software Foundation. THIS SOFTWARE IS PROVIDED
TAS IS" AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

This software consists of voluntary contributions made by many individuals on behalf of the Apache Software Foundation
and was originally based on software copyright (c) 1999, International Business Machines, Inc., http://www.ibm.com. For
more information on the Apache Software Foundation, please see <http://www.apache.org/>.

Aurea Sonic 2013 incorporates Progress DataDirect Connect for JDBC v5.1 and Progress DataDirect Connect XE for JDBC
v5.1 which incorporates HyperSQL database v1.8.0.10 from The HSQL Development Group. Such technology is subject
to the following terms and conditions: Copyright (c) 2001-2005, The HSQL Development Group All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following
conditions are met: Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer. Redistributionsin binary form must reproduce the above copyright notice, thislist of conditions and
the following disclaimer in the documentation and/or other materials provided with the distribution. Neither the name of the
HSQL Development Group nor the names of its contributors may be used to endorse or promote products derived from this
software without specific prior written permission. THIS SOFTWARE ISPROVIDED BY THE COPYRIGHT HOLDERS
AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL HSQL DEVELOPMENT GROUPR HSQLDB.ORG OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Aurea Sonic 2013 incorporates Woodstox v3.2.8 and 4.1.2 which incorporates Stax2 APl v3.1.1. Such technology is subject
to the terms and conditions of the following licenses: Copyright (c) 2004-2010, Woodstox Project
(http://woodstox.codehaus.org/) All rights reserved. Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the
above copyright notice, thislist of conditionsand thefollowing disclaimer. 2. Redistributionsin binary form must reproduce
the above copyright notice, thislist of conditions and the following disclaimer in the documentation and/or other materials

provided with the distribution. 3. Neither the name of the Woodstox XML Processor nor the names of its contributors may
be used to endorse or promote products derived from this software without specific prior written permission. THIS
SOFTWARE ISPROVIDED BY THE COPYRIGHT HOLDERSAND CONTRIBUTORS"ASIS' AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Aurea Sonic 2013 incorporates JAXB v2.1.13. Such technology is subject to the following terms and conditions: Jing
Copying Conditions Copyright (c) 2001-2003 Thai Open Source Software Center Ltd. All rights reserved. Redistribution
and use in source and binary forms, with or without modification, are permitted provided that the following conditions are
met: Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution. Neither the name of the
Thai Open Source Software Center Ltd nor the names of its contributors may be used to endorse or promote products derived
from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT
HOLDERS AND CONTRIBUTORS "ASIS' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORSBE LIABLE FORANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

Aurea Sonic 2013 incorporates ASM 3.3.1 from Inria France Telecom. Such technology is subject to the following terms
and conditions: Copyright (c) 2000-2011 INRIA, France Telecom. All rights reserved. Redistribution and use in source
and binary forms, with or without modification, are permitted provided that the following conditions are met: 1.
Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright
holders nor the names of its contributors may be used to endorse or promote products derived from this software without
specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

Contents

PrefaCe .. 23
AbOUt ThiS GUIDEo 23
Typographical CoONVENLIONS e 25
Aurea Sonic DOCUMENAtioNo e 26

SonicMQ DoCUMENtatioN 26
Other Documentation in the SonicMQ Product Family 27
Worldwide Technical SUPPOrt e e 28

O T 29

Java MESSage SEIVICEottt 30
JMS: Key Component of the Java Platform for the Enterprise 30
JMS Version 1.1 Specification e 31
Java Development EnVironment e 31

Programming CONCEPLSt e e 31
Clients Connectto the SonicMQ Broker e 31
SonicMQ IS a JMS Provider 32
SonicMQ Messaging Models 33
JMS Version 1.1 Unification of Messaging Models 33
SonicMQ Object Model 34

ConnectioNFactory e 35
CONNECHION . .o e 35
S SION . .t 35
MessageConsumer and MessageProducer i 35
Destination e 36
MESSagE . . . 36

Quality of Service and Protection 36

Gl NS .« . 41
Java Client 41
JMS Test Client . ..o e 41
HTTP Direct Protocol Handlers e 42
Java Applet 42
NET Clent ... 42
ClIC+H+ ClieNtS . . oo 42
COM ClieNt . .. e e 42

Aurea Software, Inc. Confidential 11 Copyright © 2013 Aurea, Inc.

Contents

SONICMOQ AP o e 43
2.Using the IMS Test Client. e e e e e e e 45
Testing Point-to-point MeSSaging oottt 45
Starting the SonicMQ Containerand Broker 46
Openingthe IMS Test Client e e 46
Establishing Connection to the SonicMQ Broker e, a7
Establishing a Queue SeSSIoN e 47
Creating Queue Senders and Queue ReCeIVErsciiiie .. 48
Sending and Receiving MESSagest v ittt 50
Browsing Messages 0N @ QUEUEttt ettt ettt e e 52
Testing Publish and Subscribe Messaging i e 53
Establishing a TopiC SeSSIoN i e 54
Creating Publishers and Subscribersto Topics 55
Publishing MESSagesttt e e 59
Receiving Messages on Subscribed ToOpics 62

3. Examining the SonicMQ JMS Samples 65
About SONICMQ SamPIESo 66
Other Samples Available 68
Extending the Samples 69
How Security Impacts Client Activities 69
Running the SonicMQ Samples 70
Starting the SonicMQ Container and Management Console 70
Opening Client Console WINAOWSt 73
Using the Sample SCripts 73
Using the SonicMQ Samples in a Sonic Workbench Installlation 73

Using the SonicMQ Samples with a non-default Broker 74
Chatand Talk Samples 74
Chat Application (Pub/Sub) 74
Talk Application (PTP) e 75
Reviewing the Chatand Talk Samples e 76
MultiTopicChat Sample 76
Setting Up MUIITOPIC SESSIONSttt e e 76
Demonstrating MultiTopic Publish and Subscribe 77
Samples of Additional Message TYPESottt e 78
Map Messages (PTP) 78
XML MESSAGES . . . oo i ittt 79
XMLDOMTaIK (PTP) . ..ottt e ettt 81
XMLSAXTAIK (PTP) . . .ottt e 81
XMLDOMChat (Pub/Sub) 82
XMLSAXChat (Pub/Sub) 83
Decomposing Multipart MeSsSagesttt e 83
Reviewing the Additional Message Type Samples 85
Sample of Channels for Large Message Transfers 85
Reviewing the Large Message Transfer Sample 87
Message Traffic Monitor Samples 87
QueueMonitor Application (PTP) e 88
MessageMonitor Application (Pub/Sub) 90
Transaction SampPles 92
TransactedTalk Application (PTP) e 92
TransactedChat Application (Pub/Sub) 93
Reviewing the Transaction Samples i 94
Reliable, Persistent, and Durable Messaging Samples 95
Reliable Connections 96

Aurea Software, Inc. Confidential 12 Copyright © 2013 Aurea, Inc.

Contents

ReliableTalk Application (PTP) e e 97
ReliableChat Application (Pub/Sub) 98
Persistent Storage Application (PTP) e 99
DurableChat Application (Pub/Sub) 106
Continuous Producer Demonstrating Client Persistence 109
Local Store Sample (PTP) e 110

Local Store Sample (Pub/Sub) 111
Reviewing Reliable, Persistent, and Durable Messaging 112
Request and Reply Samples 112
Request and Reply (PTP)o e 113
Request and Reply (Pub/Sub) e 114
Reviewing the Request and Reply Samples i i 115
Selection, Group, and Wild Card Samples 115
Message Selection: SelectorTalk and SelectorChat 115
SelectorTalk Application (PTP) e 116
SelectorChat Application (Pub/Sub) 116
MessageGroupTalk (PTP)o e 117
HierarchicalChat Application (Pub/Sub) 121
Reviewing the Selection, Group, and Wild Card Samples 122
Test LoOp Sample e 122
QueueRoundTrip Application (PTP) 123
Enhancing the Basic Samples e 123
Use Common Topics Across Clients e 124
Trying Different RoundTrip Settings 124
Modifying the MapMessage to Use Other Data Types 125
Modifying the XMLMessage Sample to Show MoreData 127

4. SONICMQ CONNECHIONS. . . . e 131
Overview of SONICMQ CONNECLIONS et 132
PrOtOCOIS . . o 133
T O P e 133
SO i 134
Using SSLonthe Client i e e 134
Authentication e 134

Setting Cipher SUItESo 137

HT TP o 138

HT TP S o 138
SONICIN o 138
JVM Command OptioNnSt e 139
HTTP Tunneling through an Authenticating Proxy 139
Specifying Credentials 139

NTLM Authentication e 139

HTTP Forward ProXy e e e e e e e e 140
HTTPS Forward ProXy e ettt e e e e e 140
HTTPS Tunneling Through an Authenticating Forward Proxy 141
SSOL/HT TP S o 142
Nagle Algorithm 142
HTTP Map HOSttO [P . ..o e e e e 142
Connection Factories and CONNECLIONSt 142
CoNNECHioN FaCIONESo e e 143
UR L . 144
ConnectID e 145
Username and Password e 145
ClientlD .. 145

Load BalanCing 146

Aurea Software, Inc. Confidential 13 Copyright © 2013 Aurea, Inc.

Contents

Alternate Connection LiStSt 146
Obtaining the Connected Broker URL or Node Name 147
Setting Server-based Message Selection i i 147
Setting a Socket Connect TIMeout e 148
Setting QOP Cache Size 148
Setting the Maximum DeliveryCount 149
Setting to Minimize Subscriber Traffic 149
Enabling Message COmPressSionttt e 151
Connecting to SonicMQ Directly 152
Connecting to SonicMQ Using Administered Objects 152
Advantages of Using JMS Administered Objects 153
Lookup and Use of Administered Objects 154
Lookup Using the Sonic INDI SPI e 154
Using the LDAP INDI SPIo 158
Connecting to SonicMQ Using Serialized Factories 158
Setting Up Serialized Objects 159
Using Serialized Objects 160
CONNECHIONS . o oottt e e 160
Creating @ CoNNECHioNt 160
Creating and Monitoring a Connectionttt nninnn... 161
Handling Exceptions on the Connection 162
Client PersiSteNCe e 163
Using Client PersiStence e 164
Rejection LiStener e 166
Coding LImitationso 166
Asynchronous Message Delivery 167
Delivery Mode Behavior e 167
Reliability of Produced Messages e 168
Synchronous Message Reliability 169
Asynchronous Message Reliability 169
Ordering of Asynchronously Produced Messages, 169
Delivery Doubt WINdOWo e 169
Close Behavior 170
Close TIMEOULo e e e e 170
RejectionListener SemantiCs e 171
Fault-Tolerant ConNNECLiONSottt e 172
How Fault-Tolerant Connections are Initially Established 173
ConnectionFactory Methods for Fault-Tolerance 174
Enabling Fault-Tolerant Connections i 175
Client Transaction Buffers e 175
Specifying Connection TIMEOULS e 176
Connection Methods for Fault-Tolerance i 178
Handling Connection State Changes i, 179
Getting the URL of the Current Broker 180
ReCONNECE EIMOrS . .. oo e 181
Load Balancing Considerations e 182
Acknowledge and Forward Considerations i 182
Forward and Reverse ProXi€St 182
Client Persistence and Fault-Tolerant Connections 182
JMS Operation Reliability and Fault-Tolerant Connections 184
Reconnect ConfliCt 185
JMS Connection Reconnect Conflict i 185
Durable Subscriber Reconnect Conflict 186
Message Reliability 186
NON_PERSISTENT_REPLICATED Delivery Mode 187

Aurea Software, Inc. Confidential 14 Copyright © 2013 Aurea, Inc.

Contents

Failures That Cause Message Loss or Duplication 189
Setting the Default Delivery Mode for a Message Producer 189
Redelivery of NON_PERSISTENT_REPLICATED Messages 190
Nondurable Subscribers of NON_PERSISTENT_REPLICATED Messages 190
Broker Storage of NON_PERSISTENT_REPLICATED Messages 192
Effect of Broker Restart on NON_PERSISTENT_REPLICATED Messages 193
NON_PERSISTENT_REPLICATED Messages in Transactions 193
Using NON_PERSISTENT_REPLICATED in acknowledgeAndForward 194

Using NON_PERSISTENT_REPLICATED Delivery Mode on Non-Fault Tolerant
CONNECLIONS . . . oot 195
Modifying the Chat Example for Fault-Tolerance 195
Running the Modified Chat Example e 199
Starting, Stopping, and Closing Connectionsttt 201
Starting @ CoNNECHION 201
Stopping @ CONNECLION 201
Closing a ConNECtioN 201
Using Multiple CoNNECHIONS o 202
Communication Layer e 202
5. SoNIicMQ Client SESSIONSt 205
Overview of ClIeNt SESSIONSottt 205
NamMIiNg SESSIONS e 206
Acknowledgement Mode e 207
RECOVEl . . 208
Limiting Redelivery from Queues i 208
Explicit Acknowledgement 210
Transacted SESSIONSottt 210
Broker-managed Timeouts on Transacted Sessions 211
Distributed Transactions e 211
Duplicate Message Detection e e e 212
SESSION OB JECES . ..o e 212
Creating a Destination 213
Destination ObjJects i 213
Destination Name Syntax 214
Effects of Access Control 215
Temporary QUEUEBSottt e e e 216
Using a Lookup for Destinations i 217
Creating a MessageProducCer e e e e 217
Creating a MessageCoONSUMET v vttt e e e e e 217
Creating @ MeSSage . . .o i ittt e 218
CloSINg @ SESSION . .\ ittt 219
Flow Controlo 220
Using Client Persistence and Wait Time When Flow Controlled 221
Flow Control Management Notifications 221
Monitoring Intervals 221
Notification Interface e 223
Disabling FIow Control e e 223
FIOW t0 DiSK . . . oo 223
Using Sessions and CONSUMEIS . ..ottt e ettt et 225
Multiple Sessions on a ConNectiont 225
Creating Session Objects and the Listeners i, 225
Starting the Connection 226
JMS Messaging DOmains e 226
Integration with Application Servers 227
Connection CONSUMETttt e e e e e e e e e e 227

Aurea Software, Inc. Confidential 15 Copyright © 2013 Aurea, Inc.

Contents

SEIVEIN SESSION . . it 229
Message Driven BEanso 229

Shared SUubSCHIPtiONS e 230

XA RESOUICES . . vt v ettt et e e e e e e e 230

B. MBS SO S . . .ottt 231
ADOUL MBSSaAgES . . o ot e e e 231
MESSagE TY P . .o ittt e e 232
Creating @ MEBSSaA0E . . . oot vttt e e 233
Working With XML MESSaJES oo oottt e e 234
JAXP SUPPOI . . 234

JAXP INterfaces . . . o 234

DOM SUPPOI .o 236

SAX SUPPOI o o e 236
Working With Messages That Have Multiple Parts 238
Composition of a MultipartMessaget e e 238
MultipartMessage TYPe . ..ot v ittt 238

Parts of a MultipartMessageci i e 243
MessagePart Subclass e 244

Header of the MultipartMessage oraPart 244

Using Multipart Messages to Wrap Problem Messagesccovvv... 245
Wrapping a Problem SonicMQ Message WithinaMessage 246
Receiving a Wrapped Problem Messageiiiiiiinnneennnn. 246
Interacting with Business-to-Business Multipart Types, 247
MeSSage StrUCTUIE 248
Message Header Fields e 249
Setting Header Values When Sending/Publishing 252
MeSSsage Properties e 253
Provider-defined Properties (JIMS_SonicMQ) ... i 253
Per Message ENCryption e e 254
JMS-defined Properties (IMSX)t 255
User-defined Properties e e 256
Determining the Pending Queue forMessagesc.coiuvvnennnn. 257

Setting Message Propertiesttt e 257
Property Methods e 258
Checking Whether a Property EXistsot e e 258
Clearing Message Properties 258

Setting the Property Type e 258

Getting Property Names i e 259

Getting Property Values e 259
Message Body 260
Setting the Message Body i 260
Getting the Message Body i 260

7. Message Producers and CONSUMEIS.ottt et e e e e e 261
About Message Producers and Message CONSUMEISottt e 262
Message Ordering and Reliability 262
DEStiNAtIONS . . . ottt 263
Steps in Message Production 264
Create @ SESSION . ..ttt 264
Create the Producer onthe Session 265
Create the Message Typeand SetltsBody 265
Set Message Header Fields 265
Set the Message Properties e 266
Elect Per Message ENCryption e 266

Aurea Software, Inc. Confidential 16 Copyright © 2013 Aurea, Inc.

Contents

Produce the MeSSageottt e 266
Message Management by the Broker 267
Message Receivers, Listeners, and Selectors i 269

Message ReCeIVEr 269

RECEIVE . . 269
Receive with TIMeOUt e 269
Receive NOWalt 270
Message LiSteners e 270
Message Selection e 271
Server-based or Client-based Topic Message Selectors 271

Scope of Message Selectors 271
Message Selector Syntax 272
Comparing Exact and Inexact Values 275

Steps in Listening, Receiving, and Consuming Messages 276

Implement the Message Listener e 276

Create the Destination and Consumer, Then Listen 276

Handle a Received MeSSage e 277

Get Message Properties 278
Consume the MESSAQE oot e 278
Acknowledge the Message e 278
Reply-to MechanisSms 279
Temporary Destinations Managed by a Requestor HelperClass 279
Requestor Application 279

Replier Application 280

Design for Handling Requests 280

Writing @ Topic ReqUESTOr e 280
Producers and Consumers in JMS Messaging Domains 281
8. POiNt-t0-point MeSSagingo 283
About Point-to-point MeSsaging 284
Message Ordering and Reliability in PTP e 285

Message Orderingt 285

Message Delivery 286
Using Multiple MessageCoNSUMELSottt e et 286

Message QUEUE LiSteNer i 286

MeESSAgEC ONSUMIBT . . ottt e e e e e 287

RECEIVE . . 287
Receive with TIMeEOUL e 287
Receive NOWalt 288
UsiNng MeSSsage GroUPINGot ettt et e e e ettt 288
Illustration of Message GroUpPINgottt e e e e 289
Broker Settings for Message Groupinguiiiinn e 290
Initial Message DispatCh e 290
Group ldle TIMeoUL 290
Message Producers for Message Groupingttt e 290
Creating and Sending to a Message Group in ey 291
Requesting the Broker to Unassign a Message Groupcvvvvneennnn.. 291

Message Consumers for Message Groupingcoviii it e e e 292
Setting Prefetch Countand Threshold 292
Browsing @ QUEUE e 293
Handling Undelivered MeSSagesttt e e e e et e 295

Setting Important Messages to be Saved if They Expire 296

Setting Small Messages to Generate Administrative Notice 296
Life Cycle of a Guaranteed MeSSagettt e e 297

Setting the Message to Be Preserved, 297

Aurea Software, Inc. Confidential 17 Copyright © 2013 Aurea, Inc.

Contents

Setting the Message to Generate an Administrative Event 298
Sending the Message 298
Letting the Message Get Delivered or Expire 298
Post-processing Expired MESSAges v vttt it e 298
Processing Enqueued Expired MeSSages oo 298
Sending Administrative Notification 299

Getting Messages Out of the Dead Message Queue 299
Detecting Duplicate MESSages oo 300
Forwarding Messages Reliably 301
Dynamic Routing with PTP MeSSaging e 302
Administrative ReqUIrements 303
Application Programming Requirements 303
Message Delivery with Dynamic Routing 304
Clusterwide ACCESS 10 QUEUES ittt e e e e 304
Sending to Clusterwide QUEUES oo 305
Receiving from Clusterwide QUEUESt e e e 305
Browsing Clusterwide QUEUESt e 305
Message Selectors with Clusterwide Queues 306
Clustered Queue Availability When Broker is Unavailable 306

9. Publish and Subscribe Messaging. e 307
About Publish and Subscribe Messagingt e 307
Message Ordering and Reliability in Pub/Sub 309
GeNneral SEIVICES . ..ot 309
MeSSage OFderiNg . ..ot e e e 310
Reliability e e 310

10 0T 310
MessageProducer (Publisher) 311
Creating the MessageProducer e e e 311
Creating the MESSagEo i it e e 312
Sending Messages to a TOPIC ... v v vt vttt e e 312
MessageConsumer (Subscriber) e 313
Durable SUDSCHIptioNs e 313
Clusterwide Access to Durable Subscriptions 315
Message Order with Clusterwide Durable Subscriptions 315
Availability of Clusterwide Durable Subscription After Reconnecting 316
Dynamic Routing with Pub/Sub Messaging i 317
Administrative Requirements e 318
Application Programming Requirements 318
Message Delivery with Remote Publishing 319
Shared SUDSCHPLONS 319
Features of Using Shared Subscriptions in Your Applications 321
Usage Scenarios for Shared Subscriptions 322
Fault Resilience 322
Highly-Variable Processing TiIMmes 323

Pure Load-balancing i 324
Defining Shared Subscription Topic Subscribers 324
Message Delivery to a Broker with Shared Subscriptions 326
Single Broker Behavior with Shared Subscriptions 326

Cluster Behavior with Shared Subscriptions 328

Shared Subscriptions and Flow Control 330

JMS Interactions with Shared Subscriptions 330
Shared Subscriptions with Remote Publishing and Subscribing 333
MU TOPICS . .o o e e 336
Format of a MUltiTOpIC StriNgo i e e e 337

Aurea Software, Inc. Confidential 18 Copyright © 2013 Aurea, Inc.

Contents

MultiTopic String Format 337
Examples of MUltiTopic Stringso 337
Creating MUItITOPICS oo e 337
Using a Session Object to Create a MultiTopic, 338

Using a DestinationFactory Object to Create a MultiTopic 338

Adding Component Topics to a MuUltiTopic e 338
Publishing and Subscribing to MultiTopics 339
Splitting MultiTopic Delivery 339
Remote Publishing 340

Global SUbSCIIptioNS 340
MultiTopics and Access Control Lists (ACLS) 341
MultiTopic Considerationst 341
IMSREPIYTO .o 341

QoP and Per Message Encryption 341
Durable Subscriptions 342

Shared SUbSCHPtiONS 342

HTTP DIreCtot e e 343

Basic and SOAP 343

Flow Control 343

10. Guaranteeing MeESSagES vttt e e 345
INtrOdUCTION oo 345
Duplicate Message Detection OVEIVIEWttt e e e 346
SonicMQ Extensions to Prevent Duplicate Messages 346
Support for Detecting Duplicate Messagesiiiiiiiiinnnnnn... 347
Dead Message QUEUE OVEIVIEWttt ettt e e e e 347
What Is an Undeliverable Message? it 348
Using the Dead Message QUEBUEttt ittt e e e 348
Guaranteeing Delivery 349
Enabling Dead Message Queue Features, 349
Monitoring Dead Message QUEUESttt e e e 349
Default DMQ Propertiest e et e 350
JMS_SonicMQ Message PropertiesUsed forDMQ 351
Setting the Message Property to Preserve If Undelivered 352
Handling Undelivered MeSSages ot e e e e e et 353
Sample Scenarios in Handling Dead Messagesc.ouiiiiiinnn.. 354
Preserving Expired Messages and Throwing an Admin Notice 354

Using High Priority and Throwing an AdminNotice 354

What To Do When the Dead Message Queue FillsUp 355
Undelivered Messages Dueto Expired TTLottt 355
Specifying a Destination for Undelivered Messagesciiiiiinnn... 356
How to Specify an Undelivered Destination o... 356
JMS_SonicMQ_destinationUndelivered Message Property 357
Changesto IMS Headers e e e 359
Message Properties for Undelivered Destinations 359
Undelivered Messages and Message Expiration 360

Failure to Forward Undelivered Messages to the Undelivered Destination 360
Publish Permission Check e 361
Undelivered Message Notifications i, 361
Undelivered Destinations for DRAMESSAJESo v i ii it e e ns 362
Undelivered Destinations Withouta Node Name 362
Undelivered Destinations Witha Node Name 362
Required Routing Definitions 363
Undelivered Message Reason Codes it 363

Aurea Software, Inc. Confidential 19 Copyright © 2013 Aurea, Inc.

Contents

11. Recoverable File Channels 369
About Recoverable File Channels for Large Messages, 369
Forwarding the Header Message e 370
Global QUEBUES 371
Dynamic Routing Architecture e 371
Semantics of File Fragmentation, Transfer, and Recovery 371
Classes and Interfaces for Large Message Transfers 373
Channellistener 377
Channel Status e 378
General Procedure for Large Message Transfers 380
Creating a Recoverable File Channel 381
Recovering an Interrupted Transfer 382
Patterns for RECOVEIY e 383
Duplicate Detection for File Transfers e 385
Security on File Transfers 386
Using Multiple File Channels e 387
Exception Handling for File Channels 387
LOg Files . . e 388
Tips and Techniques for Using File Channels 389
12, SONICStrEeam APl . o 391
About the SonicStream APl 391
Common SonicStreamFactory SemantiCs e 393
CONSITUCTOIS . . .ttt e e e e e e 393
MEthods . . .o 393
StEAM T OPIC o ottt e e e 393
ApplicationName e e 393
NOtificatioNTOPIC i e e 393
SonicStream INterface e 394
Stream Publisher Semantics 394
SONICStreamFaCtOry e 395
SEOgMENESIZE . . e e 395
DeliveryMode e 395
SonicOutputStreamController Interface 396
StreamStatus Interface 396

Stream Subscriber SEmMantiCs 397
SONICStrEaAMFACIONY . . . ottt 397
setDeliveryMode 397
setReadAheadWindowsSize 397
setSegment TIMeOUL e e e 398
SoniclnputStreamController Interface 398
Stream Handlers 398
NOHFICAtIONSo 398
Managing FIow Control 399
Handling Errors 400
Samples Of SONICStreams 400
SonicStreams Sample e 401
SonicStreams Sample With Retry 403
Console Information in an Uninterrupted Transfer 404
Experimenting with Interruptions 406
Console Information in an Transfer Where the Receiver is Interrupted 406
Console Information in an Transfer Where the Sender is Interrupted 407
Console Information in an Transfer Where the Broker is Interrupted 409

Aurea Software, Inc. Confidential 20 Copyright © 2013 Aurea, Inc.

Contents

13. Hierarchical Name Spaceso e 411
About Hierarchical Name Spaces e 411
Advantages of Hierarchical Name Spaces 412
Publishing a Message to a TOPICot e e 413
Topic Notation that Enables Topic Hierarchies 413
Reserved Characters When Publishing 413

Topic Structure, Syntax, and Semantics i 414

Topic Syntax and SEMAanNtiCSttt e 414

Broker Management of Topic Hierarchies 414
Subscribing to Nodes in the Topic Hierarchy i, 415
Template CharaCters 415
Using Template Characters in Symmetric Hierarchies 416

Using Template Characters in Asymmetric Topic Hierarchies 417
Template Character for Subscribing to Al Topics i 418
Template Character for All Topics Under a Topic Hierarchy 418
Template Character for All Topics Above a Topic Hierarchy 419
Multiple Template Characters in an Expression 419
Examples of a TOpiC Name Space e 420
Publishing Messages to a Hierarchical Topic i .. 420
Subscribing to Sets of Hierarchical Topics 421

14. Distributed Transactions Using XA RESOUICSES ittt 423
About Distributed Transactions e 423
General Propertiesofa Transaction 424
TranSaction TYPES . ..ot e 424
Local Transactiont e 424

Global Transaction 424
Components of Distributed Transactions 424
USING XA RESOUICES . .\ttt ettt e e e e e e 425
Interfaces for Distributed Transactions i 427
javax.transaction.xa Interfaces 427
JMS XA SPIINterface 428
XACONNECHONFACIOrY e 428
XACONNECHION . . .ttt e e e e e e e e e 428
XA S ESSION . oottt e e 429
In-doubt Global Transactions 429
SonicMQ Can Complete In-doubt Transaction Branches 430
Access Control Group for Transaction Administrators 430
Transaction RECOVEIY e e e 430
Example 1: TMNOFLAGS e e e e 431
Example 2: TMSTARTRSCAN Then TMNOFLAGSo, 431
Example 3: TMSTARTRSCAN Already Called 431
Example 4: Orphaned Branches i, 431
Distributed Transactions Models 432
SonicMQ Integrated with an Application Server 432
Sample Code: Global Transaction When Integrated With Application Server 432
SonicMQ Directly Used with a Transaction Manager, 433
Sample Code: Global Transaction Using Transaction Manager 434
SonicMQ Performing DTP Without a Transaction Manager 435
Sample Code: Global Transaction Without Transaction Manager 436
Running the Distributed Transaction Sample 438
A.Using the SoNic INDI SPI.o e e e e e 443
Overview of the INDI SPI e e e 443
Sonic JINDI SPI Samples e e 447

Aurea Software, Inc. Confidential 21 Copyright © 2013 Aurea, Inc.

Contents

Java JNDI SPI Sample 447
JavaScript INDI APl Samples 449

B. Using Client Tracing LOgS . .. oo vttt e e e e e 451
Overview of SONICMQ JMS API TraCingo oot 451
ENabling JMS TraCingottt e e e e e 452

Trace Levels . ..o 452
Setting the Trace Level in Applications 453

Exploring Tracing in the SonicMQ Sample Applications 453

Using Tracing in the Sample ApplicationChat 453

No Tracing (and Tracing Level 0) i 454

EXCEption TraCingttt e 454

ENtry TraCingo o i e e 455

Instance, Argument and EXit Tracingt 455

N X . ottt e 459

Aurea Software, Inc. Confidential 22 Copyright © 2013 Aurea, Inc.

Preface

About This Guide

SonicMQ is a fast, flexible, and scalable messaging environment that makes it easy to
develop, configure, deploy, manage, and integrate distributed enterprise applications.

SonicMQ is a complete implementation of the Java Message Service specification Version
1.1, an API for accessing enterprise messaging systems from Java programs.

This book provides the information a Java software developer needs to use the application
program interfaces to create SonicMQ client applications.

The sample software provided in source form on the SonicMQ media is the basis for the
discussions of features and concepts.

The SonicMQ features discussed in this programming guide are as follows:

e Chapter 1, Overview on page 29 discusses the environment and Java constructs that
can be used in messaging applications. The basic concepts in this chapter set the
groundwork for understanding how to build efficient applications. The service and
protection features in SonicMQ are presented in a tabular form with references to
other chapters and other books for implementation details.

e Chapter 2, Using the JMS Test Client on page 45 describes how to use the JMS Test
Client to examine both Publish and Subscribe and Point-to-point messaging.

Aurea Software, Inc. Confidential 23 Copyright © 2013 Aurea, Inc.

Preface

e Chapter 3, Examining the SonicMQ JMS Samples on page 65 takes an in-depth tour
through the console-based code samples introduced in the Getting Started with Aurea
SonicMQ manual, focusing on the programming functions and features used.

e Chapter 4, SonicMQ Connections on page 131 explores protocols, connection
factories, connections. The identifiers and parameters of connections are presented.
The techniques for direct creation of factories are contrasted to the ways that
administered objects can be used in serialized Java objects and LDAP lookup through
JNDI on the built-in or external LDAP stores.

e Chapter 5, SonicMQ Client Sessions on page 205 explores sessions. The concepts
and implementation of the transacted session and transactions are also presented.
This chapter also discusses the flow control, client persistence, and integration with
application servers.

e Chapter 6, Messages on page 231 examines the detailed composition of a message
to learn what is required to construct a message, how the data populates the
message, and how to manipulate messages. Also describes the XML message and
Multipart message.

e Chapter 7, Message Producers and Consumers on page 261 describes the scope of
the session objects that produce messages and the session objects that listen,
receive, and consume messages.

e Chapter 8, Point-to-point Messaging on page 283 explains the use of server-managed
gueues and discusses the similarities and differences between the Point-to-point
Publish and Subscribe messaging models.

e Chapter 9, Publish and Subscribe Messaging on page 307 explains the characteristics
unique to the broadcast type of messaging, Publish and Subscribe. Durable
subscriptions, request-reply mechanisms, message selector semantics, and message
listeners as well as advanced features such as remote publishing, shared
subscriptions, and multi-topics are presented in depth.

e Chapter 10, Guaranteeing Messages on page 345 describes duplicate message
prevention and guaranteed message delivery. The first part of this chapter explains
how you can detect duplicate messages and prevent messages from being delivered
more than once. The second part of the chapter provides information about how you
can use the SonicMQ Dead Message Queue (DMQ) features to guarantee that
messages will not be discarded until a client has processed them.

e Chapter 11, Recoverable File Channels on page 369 describes the Point-to-point
feature that provides fully recoverable transfers of files between peers through
SonicMQ brokers and common global queues.

e Chapter 12, SonicStream API on page 391 describes this API lets you send streams
of data to interested applications, using SonicMQ as the transport mechanism.

e Chapter 13, Hierarchical Name Spaces on page 411 explains SonicMQ’s topic
hierarchies and how they can be used to streamline access to data.

e Chapter 14, Distributed Transactions Using XA ResourcSes on page 423 explains
distributed transaction processing, and presents several distributed transaction
models and describes how to run the distributed transaction sample.

Aurea Software, Inc. Confidential 24 Copyright © 2013 Aurea, Inc.

Preface

Typographical Conventions

This section describes the text-formatting conventions used in this guide and a
description of notes, warnings, and important messages. This guide uses the following
typographical conventions:

e Boldtypefacein this font indicates keyboard key names (such as Tab or Enter) and
the names of windows, menu commands, buttons, and other Sonic user-interface
elements. For example, “From the File menu, choose Open.”

. Bold typeface in this font emphasizes new terms when they are introduced.

e Monospace typeface indicates text that might appear on a computer screen other
than the names of Sonic user-interface elements, including:

e Code examples and code text that the user must enter
e System output such as responses and error messages

e Filenames, pathnames, and software component names, such as method
names

e Bold monospace typeface emphasizes text that would otherwise appear in
monospace typeface to emphasize some computer input or output in context.

o Monospace typeface 1in italics or Bold monospace typeface in italics
(depending on context) indicates variables or placeholders for values you supply or
that might vary from one case to another.

This manual uses the following syntax notation conventions:

e Brackets ([1]) in syntax statements indicate parameters that are optional.

e Braces ({ }) indicate that one (and only one) of the enclosed items is required. A
vertical bar (|) separates the alternative selections.

. Ellipses (.. .) indicate that you can choose one or more of the preceding items.

This guide highlights special kinds of information by shading the information area, and
indicating the type of alert in the left margin.

Note: A Note flag indicates information that complements the main text flow. Such
information is especially helpful for understanding the concept or procedure
being discussed.

Important: An Important flag indicates information that must be acted upon within the
given context to successfully complete the procedure or task.

Warning: A Warning flag indicates information that can cause loss of data or other
damage if ignored.

Aurea Software, Inc. Confidential 25 Copyright © 2013 Aurea, Inc.

Preface

Aurea Sonic Documentation

Sonic installations always have a welcome page that provides links to Sonic
documentation, release notes, communities, and support. See the release’s Product
Update Bulletin book to see what's new and what's changed since prior releases.

The Sonic documentation set includes the following books and API references.

SonicMQ Documentation

SonicMQ installations provide the following documentation:

Aurea Sonic Installation and Upgrade Guide — The essential guide for installing,
upgrading, and updating SonicMQ on distributed systems, using the graphical,
console or silent installers, and scripted responses. Describes on-site tasks such as
defining additional components that use the resources of an installation, defining a
backup broker, creating activation daemons and encrypting local files. Also describes
the use of characters and provides local troubleshooting tips.

Getting Started with Aurea SonicMQ — Provides an introduction to the scope and
concepts of SonicMQ messaging. Describes the features and benefits of SonicMQ
messaging in terms of its adherence to the JavaSoft JMS specification and its rich
extensions. Provides step by step instructions for sample programs that demonstrate
JMS behaviors and usage scenarios. Concludes with a glossary of terms used
throughout the SonicMQ documentation set.

Aurea SonicMQ Configuration and Management Guide — Describes the configuration
toolset for objects in a domain. Also shows how to use the JNDI store for administered
objects, how integration with Progerss Actional is implemented, and how to use JSR
160 compliant consoles. Shows how to manage and monitor deployed components
including metrics and notifications.

Aurea SonicMQ Deployment Guide — Describes how to architect components in
broker clusters, the Sonic Continuous Availability Architecture™ and Dynamic Routing
Architecture®. Shows how to use the protocols and security options that make your
deployment a resilient, efficient, controlled structure. Covers all the facets of HTTP
Direct, a Sonic technique that enables SonicMQ brokers to send and receive pure
HTTP messages.

Aurea SonicMQ Administrative Programming Guide — Shows how to create
applications that perform management, configuration, runtime and authentication
functions.

Aurea SonicMQ Application Programming Guide— Takes you through the Java
sample applications to describe the design patterns they offer for your applications.
Details each facet of the client functionality: connections, sessions, transactions,
producers and consumers, destinations, messaging models, message types and
message elements. Complete information is included on hierarchical namespaces,
recoverable file channels and distributed transactions.

Aurea SonicMQ Performance Tuning Guide — lllustrates the buffers and caches that
control message flow and capacities to help you understand how combinations of
parameters can improve both throughput and service levels. Shows how to tune TCP
under Windows and Linux for the Sonic Continuous Availability Architecture™.

Aurea Software, Inc. Confidential 26 Copyright © 2013 Aurea, Inc.

Preface

e SonicMQ API Reference — Online JavaDoc compilation of the exposed SonicMQ
Java messaging client APIs.

e Management Application APl Reference — Online JavaDoc compilation of the
exposed SonicMQ management configuration and runtime APIs.

e Metrics and Notifications API Reference — Online JavaDoc of the exposed SonicMQ
management monitoring APIs.

e Aurea Sonic Event Monitor User’s Guide — Packaged with the SonicMQ installer, this
guide describes the aurea Sonic logging framework to track, record or redirect metrics
and notifications that monitor and manage applications.

Other Documentation in the SonicMQ Product
Family

The Aurea Sonic download site provides access to additional client and JCA adapter
products and documentation:

e Aurea SonicMQ .NET Client Guide — Packaged with the SonicMQ .NET client
download, this guide takes you through the C# sample applications and describes the
design patterns they offer for your applications. Details each facet of the client
functionality: connections, sessions, transactions, producers and consumers,
destinations, messaging models, message types and message elements. Includes
complete information on hierarchical namespaces and distributed transactions. The
package also includes online API reference for the Sonic .NET client libraries, and
samples for C++ and VB.NET.

e Aurea SonicMQ C Client Guide — Packaged with the SonicMQ C/C++/COM client
download, this guide presents the C sample applications and shows how to enhance
the samples, focusing on connections, sessions, messages, producers and
consumers in both the point-to-point and publish/subscribe messaging models.
Provides tips and techniques for C programmers and gives detailed information about
using XA resources for distributed transactions. The package also includes online API
reference for the SonicMQ C client.

e Aurea SonicMQ C++ Client Guide — Packaged with the SonicMQ C/C++/COM client
download, this guide presents the C++ sample applications and shows how to
enhance the samples, focusing on connections, sessions, messages, producers and
consumers in both the point-to-point and publish/subscribe messaging models.
Provides tips and techniques for C++ programmers and gives detailed information
about using XA resources for distributed transactions. The package also includes
online API reference for the SonicMQ C++ client.

e Aurea SonicMQ COM Client Guide — Packaged with the SonicMQ C/C++/COM client
download for Windows, this guide presents the COM sample applications under ASP,
and Visual C++. Shows how to enhance the samples, focusing on connections,
sessions, messages, producers and consumers in both the point-to-point and
publish/subscribe messaging models. Provides tips and techniques for COM
programmers. The package also includes online API reference for the SonicMQ COM
client.

Aurea Software, Inc. Confidential 27 Copyright © 2013 Aurea, Inc.

Preface

e Aurea SonicMQ 2013 Resource Adapter for JCA User’s Guide for WebSphere —
Packaged with this JCA adapter in a separate download, this guide describes the
Sonic Resource Adapter for JCA and using it with a WebSphere application server.

e Aurea SonicMQ 2013 Resource Adapter for JCA User’'s Guide for Weblogic —
Packaged with this JCA adapter in a separate download, this guide describes the
Sonic Resource Adapter for JCA and using it with a Weblogic application server.

e Aurea SonicMQ 2013 Resource Adapter for JCA User’s Guide for JBoss — Packaged
with this JCA adapter in a separate download, this guide describes the Sonic
Resource Adapter for JCA and using it with a JBoss application server.

Worldwide Technical Support

aurea Software’s support staff can provide assistance from the resources on their Web site
at www.aurea.com/sonic. There you can access technical support for licensed aurea

Sonic products to help you resolve technical problems that you encounter when installing
or using Aurea Sonic products

When contacting Technical Support, please provide the following information:

e The release version number and serial number of SonicMQ that you are using. This
information is listed on the license addendum. It is also at the top of the SonicMQ
Broker console window and might appear as follows:

SonicMQ Continuous Availability Edition [Serial Number nnnnnnn]
Release nnn Build Number nnn Protocol nnn

e The release version number and serial number of Sonic ESB that you are using. This
information is listed on the license addendum. It is also near the top of the console
window for a Sonic ESB Container. For example:

Sonic ESB Continuous Availability Edition [Serial Number:

nnnnnnn |

Release nnn Build Number nnn

e The platform on which you are running Aurea Sonic products, and any other relevant
environment information.

e The Java Virtual Machine (JVM) your installation uses.
e Your name and, if applicable, your company name.

. E-mail address, telephone, and fax numbers for contacting you.

Aurea Software, Inc. Confidential 28 Copyright © 2013 Aurea, Inc.

http://www.aurea.com/sonic

Overview

SonicMQ is aurea Software Corporation’s implementation of Sun’s Java Message Service
(IMS) specification that expedites development and deployment of an efficient, secure, and
scalable messaging system for business-to-business, networked, and internal integrated
applications. SonicMQ makes it possible for organizations to efficiently (and reliably)
communicate between disparate business systems over the Internet and meet their
time-to-market requirements by delivering the following features:

Internet-resilient business messaging
High performance messaging infrastructure

Reliable transmission of messages regardless of network, hardware, or application
failure

Messaging topologies that support complex deployments distributed across
geographic and system boundaries:

e Dynamic Routing Architecture (DRA) to publish and subscribe to remote nodes
e Clusterwide access to global queues and durable subscriptions
e Load-balanced subscriptions

Centralized management environment that allows all components of the SonicMQ
messaging infrastructure to be quickly and easily administered and monitored from a
central location:

e SonicMQ’s JMX-based administration environment works across routing nodes
e Manage and administer collections of brokers as a group
o Fault tolerance is managed through local persisted configuration cache

e A JNDI store is provided for administered objects

Aurea Software, Inc. Confidential 29 Copyright © 2013 Aurea, Inc.

Chapter 1: Overview

e SonicMQ provides secure data transmission and controlled access with:
e Pluggable cipher suites for Quality of Protection (QoP)
e Pluggable client authentication
e Option to use LDAP as the repository of user names and passwords
e Flexibility in configuring the messaging infrastructure:

e Clients can be moved around the network without requiring any changes to the
messaging application

e Support for XML message types in addition to the JMS types
e Option to establish persistence on the client message producer
e Peer-to-peer file transfers over recoverable file channels

e Ease-of-use features make SonicMQ an environment that can be easily learned and
deployed

Java Message Service

The Java Message Service (JMS) Version 1.0.2b specification describes portable, efficient
standards for a powerful, extensible messaging service. The JMS specification pointedly
leaves some functionality—such as load balancing, fault tolerance, error notification,
administration, security, wire protocol, and message repository—to the provider of the
messaging server. SonicMQ implements this functionality and provides a level of
abstraction to developers, who can concentrate on creating business logic.

JMS: Key Component of the Java Platform for
the Enterprise

Sun Microsystems announced a plan in early 1997 to deliver nine Java APlIs that would
enable a vendor-neutral computing infrastructure capable of integrating Java with virtually
every significant enterprise computing service.

JMS would provide asynchronous communications to avoid the problems synchronous
communications—such as RMI and CORBA—were experiencing in the uncontrollable
Internet environment. Javasoft provided a reference implementation in late 1998, noting
that implementers of the JMS specification would need to match the security, reliability,
fault-tolerance, and manageability of existing mainframe messaging services before
enterprise acceptance would be considered. At the 1.3 release of the Java 2 Enterprise

Edition platform, the JMS API is an integral part of the platform. JMS is a strategic
technology for J2EE. JMS will work in concert with other technologies to provide reliable,
asynchronous communication between components in a distributed computing
environment. The JMS specification notes that it does not address load balancing, fault
tolerance, error natification, administration, security, and repositories.

Aurea Software, Inc. Confidential 30 Copyright © 2013 Aurea, Inc.

Programming Concepts

JMS Version 1.1 Specification

In April, 2002, Sun introduced Version 1.1 of the JMS specification. The main enhancement
in this specification is the refactoring of interfaces to support “domain unification.” In IMS
1.02b, there was a strong distinction between the Point-to-Point and Pub/Sub messaging
models (referred to as messaging domains in the JMS 1.1 specification), each requiring
its own set of interfaces. One consequence of this separation was that a single transaction
could not include both Point-to-Point and Pub/Sub messages. In JIMS Version 1.1, this
constraint has been removed, and it is now possible to include messages from both models
in a single transaction.

The JMS 1.1 specification describes a common set of interfaces that can be used for both
messaging models. Because of this, applications written to the JMS 1.1 API can safely
ignore interfaces that were previously required. The reduced number of interfaces
simplifies application code. It can also eliminate redundant code.

JMS Version 1.1 is fully backwards compatible with IMS Version 1.02b. Client code that
conforms to the JMS 1.02b specification also conforms to the JMS 1.1 specification.

Java Development Environment

SonicMQ is delivered with a Java run-time environment (JRE) consisting of a Java Virtual
Machine (JVM) that is sufficient to support the Java-based installer and the demonstration
of SonicMQ samples running against an embedded persistent storage mechanism.

Important: The installable JVM might not be appropriate on every platform. See the
SonicMQ Release Notes in the docs folder of your SonicMQ installation to get
detailed information about the JVM that is appropriate for your platform,
operating system, persistent storage mechanism, and toolset

Programming Concepts

The design of SonicMQ provides full implementation of the Java Message Service (JMS)
specification with additional features that comprise a solution that is resilient enough for
Internet E-commerce in major enterprises.

Messaging involves the loose coupling of applications. This is accomplished by maintaining
an intelligent broker structure. A client can establish one or more connections to a broker.

Clients Connect to the SonicMQ Broker

In Figure 1, SonicMQ’s hub-and-spoke architecture considers every entity in the
messaging service topology to be a client except the broker—the entity to which every
client connects and through which all clients exchange messages.

Aurea Software, Inc. Confidential 31 Copyright © 2013 Aurea, Inc.

Chapter 1: Overview

The SonicMQ communication layer abstracts developers from the plumbing of the
underlying network, freeing them to concentrate on constructing business logic in Java

Broker Is a Hub for SonicMQ Client Applications

Client
Application
C

applications.
Figure 1:
Client Client
Application Application
A B
Client
Application Broker
F
Client Client
Application Application
E D

The broker can join with other brokers to form clusters. Clusters and stand-alone brokers

are nearly equivalent when looked at as routing nodes.

SonicMQ Is a JMS Provider

The components that are needed to implement and manage a JMS application are supplied
by the JMS provider. This includes, as shown in Figure 2, the JIMS Client APl and the
SonicMQ Client Run Time accessed from within the client application, the communications
layer between the client and the broker architecture—repositories (message, security, and
configuration), and administrative tools for managing clusters, security, administered
objects, and the brokers.

Aurea Software, Inc. Confidential

32

Copyright © 2013 Aurea, Inc.

Programming Concepts

Figure 2: Client Application Using the SonicMQ JMS Provider

Client Application |

JMS Client API JMS Provider

SonicMQ Client

Run Time Broker

N A

7
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
I
W\

kzo0—-——4o0omzzo0o0l

SonicMQ Messaging Models

There are two messaging models in SonicMQ:

e Point-to-point (PTP) — In this model, the producer of a message sends a message
to a specified static queue at a broker. While many prospective recipients could be
listening to or even browsing the queue, when a receiver elects to accept a queued
message, the message is considered delivered. No other recipient will thereafter be
able to access that message. PTP is a one-to-one form of communication.

e Publish and Subscribe (Pub/Sub) — In this model, the producer of a message
sends the message to a specified topic at the broker. Pub/Sub is referred to as
one-to-many or broadcast because there could be zero to many subscribers for a
given topic who will each receive the one message that was sent.

JMS Version 1.1 Unification of Messaging
Models

Prior to JMS Version 1.1, the Point-to-Point and Pub/Sub messaging models were kept
separate, and each model required its own set of interfaces. Although the model-specific
interfaces extended a common base set of interfaces, it was impossible to use the common
interfaces to implement functionality that was specific to either model. The common
interfaces and their model-specific extensions are shown in Table 1.

Table 1: Common and Model-Specific Interfaces
Common Point-to-Point Pub/Sub
Connection QueueConnection TopicConnection

ConnectionFyactory

QueueConnectionFactory

TopicConnectionFactory

Destination Queue Topic
MessageConsumer QueueReceiver TopicSubscriber
MessageProducer QueueSender TopicPublisher
Session QueueSession TopicSession

Aurea Software, Inc. Confidential

33

Copyright © 2013 Aurea, Inc.

Chapter 1: Overview

In JMS Version 1.1, the common interfaces were enhanced, allowing application
programmers to use the common interfaces to directly implement model-specific
functionality, rather than using the model-specific interfaces. These enhancements provide
two important benefits:

e Asingle transaction can now include Point-to-Point and Pub/Sub messages.

e The JMS programming model is simplified. Application programmers can now focus
on the common interfaces, without being forced to use two model-specific interfaces.
Also, if a single application requires both Point-to-Point and Pub/Sub functionality, the
application programmer is no longer forced to create redundant code.

Although the JMS 1.1 common interfaces effectively replace many of the model-specific
interfaces, the model-specific interfaces continue to be fully supported. This makes the
JMS 1.1 API fully backwards compatible. Any JMS application written before IMS 1.1
will continue to work as expected.

Despite the fact that the model-specific interfaces continue to be supported, the JMS 1.1
specification states that some interfaces might be deprecated in the future. Consequently,
if you are developing new JMS client applications, it is recommended that, wherever
possible, you use the common interfaces in place of the older model-specific interfaces.

SonicMQ Object Model

Figure 3 shows the SonicMQ object model.

Figure 3: SonicMQ Object Model
ConnectionFactory
Creates
Connection
Creates
fCreates Session Creates—l
Creates
MessageProducer $ MessageConsumer
‘ Message ‘
Sends Messages To Receives Messages From
Destination Destination
(Queue or Topic) (Queue or Topic)

Aurea Software, Inc. Confidential 34 Copyright © 2013 Aurea, Inc.

Programming Concepts

ConnectionFactory

A ConnectionFactory is an object whose job is to create one or more Connection objects,
each of which establishes a connection to a SonicMQ broker (or cluster). A
ConnectionFactory can be implemented as an administered object.

Connection

A Connection is a conduit for communication between your client application and a
SonicMQ broker (or cluster). Each Connection is a single point for all communications
between the client application and the broker.

Session

A Connection can create one or more Session objects. A Session object is a
single-threaded context for producing and consuming messages. A Session object can
create Message objects, MessageProducer objects (which send outbound messages), and
MessageConsumer objects (which receive inbound messages). Each MessageProducer and
MessageConsumer object operates in the context of the Session that created it.

Transactions are scoped to Session objects. Starting in JMS 1.1, a transaction can include
both Point-to-Point and Pub/Sub messages.

MessageConsumer and MessageProducer

A Session creates MessageProducer and MessageConsumer objects. The main responsibility
of a MessageProducer object is to send messages from your client application to
destinations on the broker. The main responsibility of a MessageConsumer object is to
receive messages from a destination on the broker, either synchronously (via the
receive() method) or asynchronously (via a Messagelistener object).

The general terms consumer and producer are used to refer, respectively, to entities that
receive and send messages. Figure 4 illustrates the roles of producers and consumers.

Figure 4: Message Producers and Message Consumers

PRODUCER publishes, sends

Messages Broker
CONSUMER subscribes, receives \

C
¢}
N
N
=
C
T
I
0o
N

Aurea Software, Inc. Confidential 35 Copyright © 2013 Aurea, Inc.

Chapter 1: Overview

The client application is the producer when:

e Sending a message to a queue (PTP)

e Publishing a message to a topic (Pub/Sub)
The client application is the consumer when:

e Receiving messages from a queue (PTP)

e Subscribing to a topic (Pub/Sub) where messages are published
A single Session object can create both MessageProducer and MessageConsumer objects.

To learn about the broker architecture and functionality, see the Aurea SonicMQ
Deployment Guide.

Destination

A Destination object represents a named location to which messages can be sent. A
Destination must be either a Topic or a Queue (both of which extend the Destination
interface). A Destination can be implemented as an administered object.

When you write an application using the JMS 1.1 common interfaces, you can use the
same interfaces for both messaging models, but you cannot create a “common”
Destination object. You create either a Topic or a Queue, which you can then upcast to a
Destination, if needed.

Message

A Message object holds your business data. For more information about messages, see
Chapter 6, Messages on page 231

Quality of Service and Protection

Some messages are simple and transitory, and they are broadcast to prospective
recipients who might or might not be paying attention. These messages might contain
information that is timely and important but not particularly confidential. An example is stock
guotes. The data is public information that is considered valuable when it is disseminated
promptly and verifiable when significant risk might be associated with the information it
carries. Here, performance takes precedence.

Messages that represent the other extreme, where the anticipated services and protection
are paramount, include bank wire transfers where encryption, security, and logging
processes are an integral part of mutually assured confidence in the message.
Communication that is certifiable, auditable, consistent, and fully credentialed provides the
quality of service and the quality of protection that is expected. Performance is important,
but not as an alternative to quality.

All the SonicMQ message services and protection are available to both the PTP and
Pub/Sub messaging models.

Aurea Software, Inc. Confidential 36 Copyright © 2013 Aurea, Inc.

Quality of Service and Protection

The services and protection that are described in this guide—together with some of the

services controlled by the broker’s administrator—can be found in Table 2.

Table 2: Services and Protection Available in SonicMQ Messaging
Service Technique Process Reference
ENCRYPTED Independent Body is appended afterit | Private encryption
Content is encrypted. encryptlpn has pgen encrypted, methods can be appl_led
mechanisms. providing assurance that | before the message is
a message is protected | presented to the
even if the connection is | messaging-enabled
insecure. application.
SECURE TRANSPORT | Connection Parameter is set when See Chapter 4,
. protocol creating connection. SonicMQ Connections
Protocol is secure.
parameter. on page 131 for

information about
choosing protocols.

AUTHENTIC
PRODUCER

Producer is accepted by
the broker’s
authentication domain.

Security enforced
through
authentication of
user name and
password at time
of connection.

If the installation enabled
security, the
administrator sets up
users and passwords in
the broker’'s
authentication domain.

AUTHORIZED
PRODUCER

Producer has
permission to produce
and is authorized to
produce to specified

Security enforced
through Access
Control Lists
(ACLs).

If the installation enabled
security, the
administrator sets up
permissions in the
broker’s authorization
policy to produce to
specific hierarchies of

See the Aurea SonicMQ
Deployment Guide for
information about
authentication and
authorization of
producers (PTP senders
and Pub/Sub publishers)
and Access Control Lists
(ACLs).

Broker acknowledges
receipt of messages
from producer.

receipt at broker.

destination. S
destinations and
routings.
ACKNOWLEDGED Synchronousblock | Automatic when sending
PRODUCER released after a message unless

specifically designated
asin
NON_PERSISTENT_A
SYNC
acknowledgement mode

Aurea Software, Inc. Confidential

37

Copyright © 2013 Aurea, Inc.

Chapter 1: Overview

Table 2: Services and Protection Available in SonicMQ Messaging
Service Technique Process Reference
INTEGRITY The message Administrative Quality of | See the Aurea SonicMQ

When a destination has
a QoP setting that
indicates integrity, a
message producer
creates a digest that the
broker confirms. The
broker recreates the
message digest for the
message consumer who
then confirms it.

content is hashed
and the digest of
the result
accompanies the
message.

Protection (QoP) setting
on destination is
integrity.

Also implicitly setwhen a
sender chooses
per-message
encryption.

PRIVACY

When a destination has
a QoP setting that
indicates privacy, a
message producer
encrypts a message
then creates its digest.
The broker confirms the
digest and decrypts the
message. The broker
reencrypts the message
and then recreates the
message digest for the
message consumer.

The message is
encrypted with the
cipher suite
preferred by the
broker and then
the message
content is hashed
and the digest of
the result
accompanies the
encrypted
message

Administrative Quality of
Protection (QoP) setting
on destination is privacy
or message producer
explicitly requests
privacy.

Setting privacy includes
the services of integrity.

Configuration and
Management Guide and
the Aurea SonicMQ
Deployment Guide for
information about
administrator settings for
integrity and privacy.
Note also information
about how the installed
cipher suites for QoP
encryption can be
customized.

The privacy setting can
be explicitly requested
by a message producer
to a security-enabled
broker. See Per
Message Encryption on
page 254.

PERSISTENT

Message persists in
broker storage.

Delivery mode
uses the
PERSISTENT
option.

Set option in publish or
send command. The
broker never allows
messages to be lost in
the event of a network or
system failure.
Nonpersistent
messages are volatile in
the event of a broker
failure.

REDELIVERY

Consumer might receive
unacknowledged
message again.

Broker sets
JMSRedelivered
field to true when
service is
interrupted while
waiting for a
consumer

acknowledgement.

Must be checked and
acted on by the
consumer. For the
message producer, this
header field has no
meaning and is left
unassigned by the
sending method.

See Recover on
page 208.

Aurea Software, Inc. Confidential

38

Copyright © 2013 Aurea, Inc.

Quality of Service and Protection

Table 2:

Services and Protection Available in SonicMQ Messaging

Service

Technique

Process

Reference

DURABLE INTEREST

Pub/Sub consumers,
Subscribers, can
establish a durable
interest in a topic with a
broker.

An application
uses the session
method create-
DurableSubscriber
with the
parameters topic,
subscriptionName,
messageSelector,
and a noLocal
option.

Broker retains messages
for durable subscriber,
using the userName,
and clientID of the
connection plus the
subscriptionName to
index the subscription.

Note that
NON_PERSISTENT
messages are still at risk
in the event of broker
failure. Note also that
messages expire
normally even if durable
subscriptions are
unfulfilled.

See Reliable, Persistent,
and Durable Messaging
Samples on page 95.
See also Durable
Subscriptions on

page 313.

PRIORITY

Messages sent with
higher priority can be
expedited.

Producer sets the
message header
value JMSPriority
to anint value O
through 9 where 4
is the default.

Broker checks message
priority and handles
appropriately. Priority
values of 5 through 9 are
expedited.

See Message
Management by the
Broker on page 267.

EXPIRATION

Messages are available
until the expiration time.

Based on GMT.

Producer sets
time-to-live value,
then includes the
value at moment of
publish/send.

Broker receives
message with
JMSExpiration date-time
set to the
JMSTimestamp
date-time plus the
time-to-live value.

See Create the Message
Type and Set Its Body on
page 265.

See also Message
Management by the
Broker on page 267.

REQUEST
MECHANISM

Producer can request a
reply from the
consumer.

Message header
field IMSReplyTo
has a string value
that indicates the
topic where a reply
is expected. The
JMSCorrelationID
can indicate a
reference string
whose uniqueness
is managed by the
producer.

Carried through to
consumer, but the
consumer application
must be coded to look at
the IMSReplyTo field
and then act.

Producer could be
synchronously blocked
waiting for reply
message at temporary
topic.

TopicRequestor object
creates a temporary
topic for the reply.

See Request and Reply
Samples on page 112.

See also Session
Objects on page 212
and Reply-to
Mechanisms on
page 279.

Aurea Software, Inc. Confidential

39

Copyright © 2013 Aurea, Inc.

Chapter 1: Overview

Table 2: Services and Protection Available in SonicMQ Messaging
Service Technique Process Reference
AUTHENTIC Security enforced | Ifthe installation enabled | See the Aurea SonicMQ
CONSUMER through security, the Deployment Guide for
authentication of administrator sets up more about

Consumer is accepted
by the broker’s
authentication domain.

username and
password at time
of connection.

users and passwords in
the broker’s
authentication domain.

authentication and
authorization of
consumers (PTP
receivers and Pub/Sub

CONSUMPTION

Consumer
acknowledges receipt to
broker.

type for the
session was set
when the session
was created.

to perform the specified
type of
acknowledgement for all
messages consumed in
that session.

Client acknowledges
receipt of received
messages when session
parameter is
CLIENT_ACKNOWLED
GE or
SINGLE_MESSAGE_A
CKNOWLEDGE then
when client calls
acknowledge().

Explicit call by
consumer.

Manual.

AUTHORIZED Security enforced | Ifthe installation enabled .
CONSUMER thr h ACL rity, th subscribers) and Access
oug S securrty, the Control Lists (ACLS).
. . administrator sets up

Consumer is authorized o .
permissions in the

to consume from a : o

o o broker’s authorization

specified destination. .
policy to consume from
specific hierarchies of
destinations.

ACKNOWLEDGED Acknowledgement | Functions automatically | See Acknowledgement

Mode on page 207.

Aurea Software, Inc. Confidential

40

Copyright © 2013 Aurea, Inc.

Clients

Table 2: Services and Protection Available in SonicMQ Messaging
Service Technique Process Reference
REPLY MECHANISM Consumer reacts Programmatic See Request and Reply

Consumer replies to the
producer’s request for

reply.

to a IMSReplyTo
request by
producing a
message to the
topic name in the
JMSReplyTo field.

procedure where the
consumer publishes a
reply. The content of the
reply is not specified.
Typically the
JMSCorrelationID would
be replicated.

Samples on page 112.
See also Session
Objects on page 212
and Reply-to
Mechanisms on

page 279.

DEAD MESSAGE
QUEUE

Sender/publisher can
set properties to either
or both re-enqueue
undelivered messages
and send an
administrative notice.

Set the properties
that tell the broker
to provide special
handling when the
message is
declared dead.

Programmatic
procedure where the
sender chooses to set
the property
JMS_SonicMQ
_preserveUndelivered to
true to store the dead
message until handled
and to set the property
JMS_SonicMQ _
notifyUndelivered to true
to send a notification to
the broker’s
administrator.

See Message Properties
on page 253. See also
the Dynamic Routing
information in the Aurea
SonicMQ Deployment
Guide.

Clients

The techniques and interfaces described in this book describe the methods and design
patterns for running SonicMQ in a console session. There are several client types that all
provide JMS client functionality.

Java Client

SonicMQ clients are a set of Java archives that provide libraries of functionality that enable
applets, proxy servers, servlet engines, and JavaBeans.

JMS Test Client

The SonicMQ JMS Test Client provides a graphical interface to demonstrate PTP and
Pub/Sub messaging. You can use the JMS Test Client to send messages to queues and
topics and to view the message properties and headers. See Using the JMS Test Client on
page 45 for more information.

Aurea Software, Inc. Confidential 41 Copyright © 2013 Aurea, Inc.

Chapter 1: Overview

HTTP Direct Protocol Handlers

HTTP Direct is a broker-based set of properties and factories that enables seamless
interfacing between the JMS message and HTTP document paradigms. Pure HTTP
documents arriving inbound on SonicMQ broker ports are transformed into JMS messages
for message production to the port's assigned destination. Outbound JMS messages to
specified SonicMQ routing nodes are transformed to HTTP documents and then sent to the
designated HTTP Web Server. HTTP Direct also has features to handle SOAP encoding
and to read JMS properties from specified HTTP fields. See the Aurea SonicMQ
Deployment Guide for more information and for samples of HTTP Direct.

Java Applet

SonicMQ can work in a Java applet running in a browser context to invoke classes that
implement JMS functionality.

.NET Client

The SonicMQ .NET Client lets you write applications in a variety of Microsoft programming
languages including C# .NET and Visual Basic .NET. The C# API enables interoperability
between .NET applications and Java applications, thereby leveraging and extending the
range of SonicMQ brokers. The C# Client includes features for fault tolerant connections,
and transactional support. It is a native .NET component with fully-managed .NET code so
that it works under the Microsoft CLR.

C/C++ Clients

SonicMQ can act as a pure C++ or pure ANSI C application on your system yet interface
with a SonicMQ broker with the same behaviors as a pure JMS client. This provides legacy
systems with integration and Web connection opportunities within the familiar operating
characteristics of C and C++.

COM Client

SonicMQ provides a COM wrapper to the C++ client so that it can enable pure COM
application on your system that interface with a SonicMQ broker with the same behaviors
as a true JMS client. Examples are provided that demonstrate use of the COM client in
Active Server Pages, Visual C++, Visual Basic, and VBScript applications.

Aurea Software, Inc. Confidential 42 Copyright © 2013 Aurea, Inc.

SonicMQ API

SonicMQ API

The SonicMQ API provides Java and SonicMQ packages containing interfaces and
methods you can use in your SonicMQ programming. The SonicMQ APl documentation is
located in your SonicMQ installation directory at

MQ2013 install root\docs\sonicmg api.The SonicMQ API contains the following
interfaces:

e Java Extension Package:
e javax.jms
e SonicMQ Packages:

. progress.message.jclient — Contains interfaces and classes used with
SonicMQ

° progress.message.jclient.channel — Contains the RecoverableFileChannel
interface

. progress.message.xa — Contains interfaces and classes used with XA
Transactions

. com.sonicsw.stream — Contains the SonicStream interface

Aurea Software, Inc. Confidential 43 Copyright © 2013 Aurea, Inc.

Chapter 1: Overview

Aurea Software, Inc. Confidential 44 Copyright © 2013 Aurea, Inc.

Using the JMS Test Client

When you develop a messaging application, you want to be sure your messages have the
correct content and are delivered as expected to the correct destinations. The SonicMQ
JMS Test Client is a useful graphical tool that helps you do this. With this tool, you can
create message producers (QueueSenders and Publishers) and message consumers
(QueueReceivers and Subscribers); you can also create messages, send the messages to
selected queues and topics, and visually inspect the messages after they are delivered.
Many of the samples described in this book require you to use the JMS Test Client.

This chapter includes the following sections that describe how to use the JMS Test Client
with the PTP and Pub/Sub messaging models:

e Testing Point-to-point Messaging on page 45

e Testing Publish and Subscribe Messaging on page 53

Testing Point-to-point Messaging

Establishing a test PTP session with the JMS Test Client involves the tasks described in
these sections:

e Starting the SonicMQ Container and Broker on page 46

e Establishing a Queue Session on page 47

e Creating Queue Senders and Queue Receivers on page 48
e Sending and Receiving Messages on page 50

e Browsing Messages on a Queue on page 52

Aurea Software, Inc. Confidential 45 Copyright © 2013 Aurea, Inc.

Chapter 2: Using the JMS Test Client

Starting the SonicMQ Container and Broker

Be sure the SonicMQ container and broker are running before executing any of the JIMS
Test Client samples. The following procedures explain how to start the SonicMQ container
and broker on Windows, Linux, and UNIX platforms.

Note: If this is the first time you are running SonicMQ, you should not have to set up and
initialize the storage or adjust the broker’s settings. See the Aurea Sonic
Installation and Upgrade Guide for more information.

To start the broker and container from the Windows Start menu:
Select Start > Programs > aurea > Sonic 2013> Start DomainManager.
To start the broker process from a Linux or UNIX console window:

1. Inanew console window set to
install dir/Containers/Domainl.DomainManager, type
Taunchcontainer.sh and press ENTER.

Important: You can minimize the console window. Closing it, however, stops the Domain
Manager.

Opening the JMS Test Client

The following procedure shows how to open the JMS Test Client.

To start the JMS Test Client from the Windows Start menu:

e Select Start > Programs > aurea > Sonic 2013> Tools > JMS Test Client
To start the JMS Test Client from a Linux or UNIX console window:

. In a new console window set to the SonicMQ install directory, enter
bin/testClient.sh.

Alternatively, open the Sonic Management Console, and select Tools > JMS Test Client.

(See Starting the SonicMQ Container and Management Console on page 70 for
information about starting the Management Console.)

The JMS Test Client windows opens.

Aurea Software, Inc. Confidential 46 Copyright © 2013 Aurea, Inc.

Testing Point-to-point Messaging

Establishing Connection to the SonicMQ
Broker

To connect the JMS Test Client to the broker:

1. Inthe Broker Host field, enter the information for your connection.
For example, Tocalhost:2506.

2. Inthe Connect ID field, enter a unique name for your connection.
This example uses the Connect ID Test.

3. Click Connect to establish the connection, as shown in the following figure.

. JMS Test Client !EI

Filz ‘“iew Help

Mew Connectian:

Broker Host: |localhost 2606 i Connect |

Connect I0: [Test

Lser:

Pazzword: Clear |

Connected Broker Host Connect [0 User

Cizconnect Eemove

Establishing a Queue Session

The following procedure describes how to create a queue session in the JMS Test Client.
To create a queue session with the JMS Test Client:

1. Inthe left panel of the JMS Test Client window, click the node for your message broker
connection.

2. Type a unigue string in the Name field and press ENTER.

This example uses the name TestSess+ion.

Aurea Software, Inc. Confidential 47 Copyright © 2013 Aurea, Inc.

Chapter 2: Using the JMS Test Client

3. Select Queue from the Type drop-down list then click CREATE.
The session appears in the left panel with Senders, Receivers, and Browsers nodes
as shown in Figure 5.
Figure 5: Queue Session
0 JMS Test Client Colxl|
File “iew Help
|| Message Brok ~Create Mew Session
BRI cihost 2506 Test.
E- | GueusSession: TestSessior | | MName: ITEStSESSiDn Create | |
- Senders -
-~ Receivers ee IQueue j
oo @ Browsers I Transacted
Acknowledgment Mode
& muto Acknowledged
' Cliert Acknowledged
" Duplicates OK Acknowledge Clear |
Established Sessiohs |
CueueSession: TestSession non-transacted AUTO_ACKNOWLEDGE |
‘I I _'I ez | Carmmit | FrollbEch: | RECOVEL |

Creating Queue Senders and Queue Receivers

The following procedure describes how to create queue senders and receivers in the IMS
Test Client. You can only create senders and receivers to established queues. See the

Aurea SonicMQ Configuration and Management Guide for information about creating and
managing queues.

To create queue senders and receivers:

1.

Select the Senders node in the left panel.

The right panel displays established senders that have been started from this session
(if any) and allows you to create new senders.

To create a new sender, enter the name of the queue you want to send to in the Queue

field and select Create.

A node for the new sender appears under the Senders node and the name of the
gueue appears in the Established Senders list.

Aurea Software, Inc. Confidential

48

Copyright © 2013 Aurea, Inc.

Testing Point-to-point Messaging

Figure 6 creates a sender to the queue Samp1eQ1.

Figure 6: Create a Sender to SampleQ1
§2 JMS Test Client o]
File “iew Help
| 1 Message Brokers Create Mew Sender
1]l localhost: 2506: Test.
EJ QueusSession: TestSessior| | gueye: ISampIeGH
=y "
- Sampled
-# Receivers
s Browesers
Established Senders |
Samplecr! |
‘I I LI Glose |
Note: You can only create a sender to an existing queue. See the Aurea

SonicMQ Configuration and Management Guide for information about
viewing existing queues and creating new queues.

3. Select the Receivers node in the left panel.

The right panel displays the receivers that have been established in this session (if
any) and allows you to create new receivers.

4. To create a new receiver:

¢ Inthe Queue field, enter the name of the queue you from which want to receive
messages.

e This example creates a receiver to Samp1eQl.

e Optionally, you can use the Message Selector field to set up a query against
header fields and properties to filter the available messages. See Message
Selection on page 271 for information about using message selectors.

e This example does not use a message selector.

. Click CREATE.

Aurea Software, Inc. Confidential 49 Copyright © 2013 Aurea, Inc.

Chapter 2: Using the JMS Test Client

A node for the new receiver appears under the Receivers node and the name of the
gueue appears in the Established Receivers list, as shown in Figure 7.

Figure 7: Create a Receiver for SampleQ1
% JMS Test Client !EI
Filz ‘“iew Help
|| Message Brokers —Create hew Receiver
=11 localhost: 2506: Test.
-] GueusSession: TestSession Queve: [Sampled {Creste
EIJ Senders
Message Selectar: Clear
Establizhed Receivers |
Sarnplec |
<I I _'I Glose |
Note: You can only create a receiver to an existing Queue. See the Aurea

SonicMQ Configuration and Management Guide for information about
viewing existing queues and creating new queues.

5. To create additional receivers, select Clear and then repeat steps 6 through 9 of this
procedure.

With senders and receivers established, you can send and receive messages.

Sending and Receiving Messages

The following procedures describe how to send and receive messages on the queues for
which you created senders and receivers in the preceding sections.

Note: Before continuing with this section, make sure you have completed the procedures
in Creating Queue Senders and Queue Receivers on page 48.

To send messages:

1. Select a Sender in the left panel of the JMS Test Client window.

The right panel displays three tabs: Header, Properties, and Body. You can examine
the default values under these tabs. In this example, you do not need to change any
default settings or specify any message properties or body content.

2. Select Send to send the message.

The next procedure shows you how to view the message just sent to Samp1eQl on the
receiver you created for that queue.

Aurea Software, Inc. Confidential 50 Copyright © 2013 Aurea, Inc.

Testing Point-to-point Messaging

To view received messages:

1. Under the Receivers node in the left panel, select the receiver for the queue to which
you sent your message (in this example, Samp1eQ1).

The right panel displays the messages sent to this receiver. In this example, one
message is displayed in the Received Messages area.

2. Select the message displayed in the Received Messages area.

The Header, Properties, and Body tabs in the lower right panel contain information for
the received message, as shown in Figure 8.

Figure 8: Received Messages

. JMS Test Client o]

Filz “iew Help

—:I h:'[essage Brokers Received Messages

-]l localhost: 2506: Test. 70001-F1

-] GueueSession: TestSession —
) Senders
Lo Sampledi
=[] Receivers
@ Browsers
Delete Acknowledge
Header | Propeﬂiesl Bodyl
Marme Walle |

M SDestination Samplecr
W SDeliverytode MOM_PERSISTENT
[MEMeszageD ID:6c321 bS8 4070001 :F140581 D01
M S Timestarmp Fri Mo 01 11:03:54 EST 2002
L SCarrelationlD
M SReplyTo
[SRedelivered falze
STy e
I SExpiration Sat Mow 02 11:035:54 EST 2002
[SPriarity 4

N — 2]

3. To delete one or more messages without acknowledging them, select the messages
and click Delete.

4. To explicitly acknowledge one or more messages, select the messages and click
Acknowledge.

An acknowledgement is sent back to the broker if the session was established in
Client Acknowledged mode. (Messages can also be automatically acknowledged,
depending on how the session was established.)

Note: By default, the number of viewable messages held in the Received Messages table
is 50.

Aurea Software, Inc. Confidential 51 Copyright © 2013 Aurea, Inc.

Chapter 2: Using the JMS Test Client

Browsing Messages on a Queue

The following procedure describes how to browse messages on a queue.

To browse messages on the queue

1.

Select the Browsers node in the left panel of the JMS Test Client window.

The right panel displays the queues available for browsing in the Established
Browsers area. You can also create a browser for an existing queue.

This example includes the existing browser for Samp1eQ1 (if you completed the
preceding examples in Creating Queue Senders and Queue Receivers on page 48).

To create a new queue browser:

e Inthe Queue field, enter the name of the queue where you want to browse
messages.

e This example creates a browser for Samp1eQ2.

e Optionally, you can use the Message Selector field to set up a query against
header fields and properties to filter the available messages. See Message
Selection on page 271 for information about using message selectors.

e This example does not use a message selector.

° Click CREATE.

A node for the new queue browser appears under the Browsers node in the left panel,
and the queue for the new browser appears in the Established Browsers list, as
shown in Figure 9.

Figure 9: Queue Browser Creation
fi.' JM5 Test Client [_ O] I
File “iew Help
|| Message Brokers Create hew Browser
=] lozalhost: 2506: Test
E!---J Queuesession: TestSessior GQueue: |SampleQ2 Creste

E| | Senders
HE R Sample@i Message Selectar: Clear

- __| Recaivers

Established Browsers

h pled1
L@ SampleQ2

4 I _'I Cloze |

Aurea Software, Inc. Confidential 52 Copyright © 2013 Aurea, Inc.

Testing Publish and Subscribe Messaging

3. Select the queue browser for the queue you want to view, and select the appropriate
position-selector (black arrow heads) to position the browser cursor to the messages
you want to see, as shown in Figure 10.

Figure 10: Queue Browser

WMessages
000e.ESO3FDADBE L=l
ONrESD3FDAT &
24001 0:ESD3FDAAAS
SDOFDAFFT

Buffer Size (msgs): [0 IEI LI LI

"Hesder] Properties | Body |

Marme Value
JMSDestination SampleQ3
JMSDeliveryMode PERSISTENT
JMEMessagelD ID:4Bf01 2b5:4001 ZEGD3FDB390
JMSTimestamp Thu Apr 12 15:35:20 EDT 2001
JMSCorrelationlD
JMSReplyTo
JMSRedelivered false
JMEType
JMSExpiration Thu Apr1215:36:09 EDT 2001
JMSPriaity &

Note: To start browsing messages, you must first choose the left-most position-selector.
You can restart the browse by choosing the same selector when the browser
cursor is at any position in the queue. The two right-most position-selectors are
active only when there are more messages on the queue than the specified buffer
size. The move-forward position-selector shows the next buffer-size number of
messages in the queue. The move-to-end position-selector shows the last
buffer-size number of messages in the queue.

Testing Publish and Subscribe Messaging

You can use the JMS Test Client to simulate parts of your application and to demonstrate
the behavior of various broker modes by establishing a test Publish and Subscribe session.
To publish (or send) messages, a connection must be started. The connection starts
automatically when there are adequate resources:

e Broker

e Connection to the broker

. Session on the connection

e Message mechanism (publisher, subscriber, listener, receiver, sender)

Aurea Software, Inc. Confidential 53 Copyright © 2013 Aurea, Inc.

Chapter 2: Using the JMS Test Client

As you add, modify, or delete any resources, the connection automatically stops to allow
the update and then restarts to allow publishing or sending of messages. Establishing a
Pub/Sub session involves the tasks described in the following sections:

Establishing a Topic Session on page 54
Creating Publishers and Subscribers to Topics on page 55
Publishing Messages on page 59

Receiving Messages on Subscribed Topics on page 62

Establishing a Topic Session

The following procedure describes how to create a topic session.

To establish a topic session:

1.

Open the JMS Test Client.
See Opening the JMS Test Client on page 46 for instructions.

In the left panel of the JIMS Test Client window, click the node for your message broker
connection.

Type any unique string in the Name field and press ENTER.
This example uses the session name TestSession.

Select Topic from the Type drop-down list.

Check Transacted if you require a transacted session.

This example does not require a transacted session.

Aurea Software, Inc. Confidential 54 Copyright © 2013 Aurea, Inc.

Testing Publish and Subscribe Messaging

6. Inthe Acknowledgement Mode group, the Auto Acknowledged radio button is
selected by default. You can change the mode to either C1ient Acknowledged or Dups
0K Acknowledge (see Acknowledgement Mode on page 207 for information about the
different acknowledgement modes).

This example uses the Auto Acknowledged mode.
7. Click Create.

The session appears in the left panel with Publishers and Subscribers nodes, as
shown in Figure 11.

Figure 11: Topic Session
. JMS Test Client !EI
Filz ‘“iew Help
|| Message Brokers ~Create Mew Session
ocalh Test.
-] TopicSession TestSession 1| | Name: ITEStSESSiDn Create |
to- @ Publizhers) -
Lol Subscribers Type! ITDpIC LI
I™ Transacted
Acknowledgment Made

© Client &cknowledyed

 Duplicates OK Acknowledge Clear |

Establizhed Sessions |
Topicseszion: TestSession nondransacted AJTO_ACKNOWLEDGE |

EEEE | Camrmit | Rollaach: | Recoyer |

K1 i

Creating Publishers and Subscribers to Topics

The following procedure describes how to create publishers and subscribers to a topic
using the JMS Test Client. You should complete the procedure in Establishing a Topic
Session on page 54 before continuing with this section.

Aurea Software, Inc. Confidential 55 Copyright © 2013 Aurea, Inc.

Chapter 2: Using the JMS Test Client

To create a publisher:

1. Select the Publishers node in the left panel.

The right panel displays established publishers for this topic session (if any), and
allows you to create and manage publishers, as shown in Figure 12.

Figure 12;

Publishers

Create Mew Publisher

Tapic: INodeA::MULTITOPIC:ﬁ Im2T3

Establizhed Publizhers

zales uza kansas

SarnpleT]

oceA: MULTITORIC: T | T2| T3

Glose |

The test client supports basic topics, hierarchical topics, node qualified topics, and
MultiTopics as defined in the Topic Builder shown in Figure 13.

Building MultiTopic Publishers

Figure 13:
Topic Builder
Gualifier
Type: IRuuiing Modle LI
Mame: INodeA
Topics
Mew Topic: ITS Add |

1
T2

Topic Mamss I Pl |

Ok | Cancel |

See MultiTopics on page 336 for information about the syntax and behaviors of
MultiTopic publishers and subscribers.

Aurea Software, Inc. Confidential

56

Copyright © 2013 Aurea, Inc.

Testing Publish and Subscribe Messaging

2. To create a new publisher, enter the name of the topic where messages are to be
published in the Topic field and click Create.

A node for the new publisher appears under the Publishers node and the name of the
connection.

This example creates a publisher to the topic SampleT1, as shown in Figure 14

Figure 14: Create a Publisher to SampleTl

2 IMS Test Client M=l E3 I

Filz ‘Wiew Help

| 1Message Brokers rCreate Mew Publisher
B] localhost; 2506: Test.
E|—_| T?p\cSession: TestSession || | Topic: ISamp\eﬂ
B |Fublizhers
[y SampleT1
* Subscribers

Established Publishers |
SampleT1 |

4 I I _’I Close |

To create a subscriber:

1. Select the Subscribers node in the left panel.

The right panel displays the Established Subscribers (if any) and allows you to create
new subscribers.

2. Inthe Topic field, enter the name of the topic to which you want to subscribe.
This example creates a subscriber to the topic SampleT1.

3. Optionally, you can use the Message Selector field to enter query values based on
JMS header fields and properties to filter out unwanted messages. (For information on
the syntax of this string, see Chapter 6, Messages on page 231)

4. Optionally, you can create a durable subscription by checking Durable and entering a
name in the Name field.

Aurea Software, Inc. Confidential 57 Copyright © 2013 Aurea, Inc.

Chapter 2: Using the JMS Test Client

5. Optionally, you can check No Local Delivery, and the subscriber will not receive
messages from publishers on the same connection.

6. Click CREATE.

The new subscriber appears under the Subscribers node in the left panel, and the
topic appears in the list of Established Subscribers in the right panel, as shown in
Figure 15.

Figure 15: Create a Subscriber to SampleT1

2 IMS Test Client M= E3 I

File Wiew Help

| | Message Erokers
) localhost 2506: Test.

Create Mew Subscriber

E|—_| T\opicSession: TestSession | Topic: ISampIeT1
| Publishers
|_. SamplaT1 Message Selector: I

&
L

™ Dursble

™ Mo Local Drelivery Clear |

Established Subscribers |
SarmpleT1 non-durable local delivery |

2rs
SampleT1 non-dural

[ame: I

‘I I _’I Unsubscribe and Close | Close |

See Chapter 13, Hierarchical Name Spaces on page 411 for information about haming
conventions.

With publishers and subscribers established, you can publish and subscribe to messages.

Aurea Software, Inc. Confidential 58 Copyright © 2013 Aurea, Inc.

Testing Publish and Subscribe Messaging

Publishing Messages

The following procedure describes how to publish messages.

Note: Before continuing with this section, make sure you have completed the procedures
in Creating Publishers and Subscribers to Topics on page 55.

To publish messages:

1. Select a publisher in the left panel of the JMS Test Client window.

The right panel displays three tabs: Header, Properties, and Body. You can examine
the default values under these tabs.

2. The Header tab, shown in Figure 16, displays the header properties.

Figure 16: Message Header
& JMS Test Client o]
File “iew Help
_| Message Brokers Header | Proper‘tiesl Elod'yl
-] localhost:2508: Test.
E|_| TopicSession: TestSession non- Marme | Walue |
B[] Publishers IMSDestination
[SampleT IMEDeliveryMode MON_PERSISTENT
B[] Subscriers IMShes sagelD D 0:0:F 1 41 30658
S SampleT! non-durable o[MSTimestamg Fri Mow 01 15:06:17 EST 2002
MSCorrelstionlD
IMEReplyTo
JMSRedelivered falze
IMSType
IMSEpiration 0
JMSPriarity 4
SISy

hessage Type: |Text Message
Delivery Mode: MNOM_PERSISTENT
Priority: 4

Llele

Time Ta Live (ms): |0

. I I _’I Send | Clear |

Aurea Software, Inc. Confidential 59 Copyright © 2013 Aurea, Inc.

Chapter 2: Using the JMS Test Client

e You can edit only the following items in the header list:
e JMSCorrelationID
e JMSReplyTo
e JMSType
e Inthe Summary section, you can specify:
o Message Type — Message, Text Message, Or XML Message

U Delivery Mode — DISCARDABLE, NON_PERSISTENT,
NON_PERSISTENT_REPLICATED, PERSISTENT

e Priority — Integer values 0 (the highest) through 9 (the lowest)

e Time To Live — In milliseconds, with 0 indicating no expiration

3. Select the Properties tab to define property values, as shown in Figure 17, including
the following SonicMQ-specific properties:

e JMS_SonicMQ_preserveUndelivered
e JMS_SonicMQ_notifyUndelivered

Figure 17: Message Properties

§2. JMS Test Client o)

File “iew Help

4 Message Brokers Header Properies | Eiodly |
[=1+[_1localhost: 2506: Test.

=) TopicSession: TestSession non-| Property Name: IMS_SonichQ_notifyUndeliverad LI
=[] Puklishers

Property Yalue: |true

L B =armpleT1

EJ Subscribers Property Type: |boolean - | Delete |

------- # SampleT1 non-curakle I

Matme | “alue | Type |
WS _SonichG_preservelndelivered hrue |Boolean
S _SonichG_notifyUndelivered hrue |Boolean |

Summary

Message Type: |Text Message

Delivery Mode: MOM_PERSISTENT

Ll

Priority: 4

Titne Ta Live (ma): |0

‘. I I _’I Send | Clear |

Aurea Software, Inc. Confidential 60 Copyright © 2013 Aurea, Inc.

Testing Publish and Subscribe Messaging

4. Select the Body tab to compose the body of the message, as shown in Figure 18.
Figure 18: Message Body
§2 JMS Test Client o]
File “iew Help
_| Message Brokers Headerl Properties Biody |
1]l localhost: 2506: Test. P—
E|_| TopicSession: TestSession non- This is a sample Text Message.
B[] Publishers
[SarmplaT1
=t _| Subscribers
Lo SamplaT1 non-durable o
—SUTIFEE Y
hessage Type: |Text Message I
Delivery Mode: MOM_PERSISTEMT I
Priority: 4 I
Time Ta Live (ms): |0
‘I I _’I Send | Clear |

5. Select Send to send your message.

For information on message attributes, parameters, and properties, see Chapter 6,
Messages on page 231

Aurea Software, Inc. Confidential 61 Copyright © 2013 Aurea, Inc.

Chapter 2: Using the JMS Test Client

Receiving Messages on Subscribed Topics

The following procedure describes how to receive messages on a topic.

Note: Before continuing with this section, make sure you have completed the procedures

in Creating Publishers and Subscribers to Topics on page 55 and Publishing
Messages on page 59.

To receive messages on a topic:

1.

Under the Subscribers node in the left panel, select the subscriber for the topic under
which you published your message (in this example, Samp1eT1).

The right panel displays the messages on this subscriber. In this example, one
message is displayed in the Subscribed Messages area.

Select the message displayed in the Subscribed Messages area. The Header,
Properties, and Body tabs in the lower right panel contain information for the
subscribed message, as shown in Figure 19.

Figure 19: Subscribed Message

f2 JMS Test Client [_ (O] =] |

Filz ‘“iew Help

_‘_l Message Brokers
Bl localhost 2506: Test.
(=[] TopicSession: TestSession nan-
[Publishers
-4 SampleT1
) Subscribers
Rl =:11pleT1 non-durable I

Subscribed Messages
rpleT1: D 0001:F1 416

Delete Acknowledge |
Header | Properties | Body |
Marne “alue |
IMEDestination SampleT1
IMSDeliveryMode MOM_PERSISTENT
IhShessanell ICrEic321 bS5 4030001 :F1 41 60C 420
IS Timestarmp Fri Mos 01 15::53:00 EST 2002
IS CarrelstionlD
[IMEReply To
[IMERedelivered falze
MSType
IMSExpiration Sat Mow 02 15:53:00 EST 2002
IMSPririty 4
K1 i
Note: By default, the number of viewable messages held in the Subscribed

Messages table is 50.

Aurea Software, Inc. Confidential

62

Copyright © 2013 Aurea, Inc.

Testing Publish and Subscribe Messaging

3. To delete one or more messages without explicitly acknowledging them, select the
messages and select Delete.

4. To acknowledge one or more messages, select the messages and select
Acknowledge.

An acknowledgment is sent back to the broker if the session was established in Client
Acknowledged mode.

Messages can also be automatically acknowledged, depending on how the session
was established.

Aurea Software, Inc. Confidential 63 Copyright © 2013 Aurea, Inc.

Chapter 2: Using the JMS Test Client

Aurea Software, Inc. Confidential 64 Copyright © 2013 Aurea, Inc.

Examining the SonicMQ JMS
Samples

This chapter explains how to run the sample applications included with SonicMQ. These
samples illustrate some of the messaging functionality of SonicMQ. This chapter includes
the following sections:

e About SonicMQ Samples on page 66

e Running the SonicMQ Samples on page 70

e Chat and Talk Samples on page 74

e MultiTopicChat Sample on page 76

e Samples of Additional Message Types on page 78

e Sample of Channels for Large Message Transfers on page 85
e Message Traffic Monitor Samples on page 87

e Transaction Samples on page 92

o Reliable, Persistent, and Durable Messaging Samples on page 95
e Request and Reply Samples on page 112

e Selection, Group, and Wild Card Samples on page 115

e Test Loop Sample on page 122

e Enhancing the Basic Samples on page 123

Aurea Software, Inc. Confidential 65 Copyright © 2013 Aurea, Inc.

Chapter 3: Examining the SonicMQ JMS Samples

About SonicMQ Samples

The samples provided with SonicMQ are introduced in the Getting Started with Aurea
SonicMQ manual. In this chapter, the functionality of the samples is explored in more detail
to illustrate some of the features of SonicMQ.

When you run the samples, the standard input and standard output displayed in the console
can represent data flows to and from a range of applications and Internet-enabled devices
such as:

e Application software for accounting, auditing, reservations, online ordering, credit
verification, medical records, and supply chains

e Information appliances such as beepers, cell phones, wireless devices, fax
machines, and Personal Digital Assistants (PDAS)

. Real-time devices with embedded controls such as monitor cameras, medical
delivery systems, climate control systems, and machinery

e Distributed knowledge bases such as collaborative designs, service histories,
medical histories, and workflow monitors

Note: The samples in this chapter assume that you are using the default SonicMQ setup,
which does not enable security. Exercises are provided at the end of the chapter
that detail how to reconfigure the persistent storage mechanism for security and
how to enter the user names and passwords into the broker’'s authentrication
domain that security will demand. Without security, user names in the samples are
arbitrary strings.

Important: Table 4 lists the characters that are not allowed in SonicMQ names.

The SonicMQ samples demonstrate the following basic features of SonicMQ:

e Chat and Talk Samples — The basic messaging functions are demonstrated by
producing and consuming messages using both messaging models (PTP and
Pub/Sub):

e Talk (PTP), Chat (Pub/Sub)

. MultiTopic Chat — This sample demonstrates how you can use MultiTopics to
publish messages to multiple topics in a single operation and subscribe to multiple
topics in a single subscription:

e MultiTopicChat (Pub/Sub)

e Transaction Samples — Transactions are shown in both domains in application
windows to show how the producers and consumers of the transacted messages see
the messages flow:

e TransactedTalk (PTP), TransactedChat (Pub/Sub)

Aurea Software, Inc. Confidential 66 Copyright © 2013 Aurea, Inc.

About SonicMQ Samples

e Additional Message Types — To simplify input, the preceding examples are Text
messages. The following samples display other common message types in the
messaging domains:

e MapMessages — MapTalk (PTP)
e XMLMessages — Alternative parsers are used in both domains:
e DOM2 — XMLDOMTalk (PTP), XMLDOMChat (Pub/Sub)
e SAX — XMLSAXTalk (PTP), XMLSAXChat (Pub/Sub)
e Using Channels for Large Messages — FileSender, FileReceiver (PTP)
e Decomposing MultiPart Messages — Multipart (PTP)

e Message Traffic Monitors — These samples provide views of message traffic in
ways that are characteristic of their messaging domain:

e Messages on the Queue — QueueMonitor (PTP)
e Messages to Subscribers — MessageMoniitor (Pub/Sub)

e Reliable, Persistent, and Durable Messaging — These samples demonstrate
techniques that can enhance the Quality of Service. Reliable connections show how
to keep connections active in both domains. Persistent storage shows how the
broker's PTP safety net, the Dead Message Queue, can trap undelivered messages.
Durable subscription shows how a Pub/Sub subscriber can have messages held for
them.

The samples in this category are:

e Reliable Connection — ReliableTalk (PTP), ReliableChat (Pub/Sub)
e Persistent Storage — DeadMessages (PTP)
e Durable Subscription — DurableChat (Pub/Sub)
e Persistence on the Client:
e ContinuousSender, MessageReceiver (PTP)
e ContinuousPublisher, MessageSubscriber (Pub/Sub)

e Request and Reply — These transacted examples show the mechanisms for the
producer requesting a reply and the consumer fulfilling that request:

e Originator’'s Request — Requestor (PTP, Pub/Sub)

e Receiver's Response — Replier (PTP, Pub/Sub)

Aurea Software, Inc. Confidential 67 Copyright © 2013 Aurea, Inc.

Chapter 3: Examining the SonicMQ JMS Samples

e Selection, Grouping, and Wild Cards — The message selector samples use SQL
syntax to let the receiver qualify the messages that are visible to an application while
the HierarchicalChat sample uses template characters to subscribe to a set of topics
that is qualified when messages are published. Message grouping provides the queue
sender and the queue settings to direct assignment of receivers by group identifiers:

. Message Selection — SelectorTalk (PTP), SelectorChat (Pub/Sub)
e Message Grouping — MessageGroupTalk (PTP)
e Wild Cards — HierarchicalChat (Pub/Sub)

e Test Loop — This sample shows how quickly messages can be sent and received in
a test loop:

e Queue Test Loop — QueueRoundTrip (PTP)

Other Samples Available

There are other SonicMQ samples available. As each requires a special setup to explore
them, these samples are described in other chapters of this book, or in other SonicMQ
documents:

e Distributed Transactions — The XA resources in SonicMQ provide the functionality
to explore global transactions in a standalone sample. To see how to run these
samples, see Chapter 14, Distributed Transactions Using XA ResourcSes on page
423

e Dynamic Routing Queues — When routing queues are established across brokers,
messages are dynamic. The GlobalTalk (PTP) sample demonstrates dynamic routing
gueues in an appropriate setup. See the chapter “Multiple Nodes and Dynamic
Routing” in the Aurea SonicMQ Deployment Guide for information about this sample.

e SonicStreams APl — Using a special-purpose API, streams of indeterminate length
can be transferred through a SonicMQ broker to multiple subscribers.

e HTTP Direct — These samples demonstrate ways to translate HTTP and HTTPS
documents to JMS messages (inbound) and JMS messages to HTTP documents
(outbound). The samples in this category are:

e Basic Inbound

e Basic Outbound

e Basic Polling Receive

e HTTP Direct for SOAP

e HTTP Direct for IMS

e HTTPS Authentication Samples

See the Aurea SonicMQ Deployment Guide for information about the HTTP Direct
samples.

e JNDI SPI— Samples are provided to describe programming using the Sonic service
provider implementation (SPI) for the Java Naming and Directory Interface (JNDI) See
Appendix A, on page 443 for information.

Aurea Software, Inc. Confidential 68 Copyright © 2013 Aurea, Inc.

About SonicMQ Samples

e Management Runtime and Configuration APIs — Samples are provided to
demonstrate the use of the SonicMQ Runtime and Configuration APIs. See the Aurea
SonicMQ Administrative Programming Guide for information.

e Replicated (High Availability) Brokers — See the Aurea SonicMQ Deployment
Guide for an example of how you can set up brokers as a primary/backup pair. When
the brokers are running and replicating, you can stop the active broker, causing the
standby broker to fail over. You can run the fault tolerant example—see Modifying the
Chat Example for Fault-Tolerance on page 195—to see the client application
seamlessly continue its session on the broker that becomes active.

e Secure Socket Layer (SSL) — SSL samples show how to reconfigure the broker for
SSL security, how to run client-side applications that connect through SSL, and how
to use certificates. See Part Il of the Aurea SonicMQ Deployment Guide for complete
SSL implementations you can explore; these implementations use the JSSE security
software and credential samples installed with SonicMQ.

e Security Enabled Dynamic Routing — See the Aurea SonicMQ Deployment Guide
for an example of how you can set up multiple brokers and security to realize secure
dynamic routing across nodes.

Extending the Samples

After reviewing the sample applications, you can explore some variations:

e Change the source files — You can edit the source files, compile the changed file,
and then run the applications again to observe the effect. Some ideas are presented
as the following exercises:

e Using a common destination for two different samples
e Observing how different messaging behaviors affect round-trip times
e Modifying the MapMessage to use other data types

e Modifying the XMLMessage to show more data

How Security Impacts Client Activities

Security provides the high quality of protection and access by applications that is expected
in enterprise applications. The section Quality of Service and Protection on page 36
provides an overview of the features and functions of security. But unless the broker
chooses to enable security and the broker’s persistent storage mechanism is initialized for
security, security is not enabled.

Aurea Software, Inc. Confidential 69 Copyright © 2013 Aurea, Inc.

Chapter 3: Examining the SonicMQ JMS Samples

The samples in this chapter do not use security so that you can begin exploring the
messaging features without first having to set up security objects for:

e User authentication — When security is activated, only defined usernames are
allowed to connect to the broker.

e User authorizations — The administrator can control a user’s ability to perform
actions such as subscribing to a topic and reading from queues.

See the Aurea SonicMQ Deployment Guide for information about what you need to do to
implement a SonicMQ sample in a secure environment.

Running the SonicMQ Samples

The following sections explain the tasks required to start SonicMQ to work with the sample
applications:

e Starting the SonicMQ Container and Management Console on page 70
e Opening Client Console Windows on page 73

e Using the Sample Scripts on page 73

Starting the SonicMQ Container and
Management Console

Be sure the SonicMQ container is running before executing any of the SonicMQ client
samples. The following procedures explain how to start the SonicMQ Domain Manager’s
container and the Sonic Management Console. For more detailed information on working
with the Management Console, see the Aurea SonicMQ Configuration and Management
Guide.

Note: If this is the first time you are running SonicMQ, you should not have to adjust the
broker's settings. See the Aurea Sonic Installation and Upgrade Guide for more
information.

Aurea Software, Inc. Confidential 70 Copyright © 2013 Aurea, Inc.

Running the SonicMQ Samples

To start the broker process from the Windows Start menu:

1.

Select Start > Programs > Aurea > Sonic 2013 > Start DomainManager.
SonicMQ starts the container that hosts the broker and then starts the broker.
Select Start > Programs > Aurea > Sonic 2013 > Sonic Management Console.
SonicMQ opens the Create Connection dialog box, as shown in Figure 20.

Figure 20: Create Connection

Create Connection

General I Advanced I

*Conhection Matne: IConnec{iom

*Domain Mame: IDomain1

*Connection LIRL: Itcp:.f.flocalhost:2508

Uszer Marme: I

Pazsward: I

IV Set as default connection

OK I Cahcel |

If you did not enable security when you installed, you can accept the defaults in the
General tab in the Create Connection dialog box.

If you enabled security when you installed SonicMQ, enter your password.

See the Aurea SonicMQ Configuration and Management Guide for information about
setting parameters under the Advanced tab. For these samples, you do not have to
set any advanced parameters.

Click OK.

A Connecting... dialog box and the status bar indicate that the Sonic Management
Console is connecting to the broker.

The Sonic Management Console opens to the Configure view, as shown in Figure 21.

Aurea Software, Inc. Confidential 71 Copyright © 2013 Aurea, Inc.

Chapter 3: Examining the SonicMQ JMS Samples

Figure 21: Sonic Management Console Window

TE[Sonic Management Console =l
Action Edit Wiew Tools ‘Window Help

GilE XBEX BEco B ed

alhost:2506)

[Manage I
E Configured Objects
(-] Brokers

.| Containers

|| Framewatk Components
] Security

8 svscem Progress -
Sonic

Ready

See the Aurea SonicMQ Configuration and Management Guide for information about
configuration and management using the Management Console.

To start the SonicMQ container and broker from a Linux or UNIX console window:

e Inanew console window set to
install dir/Containers/Domainl.DomainManager, type
Taunchcontainer.sh and press ENTER.

The broker starts. The console window is dedicated to the process and, when running,
displays:

SonicMQ Broker started, now accepting tcp connections on port
2506...

Important: You can minimize the console window. Closing the window, however, stops
the broker.

The samples default to Tocalhost:2506—a broker using port 2506 on the same system,
Tocalhost. If you use a different host or port, you need to specify the host:port parameter
when you start each sample. For example:

..\..\SonicMQ Chat -u Userl-b hostname:2345
To open the Sonic Management Console from a Linux or UNIX console window:

e Inanew console window set to the SonicMQ install directory, type bin/startmc.sh
and press ENTER. The Sonic Management Console opens.

Aurea Software, Inc. Confidential 72 Copyright © 2013 Aurea, Inc.

Running the SonicMQ Samples

Opening Client Console Windows

Each application instance is intended to run in its own console window with the current path
in the selected sample directory. There are conventions that you must follow depending on
the platform:

e Windows — The scripts defer to Windows conventions.

e Linux and UNIX platforms — Instead of using .bat files, use the . sh file at the same
location. Substitute forward slash (/) wherever back slash (\) is used as a path
delimiter. Any sourcing is handled in the shell scripts.

Note: Consider all text to be case-sensitive. While there might be some platforms and
names where case is not distinguished, it is good practice to always use case
consistently.

Using the Sample Scripts

A universal script handler is installed at the Samples directory level. This script,
SonicMQ.bat (.sh under Linux and UNIX), does the following:

e Points to the Java executable used by SonicMQ

e Sets the CLASSPATH for the SonicMQ . jar files as required

e Invokes the executable, its parameters, and a list of variables

The script is suitable for the basic samples provided, but you might have to adjust it if you

use long parameter lists. Standard invocation of the script from a sample folder is two levels
down.

Important: When you modify the original sample files, you can use the techniques
described above to set up a universal compiler script. Replicate and modify
SonicMQ.bat (.sh under Linux and UNIX) to something like
SonicMQ_javac.bat (.sh under Linux and UNIX) and then confirm that
javac.exe (or the path to your preferred compiler) is in the script.

Using the SonicMQ Samples in a Sonic Workbench
Installlation

The default setting for security on the management broker in a Sonic Workbench install is
to enable security. That means that usernames in the samples intended to provide
information to keep track of multiple application instances must be valid users. As the only
default user is Administrator (with the password Administrator), you must either define
the other users, or use the default user Administrator and the password (-p) parameter
and the user’s password on every command line. For example:

..\..\SonicMQ Chat -u Administrator -p Administrator

Aurea Software, Inc. Confidential 73 Copyright © 2013 Aurea, Inc.

Chapter 3: Examining the SonicMQ JMS Samples

Using the SonicMQ Samples with a non-default
Broker

If you want to use a broker on a remote system or different port for the samples, you have
to specify it in the command line. The samples default to Tocalhost:2506—a broker using
port 2506 on the local system. If you use a different host or port, specify the broker
parameter (-b) when you start each sample. For example:

..\..\SonicMQ Chat -u Market Maker -b Eagle:2345

In summary, if you were on a Linux system where a Sonic Workbench is installed, and you
want to connect to another system’s messaging broker, you might enter:

../../SonicMQ.sh Chat -u Administrator -p Administrator -b
Eagle:2345

Chat and Talk Samples

The fundamental differences between Pub/Sub and PTP messaging are demonstrated in
the Chat and Talk samples.

Chat Application (Pub/Sub)

In the Chat application, whenever anyone sends a text message to a given topic, all active
applications running Chat receive that message as subscribers to that topic. This is the
most basic form of publish and subscribe activity.

To start Chat sessions:
1. Open a console window to the TopicPubSub\Chat folder, then enter:
..\..\SonicMQ Chat -u Chatterl

This command starts a Chat session for the user Chatterl.

2. Open another console window to the TopicPubSub\Chat folder, then enter:
.-\..\SonicMQ Chat -u Chatter2
This command starts a Chat session for the user Chatter2.

To Chat:

1. Inone of the Chat windows, type any text and then press ENTER. The text is displayed
in both Chat windows, preceded by the name of the user that initiated that text.

2. Inthe other Chat window, type text and then press ENTER. The text is displayed in both
Chat windows preceded by that username.

Aurea Software, Inc. Confidential 74 Copyright © 2013 Aurea, Inc.

Chat and Talk Samples

The Chat sample shows inter-application asynchronous communications. If subscribers
miss some of the messages, they just pick up the latest messages whenever they
reconnect to the broker. Nothing is retained and nothing is guaranteed to be delivered, so
throughput is fast.

Talk Application (PTP)

In the Talk application, whenever a text message is sent to a given queue, all active Talk
applications are waiting to receive messages on that queue, taking turns as the sole
receiver of the message at the front of the queue.

To start Talk sessions:

The first Talk session receives on the first queue and sends to the second queue while the
other Talk session does the opposite.

1. Open a console window to the QueuePTP\Talk folder, then enter:
..\..\SonicMQ Talk -u Talkerl -qr SampleQl -gs SampleQ2
This command starts a Chat session for the user Talkerl.

2. Open another console window to the QueuePTP\Talk folder, then enter:

..\..\SonicMQ Talk -u Talker2 -qr SampleQ2 -gs SampleQl

This command starts a Chat session for the user Talker2.
To Talk:

1. Inthe Talker2 window, type any text and then press ENTER.

The text is displayed in only the Talker1 window, preceded by the name of the user
who sent the message.

2. Inthe Talkerl window, type text and then press ENTER.

The text is displayed in only the Talker2 window, preceded by the username of the
sender.

Aurea Software, Inc. Confidential 75 Copyright © 2013 Aurea, Inc.

Chapter 3: Examining the SonicMQ JMS Samples

Reviewing the Chat and Talk Samples

You can continue exploring these samples by opening several windows:

e Chat — If you run several Chat windows, every window will display the message,
including the publisher. You can modify the source code to suppress delivery of a Chat
message to its publisher. That Pub/Sub broadcast characteristic can be stopped with
a noLocal parameter on the createSubscriber method. In this case, every subscriber
receives everyone else’s messages but not their own.

e Talk — If you run several Talk windows, you will still see only one receiver for any
message. Under Talk (PTP), there is only one receiver. Start two more Talker
windows (Talker3 and Talker4) then use the Talkerl window to send 1 through 9,
each as a message. For example, enter the following:

1 Enter, 2 Enter, ..., 9 Enter

Notice how the receivers take turns receiving the messages.

MultiTopicChat Sample

This sample demonstrates how an application can publish to multiple topics in a single
operation using a MultiTopic. It also demonstrates how an application can subscribe to
many topics in a single operation by using MultiTopic.

Setting Up MultiTopic Sessions

Before you can run the MultiTopicChat sample, you must start sessions as described
below.

To start MultiTopic sessions for publishing:
1. Open a console window to the TopicPubSub\MultiTopicChat folder, then enter:

..\..\SonicMQ MultiTopicChat -u SALES

This command starts a MultiTopic session for the user SALES. This user subscribes
to the jms.samples.chat.SALES topic.

2. Open a console window to the TopicPubSub\MultiTopicChat folder, then enter:

..\..\SonicMQ MultiTopicChat -u MARKETING

This command starts a MultiTopic session for the user MARKETING. This user
subscribes to the jms.samples.chat.MARKETING topic.

3. Open a console window to the TopicPubSub\MultiTopicChat folder, then enter:

..\..\SonicMQ MultiTopicChat -u SUPPORT

This command starts a Mul tiTop1ic session for the user SUPPORT. This user subscribes
to the jms.samples.chat.SUPPORT topic.

Aurea Software, Inc. Confidential 76 Copyright © 2013 Aurea, Inc.

MultiTopicChat Sample

To start a MultiTopic session for subscribing:
Open a console window to the TopicPubSub\MultiTopicChat folder, then enter:

..\..\SonicMQ MultiTopicChat -u AUDIT -1 MARKETING,SUPPORT

This command starts a MultiTopic session for the user AUDIT. This user subscribes
to the MARKETING and SUPPORT topics.

Note: Using wildcards in the subscriber’s list parameter — You can use the template
characters pound (#) and asterisk (*) for subscriptions, for example, -1 #.

When using the list parameter (-1) with an asterisk, your shell might require you to
enclose the asterisk in quotes; -1 "*".

Demonstrating MultiTopic Publish and
Subscribe

This section describes how to use the MultiTopic sessions for publishing and subscribing.
To demonstrate MultiTopic publishing:

1. Choose a publishing session (SALES, MARKETING, or SUPPORT) and enter some
text (for example, He11o) on the command line, then press ENTER.

2. Inthe session you chose in step 1, enter a comma-separated list of the user names to
which you want to send the message. For example, from the SALES session, enter:

MARKETING, SUPPORT

This causes the SALES session to publish the message to a MultiTopic consisting of
the jms.samples.chat.MARKETING and jms.samples.chat.SUPPORT topics. The
MARKETING and SUPPORT sessions receive the message on the topic subscribed.

To demonstrate MultiTopic subscribing:
1. Inthe SUPPORT session:
a. Enter some text on the command line, then press ENTER.
b. Enter the name of the user to send the message:
SALES
Notice that the AUDIT session does not receive the message.
c. Enter some text on the command line, then press ENTER.

d. Enter:

SUPPORT , MARKETING, SALES

Notice that the AUDIT session receives one copy of the message.

Aurea Software, Inc. Confidential 77 Copyright © 2013 Aurea, Inc.

Chapter 3: Examining the SonicMQ JMS Samples

To demonstrate split delivery of MultiTopic messages:

1. Inthe AUDIT session window, press CTRL+C to stop the application.

2. Add the -s parameter to the command, and then restart the AUDIT session:
..\..\SonicMQ MultiTopicChat -u AUDIT -1 MARKETING, SUPPORT -s
This command starts a split delivery MultiTopic session for the user AUDIT.

3. Enter some text on the command line, then press ENTER.

4. Enter:

SUPPORT, MARKETING

Notice that the AUDIT session receives two copies of the message, one for each topic
in the MultiTopic list.

Samples of Additional Message Types

Most of the SonicMQ samples use the TextMessage type because they accept user input
in the console windows. Additional message type samples demonstrate how Map messages
and XML messages are handled.

Map Messages (PTP)

The Map message type transfers a collection of assigned names and their respective
values. The names and values are assigned by set() methods for the Java primitive data
type of the value. The MapMessage name-value pairs are sent in the message body. For
example:

mapMessage.setInt ("FiscalYearEnd", 10)
mapMessage.setString ("Distribution”, "global")
mapMessage.setBoolean ("LineOfCredit", true)

You can extract the data from the received message in any order. Use a get() method to
cast a data value into an acceptable data type. For example:

mapMessage.getShort ("FiscalYearEnd")
mapMessage.getString ("Distribution")
mapMessage.getString ("LineOfCredit")

Aurea Software, Inc. Confidential 78 Copyright © 2013 Aurea, Inc.

Samples of Additional Message Types

To start MapTalk sessions:

This example starts two MapTalk sessions, one for an accounting group and one for an
auditing group. The first MapTalk session receives on the first queue and sends to the
second queue, while the other session does the opposite.

1. Open a console window to the QueuePTP\MapTalk folder, then enter:
..\..\SonicMQ MapTalk -u QAccounting -gr SampleQl -gs SampleQ2
This command starts a MapTalk session for the user QAccounting.

2. Open another console window to the QueuePTP\MapTalk folder then enter:
.\ \SonicMQ MapTalk -u QAuditing -gr SampleQ2 -gs SampleQ1
This command starts a MapTalk session for the user QAuditing.

To send and receive MapMessages:

1. Inthe QAccounting window, type text then press ENTER.

The message sender packages two items: the username as the String sender and the text
input as the String content, as shown in the following source code of the sample
MapTalk. java:

javax.jms.MapMessage msg = sendSession.createMapMessage() ;
msg.setString ("sender", username) ;
msg.setString ("content", s);

The message receiver casts the message as a MapMessage. If that casting is unsuccessful,
MapTalk reports that an invalid message arrived. The MapMessage is decomposed and
displayed as shown in the following source code of the sample MapTalk. java:

String sender = mapMessage.getString("sender") ;
String content = mapMessage.getString("content") ;
System.out.printin(sender + ": " + content) ;

XML Messages

XML data definitions with tagged text are useful for communicating structured sets of
defined data records or transacted message sets over the Internet. The XML parser
included with SonicMQ, the Apache Xerces XML Parser, interprets the data using
Document Object Model (DOM) Element nodes. The message receiver window echoes its
translation of the XML-tagged code derived from your text entry. For example, if you (as the
sender Catalog_Update) enter Item One, the XML-tagged code is packaged as shown in
XMLDOMChat.java: XML-Tagged Code on page 80, an excerpt of the sample file
XMLDOMChat. java.

Aurea Software, Inc. Confidential 79 Copyright © 2013 Aurea, Inc.

Chapter 3: Examining the SonicMQ JMS Samples

XMLDOMChat.java: XML-Tagged Code
{

progress.message.jclient.XMLMessage xMsg =
((progress.message.jclient.Session) pubSession).createXMLMessage();
StringBuffer msg = new StringBuffer();
msg.append ("<?xml version=\"1.0\"?>\n");
msg.append ("<message>\n");
msg.append (" <sender>" + username + "</sender>\n");
msg.append (" <content>" + content +s + "</content>\n");
msg.append ("</message>\n");
xMsg.setText(msg.toString();
publisher.send(xMsg);

The tagged message text is well-formed XML, as shown:

<?xml version="1.0"7>

<message>

<sender>sender</sender>
<content>message_content</content>
</message>

In the DOM samples, when the message is received, the embedded DOM2 XML parser is
invoked. The message is interpreted to display the DOM nodes, as shown:

[XML, from 'DOMSend'] Hello
ELEMENT: message
| - -NEWLINE
+--ELEMENT: sender
| --TEXT NODE: DOMSend
| - -NEWLINE
+--ELEMENT: content
| --TEXT NODE: Hello
| --NEWLINEXML DOM2 Messages (PTP)

In the SAX samples, when the message is received, the embedded SAX XML parser is
invoked. The message is interpreted to display the message in XML format, as shown:

<?xml version="1.0"?>
<message>
<sender>SAXSend</sender>
<content>Bonjour</content>
</message>

Aurea Software, Inc. Confidential 80 Copyright © 2013 Aurea, Inc.

Samples of Additional Message Types

XMLDOMTalk (PTP)

In this example, the first XMLDOMTalk session sends on the first queue and receives to the
second queue while the other session does the opposite.

To start PTP XMLDOMTalk sessions:

1. Open a console window to the QueuePTP\XMLDOMTalk folder, then enter:

..\..\SonicMQ XMLDOMTalk -u DOMSend -gr SampleQ2 -gs SampleQl
This command starts a XMLDOMTa1lk session for the user DOMSend.

2. Open another console window to the QueuePTP\XMLDOMTalk folder, then enter:

..\..\SonicMQ XMLDOMTalk -u DOMRecv -gr SampleQl -gs SampleQ2

This command starts a XMLDOMTa1lk session for the user DOMRecv.
To send and receive PTP DOM2 XMLMessages:

1. Inthe DOMSend window, type text such as Hello and then press ENTER.
The message appears in the DOMRecv window formatted in DOM2 nodes, as shown:

[XML from 'DOMSend'] Hello
ELEMENT: message

| - -NEWLINE

+--ELEMENT: sender

| --TEXT NODE: DOMSend
| - -NEWLINE
+--ELEMENT: content

| --TEXT NODE: Hello
| - -NEWLINE

XMLSAXTalk (PTP)

In this example, the first XMLSAXTalk session sends on the first queue and receives to the
second queue while the other session does the opposite.

To start PTP XMLSAXTalk sessions:
1. Open a console window to the QueuePTP\XMLSAXTalk folder, then enter:
..\..\SonicMQ XMLSAXTalk -u SAXSend -qr SampleQ2 -gs SampleQl

This command starts a XMLSAXTalk session for the user SAXSend.

2. Open another console window to the QueuePTP\XMLSAXTalk folder, then enter:

..\..\SonicMQ XMLSAXTalk -u SAXRecv -gr SampleQl -gs SampleQ2

This command starts a XMLSAXTalk session for the user SAXRecv.

Aurea Software, Inc. Confidential 81 Copyright © 2013 Aurea, Inc.

Chapter 3: Examining the SonicMQ JMS Samples

To send and receive PTP SAX XMLMessages:

1.

In the SAXSend window, type text such as Bonjour and then press ENTER.
The message appears in the SAXRecv window in XML format, as shown:
<?xml version="1.0"7?>
<message>

<sender>SAXSend</senders>

<content>Bonjour</content>

</message>

XMLDOMChat (Pub/Sub)

In this example, the XMLDOMChat sessions publish and subscribe on the topic
jms.samples.chat.

To start PTP XMLDOMChat sessions:

1.

Open a console window to the TopicPubSub\XMLDOMChat folder, then enter:

..\..\SonicMQ XMLDOMChat -u DOMPub
This command starts a XMLDOMChat session for the user DOMPub.

Open another console window to the TopicPubSub\XMLDOMChat folder, then enter:

..\..\SonicMQ XMLDOMChat -u DOMSub

This command starts a XMLDOMChat session for the user DOMSub.

To send and receive Pub/Sub DOM XMLMessages:

1.

In the DOMPub window, type text such as Bonjour and then press ENTER.
The message appears in the DOMSub window formatted in DOM2 nodes, as shown:
[XML, from 'DOMPub'] Bonjour
ELEMENT: message
| - -NEWLINE
+--ELEMENT: sender
| --TEXT NODE: DOMPub
| - -NEWLINE
+--ELEMENT: content
| --TEXT NODE: Bonjour

| - -NEWLINE

Aurea Software, Inc. Confidential 82 Copyright © 2013 Aurea, Inc.

Samples of Additional Message Types

XMLSAXChat (Pub/Sub)

In this example, the XMLSAXChat sessions publish and subscribe on the topic
jms.samples.chat.

To start PTP XMLSAXChat sessions:

1. Open a console window to the TopicPubSub\XMLSAXChat folder, then enter:

..\..\SonicMQ XMLSAXChat -u SAXPub
This command starts a XMLSAXChat session for the user SAXPub.

2. Open another console window to the TopicPubSub\XMLSAXChat folder, then enter:

..\..\SonicMQ XMLSAXChat -u SAXSub
This command starts a XMLSAXChat session for the user SAXSub.
To send and receive Pub/Sub SAX XMLMessages:
e In the SAXPub window, type text such as Hello and then press ENTER.
The message appears in the SAXSub window formatted in SAX format, as shown:
<?xml version="1.0"?>
<message>
<sender>SAXPub</sender>
<content>Hello</contents>

</message>

Decomposing Multipart Messages

Multipart messages are familiar files in mail applications—pictures, documents, text, and
executable files all packaged as attachments to a mail message. Multipart messages are
also used in Business-to-business applications that use of the Simplified Object Access
Protocol (SOAP) 1.1 with Attachments.

This sample composes a four-part message using JMS message types and data handlers.
The sample assigns each component to a message part then sends the message with its
list of parts. The receiver reverses the process to isolate each message part.

Aurea Software, Inc. Confidential 83 Copyright © 2013 Aurea, Inc.

Chapter 3: Examining the SonicMQ JMS Samples

To run the Multipart message sample:

Open a console window to the QueuePTP\MultipartMessage\XMLSAXChat
folder, then enter:

..\..\SonicMQ Multipart -u aUser
This command starts a Multipart session for the user aUser.

The sample demonstrates creating and assembling the parts of a message into a
single multipart message, as shown in the following output to the console window:

sending partl..a TextMessage
sending part2..some bytes
sending part3..a simple text string

sending part4..a Readme file

The multipart message is sent as an instance of MultipartMessage. The receiver of the
message discovers that the message is multipart, how many parts it contains, and goes
through a process of disassembling the parts, as shown in the following output to the
console window:

received MutipartMessage....

*xk**kx* Beginning of MultipartMessage ******
Extend type property = x-sonicmg-multipart
partCount of this MultipartMessage = 4
———————— Beginning of part 1

Part.contentType = application/x-sonicmg-textmessage
Part.contentId = CONTENTID1

content in TextMessage... this is a JMS TextMessage
———————— end of part 1

———————— Beginning of part 2

Part.contentType = myBytes
Part.contentId = CONTENTID2

...size : 38

...content

This string is sending as a byte array
———————— end of part 2

———————— Beginning of part 2

Part.contentType = myBytes
Part.contentId = CONTENTID2

...size : 38

...content

This string is sending as a byte array
———————— end of part 2

———————— Beginning of part 3

Part.contentType = text/plain
Part.contentId = CONTENTID3

...size : 37

...content

a simple text string to put in part 3
———————— end of part 3

Aurea Software, Inc. Confidential 84 Copyright © 2013 Aurea, Inc.

Sample of Channels for Large Message Transfers

When a part is complete, the receiving application can act on that part. The message parts
should be handled in a transactional way so that the messages parts can be rolled back if
the process fails before it completes all its parts.

Reviewing the Additional Message Type
Samples

The samples demonstrated in this section show:

e The message type characteristics are identical in PTP and Pub/Sub.
e These messages are limited to capturing a single chunk of text in the console window.

e These messages use the instanceof operator to identify and cast the message into
an XMLMessage Or a MapMessage.

You can modify the source code of these samples to:

e Create a table of XML data that forms an XMLMessage.

e Set some map values to Java primitives in the MapMessage and then get the map
values, coercing them into acceptable data types.

See the exercises in Enhancing the Basic Samples on page 123 that describe these
changes. See also Message Type on page 232.

Sample of Channels for Large Message Transfers

Note: This sample requires a SonicMQ installation includes the ClientPlus libraries for
the SonicMQ client.

SonicMQ with the ClientPlus option provides large message support by allowing a JIMS
message to be associated with an instance of a recoverable channel. The file that will be
transferred will move through the recoverable channel dedicated to the sender. Internally,
the file is sent in fragments. Fragment loss or duplication due to failure is handled internally.

To transfer a large message:

1. Identify a file that you want to transfer and note its absolute path.

For example, you can transfer the .pdf file for this book, located at:
MQ2013_install_root\docs\program.pdf

2. ldentify or create a folder where a transferred file will be placed.

For example, ¢ : \ Inbound.

Aurea Software, Inc. Confidential 85 Copyright © 2013 Aurea, Inc.

Chapter 3: Examining the SonicMQ JMS Samples

3. Open a console window to the ClientPlus\LargeMessageSupport folder then
enter the following command as a single line:

..\..\SonicMQ FileReceiver -u aReceiver -p passwordRecv -qr
SampleQl

-d c:\Inbound

A folder is created with the name aReceiver in the
ClientPlus\LargeMessageSupport folder. This folder records the receiver
status information about the channel and the inbound files that will be reconstructed
in the directory c:\Inbound.

Important: The FileReceiver starts before the FileSender because the receiver
blocks indefinitely while the FileSender times out after 30 seconds then
close its connection and exits. You can restart FileSender to complete
the sample

4. Open another window to the ClientPlus\LargeMessageSupport folder then
enter the following command as a single line:

..\..\SonicMQ FileSender -u aSender -p passwordSend -gs SampleQl
-f MQ2013 install root\docs\program.pdf

A folder is created with the name aSender to record the file location and the
recoverable channel data for the receiver of the message on Samp1eQLl.

The aurea of the message transfer is displayed in the FileSender console window
shown:

MQ2013_install root\samples\ClientPlus\LargeMessageSupport>
..\..\SonicMQ FileSender -u aSender -p passwordSend -gs SampleQl
-f MQ2013 install root\docs\program.pdf

Session is created

Try to send header message and establish channel to send file -
MQ2013 install root\docs\program.pdf

13021815223128Brokerl channel established!
File size to send - 2345468

.10%....20%....30%....40%....50%....60%....70%....80%....90

o°
=
o
o
o\

Transfer is complete!

Close connection and exit

Aurea Software, Inc. Confidential 86 Copyright © 2013 Aurea, Inc.

Message Traffic Monitor Samples

When the message transfer is complete, the source file remains intact and the
received file resides in the target directory. The aSender and aReceiver Channel
folders are empty.

If the transfer failed in aurea—either the sender or the receiver—the recoverable file
channel info is accessible to both the sender and the receiver applications when they
re-establish the channel through the broker.

Reviewing the Large Message Transfer Sample

The large message transfer sample shows:

e File transfer is, like FTP, a static physical file identified on one system replicated in a
specified location on another system.

e File transfers can be interrupted and contain the logic and records to resume an
interrupted transfer.

e The message that identifies the impending transfer is not needed for recovery.
Recovery is defined in logs and resumes by assessing unfinished channels and
continuing that defined transfer.

Message Traffic Monitor Samples

These samples each open GUI windows that provide a scrolling array of its contents. The
nature of the two monitors underscores fundamental differences between the Publish and
Subscribe messaging model and the Point-to-point messaging model. Table 3 shows these
differences.

Table 3: Differences Between QueueMonitor and MessageMonitor

QueueMonitor

MessageMonitor

What messages
are displayed?

Undelivered.

Delivered.

When does the
display update?

When you click the
Browse Queues button,
the list is refreshed.

When a message is
published to a subscribed
topic, it is added to the
displayed list.

Aurea Software, Inc. Confidential

87

Copyright © 2013 Aurea, Inc.

Chapter 3: Examining the SonicMQ JMS Samples

Table 3: Differences Between QueueMonitor and MessageMonitor
QueueMonitor MessageMonitor
When does the When the message is When the display is
message go delivered (or when it cleared for any reason.
away? expires).
What happens Listed messages marked | As messages are listed at
when the broker | PERSISTENT are stored | the moment they are
and monitor are in the broker persistent delivered, there are no
restarted? storage mechanism. They | messages in the
are redisplayed when the | MessageMonitor until new
broker and the deliveries occur.
QueueMonitor restart and
then choose to browse
queues.

QueueMonitor Application (PTP)

The QueueMonitor moves through a queue, listing the active messages it finds as it
examines the queue.

To start QueueMonitor:

1. Open a console window to the QueuePTP\QueueMonitor folder.
2. Type ..\..\SonicMQ QueueMonitor and press ENTER.
The Queue Monitor browser window opens.

To start a Talk session without a receiver:

1. Open aconsole window to the QueuePTP\Talk folder.
2. Type ..\..\SonicMQ Talk -u Talkl -gs SampleQl and press ENTER.

The Talk session Talkl, having no receiver, is started in the Talk console window.

Aurea Software, Inc. Confidential 88 Copyright © 2013 Aurea, Inc.

Message Traffic Monitor Samples

To enqueue messages and then browse the queue:

1. Inthe Talk window, type some text and then press ENTER.
Repeat a few times.

2. Inthe Queue Monitor window, click Browse Queues to scan the queues and display
their contents.

The Queue Monitor appears similar to the window shown in Figure 22.

Figure 22: Queue Monitor Window

Eg_{i Queue Monitor _ O]

Browsing queue "SampleG1”

liavaxjms. TexMessage]
UMICEF: 19881021 RFF 17789 medical supplies hitp v unicef orgifp1 7789

iavaxjms. TextMessage]
FOODBAME: 188331018 RFP 113232 rice, 100 Ib bagged, container with 100units FOB Mali

lavaxjms. TextMessage]
FOODBAME: 18981023 RFP 132245 trail mixwith dates and almonds, 3 pounds

lavax jms . TextMessage]
FOODBAME: 18981024 RFP 144665 Vegemite sandwiches 10000 units

Browse Cueues

To receive the queued messages:

The messages that are waiting on the queue will get delivered to the next receiver who
chooses to receive from that queue.

Warning: If you do not perform this procedure the stored messages will be received in the
next application that receives on that queue.

1. Inthe Talk console window, press CTRL+C.
The application stops.

2. Type ..\..\SonicMQ Talk -u FlushQl -gr SampleQl and press ENTER.
The enqueued messages are delivered to the queue receiver.

To stop the sample:

1. Inthe console windows, press CTRL+C. The application stops.

2. Inthe Queue Monitor window, click the close button.

Aurea Software, Inc. Confidential 89 Copyright © 2013 Aurea, Inc.

Chapter 3: Examining the SonicMQ JMS Samples

MessageMonitor Application (Pub/Sub)

The MessageMoniitor sample application provides an example of a supervisory application
with a graphical interface. By subscribing to all topics in the topic hierarchy, the application
listens for any message activity then displays each message in its window.

To start MessageMonitor:

1. Open aconsole window to the TopicPubSub\MessageMonitor folder, then enter:
..\..\SonicMQ MessageMonitor

The MessageMonitor Java window opens.
To run a Chat session to send messages to the MessageMonitor

1. Open aconsole window to the TopicPubSub\Chat folder, then enter:

..\..\SonicMQ Chat -u Chatter
This command starts a Chat session for the user Chatter.
2. Type any text in the Chat console window, then press ENTER.

The text is displayed in the Chat window and the MessageMon1itor window. If you send
more messages, each one appends to the list displayed, as shown in Figure 23.

Aurea Software, Inc. Confidential 90 Copyright © 2013 Aurea, Inc.

Message Traffic Monitor Samples

Figure 23: Message Monitor Window
E\%Messagehlunitul M =] E3

Class: javax.jms. TexthMessage
Topic: jms.samples.chat

QTC_Ticker: check

Class: javax.jms. TexthMessage
Topic: jms.gamples.chat

Market_Maker: Gotitl

Class: javax.jms. Texthessage
Topic: jms.samples.chat

OTC_Ticker: PRGS 20000 36.125

Class: javaxjms. TextMessage
Topic: jms.samples.chat

OTC_Ticker: MSFT 125000 ¥2.25

Class: javax.jms. TextMessage
Topic: jms.samples.chat

OTC_Ticker: SUMNW 30000 117.00

Class: javax.jms. TexthMessage
Topic: jms.samples.chat

OTC _Ticker: ASFT 10000 12.50

Class: javax.jms. TexthMessage
Topic: jms.samples.chat

Market_taker: BLY PRGS 15000 36.75 LIMIT

|]

Clear |

3. Click the Clear button. The list is emptied.

Aurea Software, Inc. Confidential 91 Copyright © 2013 Aurea, Inc.

Chapter 3: Examining the SonicMQ JMS Samples

Transaction Samples

Transacted messages are a group of messages that form a single unit of work. Much like
an accounting transaction made up of a set of balancing entries, a messaging example
might be a set of financial statistics where each entry is a completely formed message and
the full set of data comprises the update.

A session is declared as transacted when the session is created. While producers—PTP
Senders and Pub/Sub Publishers—produce messages as usual, the messages are stored
at the broker until the broker is notified to act on the transaction by delivering or deleting
the messages. To determine when the transaction is complete, the programmer must:

e Call the method to commit the set of messages. The session commit() method tells
the broker to sequentially release each of the messages that have been cached since
the last transaction. In this sample, the commit case is set for the string OVER.

e Call the method to roll back the set of messages. The session rollback() method
tells the broker to flush all the messages that have been cached since the last
transaction ended. In this sample, the rollback case is set for the string 00PS!.

Note: If you are interested in exploring global transactions with two-phase commits in a
sample, see the sample in Chapter 14, Distributed Transactions Using
XA ResourcSes on page 423.

TransactedTalk Application (PTP)

The following procedures explain how to run the TransactedTalk sample application.
To start TransactedTalk sessions:

The first TransactedTalk session receives on the first queue and sends to the second
gueue, while the other session does the opposite.

1. Open a console window to the QueuePTP\TransactedTalk folder, then enter:

..\..\SonicMQ TransactedTalk -u Accounting -gr SampleQl -gs
SampleQ2

This command starts a TransactedTalk session for the user Accounting.

2. Open another console window to the QueuePTP\TransactedTalk folder, then
enter:

..\..\SonicMQ TransactedTalk -u Operations -qgr SampleQ2 -gs
SampleQl

This command starts a TransactedTalk session for the user Operations.

Aurea Software, Inc. Confidential 92 Copyright © 2013 Aurea, Inc.

Transaction Samples

To build a PTP transaction and commit it:
1. InaTransactedTalk window, type any text and then press ENTER.
Notice that the text is not displayed in the other TransactedTalk window.
2. Type more text in that window and then press ENTER.
The text is still not displayed in the other TransactedTalk window.
3. Type OVER and then press ENTER.
The TransactedTalk window in which you are working displays the message:
Committing messages...Done

All the messages you sent to a queue are delivered to the receiver. Subsequent
entries will form a new transaction.

To build a PTP transaction and roll it back:
1. Inone of the TransactedTalk windows, type text and then press ENTER.
2. Type more text in that window and then press ENTER.
3. Type 00PS! and then press ENTER. Nothing is published.
The TransactedTalk window in which you are working displays the message:

Cancelling messages. . .Done!

All messages are removed from the broker. Subsequent messages will form a new
transaction. Any messages you resend will be redelivered.

TransactedChat Application (Pub/Sub)

The following procedures explain how to run the TransactedChat sample application.
To start Pub/Sub TransactedChat sessions:

1. Open a console window to the TopicPubSub\TransactedChat folder, then enter:

..\..\SonicMQ TransactedChat -u Sales
This command starts a TransactedChat session for the user Sales.

2. Open another console window to the TopicPubSub\TransactedChat folder, then
enter: ..\..\SonicMQ TransactedChat -u Audit

This command starts a TransactedChat session for the user Audiit.

Aurea Software, Inc. Confidential 93 Copyright © 2013 Aurea, Inc.

Chapter 3: Examining the SonicMQ JMS Samples

To build a Pub/Sub transaction and commit it:

1.

In the Sales window, type any text and then press ENTER.
Notice that the text is not displayed in the Audit window.
Type more text in the Sales window and then press ENTER.
The text is still not displayed in the Aud+it window.

Type OVER and then press ENTER.

The TransactedChat window in which you are working displays the message:

Committing messages...Sales:Message Text

All of the messages now display in sequence in the Audit window. All of the lines you
published to a topic are delivered to subscribers. Subsequent entries will form a new
transaction.

To build a Pub/Sub transaction and roll it back:

1.
2.

In the Sales window, type text and then press ENTER.
Type more text in that window and then press ENTER.
Type 00PS! and then press ENTER.

The TransactedTalk window in which you are working displays the message:

Cancelling messages...Done!

No messages are published. All messages are removed from the broker. Subsequent
entries will form a new transaction. Any messages you resend will be redelivered.

Reviewing the Transaction Samples

The transaction samples show:

The transaction scope is between the client in the JMS session and the broker. When
the broker receives commitment, the messages are placed onto queues or topics in
the order in which they were buffered but with no transaction controls. The following
message delivery is normal:

e PTP Messages — The order of messages in the queue is maintained with
adjustments for priority differences but there is no guarantee that—when multiple
consumers are active on the queue—a MessageConsumer will receive one or more
of the MessageProducer’s transacted messages.

e Pub/Sub Messages — Messages are delivered in the order entered in the
transaction yet influenced by the priority setting of these and other messages, the
use of additional receiving sessions, and the use of additional or alternate topics.
The messages are not delivered as a group.

Aurea Software, Inc. Confidential 94 Copyright © 2013 Aurea, Inc.

Reliable, Persistent, and Durable Messaging Samples

e Transactions are a set of messages that is complete only when a command is given.
As an alternative, message volume could be reduced by packaging sets of messages.
For example, an XML message enables the publisher to send a package of messages
and the subscriber to interpret the set of packaged entries as a single message. See
XML Messages on page 79 for detalils.

e While most of the samples use two sessions—a producer session to listen for
keyboard input and send messages, and a consumer session to listen for messages
and receive them—the transacted samples set only the producer session as
transacted so that committing or rolling back impacts only the sent messages.

Changing the consumer behavior has no real effect on nhondurable Pub/Sub
messages but causes an interesting behavior in PTP: When you roll back receipt of
messages, the message listener sees the messages again and then simply receives
them again. Rolling back a transacted consumer session causes the messages to be
redelivered.

You can explore this behavior by modifying TransactedTalk. java to set the receive
session to be transacted, like this:

receiveSession =
connect.createSession (true, javax.jms.Session.AUTO ACKNOWLEDGE) ;

Then follow the send session commit line and send session rollback line with similar
statements for the receive session like this:

sendSession.rollback () ;

receiveSession.rollback () ;

sendSession.commit () ;
receiveSession.commit () ;

Start the two sessions described in the TransactedTalk sample, then run
QueueMonitor sample. Notice that whether you commit or roll back, no messages stay
in the queue. Stop the TransactedTalk sessions and the refresh the queue monitor.
Note that the messages sent since the last commit were all reinstated in the queue.

For more information, see Transacted Sessions on page 210.

Reliable, Persistent, and Durable Messaging
Samples

The preceding applications make the same delivery promise: If you are connected and
receiving during the message’s lifespan, you could be a consumer of this message.

One of the features of SonicMQ is the breadth of services that can be applied to messaging
to give just the right quality of service (QoS) for each type and category of message.

Aurea Software, Inc. Confidential 95 Copyright © 2013 Aurea, Inc.

Chapter 3: Examining the SonicMQ JMS Samples

There are programmatic mechanisms for:

. Increasing the chances that the client and broker are actively connected

e Registering a PTP sender’s interest in routing messages that are undeliverable to a
dead message queue and sending notification events to the administrator

e Registering a Pub/Sub subscriber’s interest in messages published to a topic even
when the subscriber is disconnected

The reliable, persistent, and durable messaging samples demonstrate these features of
SonicMQ.

Reliable Connections

The ReliableTalk and ReliableChat samples show techniques for monitoring a
connection for exceptions and re-establishing the connection if it has been dropped.

The Reliable samples use an aggressive technique (CTRL+C) that emulates an unexpected
broker interruption.

An intentional shutdown invokes an administrative Shutdown function on the broker. This
function is a command in the Management Console runtime.

In a Talk session, if the broker stopped and you sent a message, you would see:

javax.jms.IllegalStateException: The session is closed

This error occurs because Talk sample assumes that the connection is established and
available. The Talk sample does not consider the possibility that a problem occurred with
the connection (such as the network failing or the broker failing).

The ReliableTalk and ReliableChat samples, in contrast, are written to handle
exceptions. Both samples use a connection setup routine for retrying connections that fail
for some reason.

The ReliableTalk and ReliableChat samples also use the PERSISTENT delivery mode
option ensures that messages are logged before they are acknowledged and are
nonvolatile in the event of a broker failure. Consequently, as shown in the ReliableTalk
example, the application tries repeatedly to reconnect.

A unique SonicMQ feature monitors the heartbeat of the broker by pinging the broker at a
preset interval, letting the thread sleep for a while but initiating reconnection if the broker
does not respond. For more information, see Creating and Monitoring a Connection on
page 161.

These examples demonstrate techniques an application programmer can use to explicitly
handle connection exceptions. These samples do not, however, take advantage of an
important SonicMQ feature: fault-tolerant connections.

Fault-tolerant connections automatically detect problems with a connection and seamlessly
reconnect, if possible, either to the same broker or possibly to a backup broker (if your
deployment is set up to perform broker replication). This feature significantly enhances the
reliability of a connection.

Aurea Software, Inc. Confidential 96 Copyright © 2013 Aurea, Inc.

Reliable, Persistent, and Durable Messaging Samples

The exception handling logic in the ReliableTalk and ReliableChat programs is devoted
to retrying a connection after the connection fails for some reason. This logic, as written,
would not be necessary with a fault-tolerant connection, because the fault-tolerant
connection is able to automatically retry the connection on your behalf. A fault-tolerant
connection can attempt to reconnect indefinitely or for a fixed period of time, depending on
how it is set up.

When a fault-tolerant connection encounters a problem and is able to reconnect, your
application does not get an exception and continues processing after the connecting is
reestablished.

When a fault-tolerant connection times out without successfully reconnecting, the
connection is dropped and an exception is generated. Your exception handling logic can
decide what to do the exception. Retrying the connection might not make sense if the
automatic retry was unsuccessful.

For detailed information about fault-tolerant connections, see Fault-Tolerant Connections
on page 172.

ReliableTalk Application (PTP)

The following procedure explains how to run the ReliableTalk sample application.
To run the ReliableTalk sample:

1. Open a console window to the QueuePTP\ReliableTalk folder, then enter:

..\..\SonicMQ ReliableTalk -u AlwaysUp -qr SampleQl -gs SampleQl
This command starts a ReliableTalk session for the user AlwaysUp.
2. Type some text then press ENTER.

The text is displayed, preceded by the user name that initiated that text. The message
was sent from the client application to the Samp1eQ1 queue on the broker and then
returned to the client as a receiver on that queue. The connection is active.

3. Stop the broker by pressing CTRL+C in the broker window.

The connection is broken. The ReliableTalk application tries repeatedly to reconnect,
as shown:

[MESSAGE RECEIVED] AlwaysUp: Hello
There is a problem with the connection.
JMSException: Connection dropped

Please wait while the application tries to re-establish the
connection...

Attempting to create connection...

Cannot connect to broker: localhost:2506. Pausing 10 seconds
before retry.

Aurea Software, Inc. Confidential 97 Copyright © 2013 Aurea, Inc.

Chapter 3: Examining the SonicMQ JMS Samples

Attempting to create connection...

Cannot connect to broker: localhost:2506. Pausing 10 seconds
before retry.

Attempting to create connection...

Cannot connect to broker: localhost:2506. Pausing 10 seconds
before retry.

Attempting to create connection...

Cannot connect to broker: localhost:2506. Pausing 10 seconds
before retry.

4. Restart the container and broker by using the Windows Start menu command or the
startmf script. The ReliableTalk application reconnects, as shown:

Attempting to create connection...
...Connection created.

...Setup complete.

...Connection started.

Receiving messages on queue "SampleQl".
Enter text to send to queue "SampleQl".

Press Enter to send each message.

ReliableChat Application (Pub/Sub)

The following procedure explains how to run the ReliableChat sample application.
To run the ReliableChat sample:
1. Open aconsole window to the TopicPubSub\ReliableChat folder, then type:

..\..\SonicMQ ReliableChat -u AlwaysUp
This command starts a ReliableChat session for the user AlwaysUp.
2. Type text and then press ENTER.

The text is displayed, preceded by the user name that initiated that text. The message
was sent from the client application to the broker and then returned to the client as a
subscriber to that topic. The connection is active.

3. Stop the broker by pressing CTRL+C in the broker window.

The connection is broken. The Rel1iableChat application tries repeatedly to reconnect.
The console window shows message similar to those in the ReliableTalk example.

Aurea Software, Inc. Confidential 98 Copyright © 2013 Aurea, Inc.

Reliable, Persistent, and Durable Messaging Samples

Restart the container and broker by using its Windows Start menu command or the
startmf script. The ReliableChat application reconnects. The console window shows
message similar to those in the ReliableTalk example.

Persistent Storage Application (PTP)

When a message is sent to a queue, the sender can take steps to assure that messages
sent are placed on a particular queue by specifying some additional requirements:

e Set the message delivery mode to PERSISTENT — The message is logged before the
producer is acknowledged and is guaranteed to be retained in the final broker’'s
message store until it is either acknowledged as delivered or expires.

e Set the JMS_SonicMQ_preserveUndelivered message property to true — If the
message is for any reason undelivered, retain it.

e Setthe IJMS_SonicMQ_not1ifyUndelivered message property to true — Send notice to
the administrator of the broker that manages the queue.

Every broker provides a dead message queue where messages appropriately flagged are
moved when they become expired or undeliverable because a destination on that broker
or another remote broker puts message delivery into jeopardy.

In the DeadMessages sample application, you first modify two settings in the Management
Console that control the broker’s periodic checks of queues for expired messages. You
then start a session and create a sender to SampleQl. You create a PERSISTENT message
that has a short time-to-live (so that it will expire). Because this message is PERSISTENT and
will expire, the message will be sent to the DMQ after it expires. You send the message to
SampleQl, then observe the message on queue browsers on SampleQl and the DMQ.
Finally, you start the DeadMessages sample application that receives messages on the DMQ
and displays them in a Java window.

Note: Dynamic routing exposes several other reasons a message could get enqueued in
the Dead Message Queue. In a variation of this sample, a message could be
unexpired yet become undeliverable because it is sent to a bad node (such as
BadNode: : Samp1eQ1) or a bad destination (such as : :BadQ). See the “Guaranteeing
Messages” chapter in the Aurea SonicMQ Application Programming Guide for
detailed examples of each reason code.

To change queue cleanup settings in the Management Console:

1. Start the SonicMQ container and broker (or confirm that they are already running),
then start the Management Console.

See Starting the SonicMQ Container and Management Console on page 70 for
instructions. See the Aurea SonicMQ Configuration and Management Guide for
detailed instructions about working with the Management Console.

2. Inthe Management Console, click the Configure tab.

3. Inthe left panel of the Management Console, expand the node for your broker
connection, right-click on the Queues node and select Properties.

Aurea Software, Inc. Confidential 99 Copyright © 2013 Aurea, Inc.

Chapter 3: Examining the SonicMQ JMS Samples

The Properties dialog box opens, as shown in Figure 24.

Figure 24: Queue Properties in Management Console
_H Sonic Management Console - Ol x|
Action Edit Wiew Tools Window Help
- o | p | E F
Gi | @ & X B BX| BEow|A|® 4
1
[§' Connection1 {Domain §
=] it Queues Properties E
Configure I Manage | File |
General |
|2 configured Objects sive Save Threshold Maximy
= Default Proy
= JB;"E'S Rer 1538 1000
DKEH Cleanup rterval: B0 SECONEE 1538 1000
a Acceptors 1536 1000
o Gueues Murmber of Delivery Threads: |1 i}
v Replication Connections 1536 1000
Q¥ Routing Enable Queus Cleanug: |7
;l Containers .
- hfzximum Temporary Quewe Size: I1DDD Khytes
| Framewwork Companents i ¥ &
L) Security
‘ | i

4. Set the queue cleanup properties as shown in Figure 25:

Figure 25: Set Queue Cleanup Interval
¥ Edit Queues Properties I

General |

Drefault Propertie

Cleanup Interyal: IBD SeConds
Mumber of Delivery Threads: I

Erable Queue Cleanug: il

Maimum Temporary Queue Size: I Kbytes

OK I Cancel |

a. Enter avalue in the Cleanup Interval field. For this example, enter 60 [seconds].

b. Make sure the Enable Cleanup Interval check box is activated.

c. Click OK.

The cleanup interval is set for the broker.

Aurea Software, Inc. Confidential 100 Copyright © 2013 Aurea, Inc.

Reliable, Persistent, and Durable Messaging Samples

5. Reload the broker to activate the new cleanup interval:
a. Inthe Management Console, click the Manage tab.

b. Inthe left panel, expand the Containers node and right-click the node for your
broker.

c. From the pop-up menu, choose Operations > Reload.
d. Click YEs in the confirmation dialog box that opens.

The broker is reloaded, and the cleanup interval is activated.
To create a queue session, queue sender, and queue browsers:

1. Start the JMS Test client.
See Chapter 2, Using the JMS Test Client on page 45 for instructions.

2. Toconnectto a broker, click Message Brokers in the left panel of the JMS Test client
window.

In the right panel:

a. Inthe Broker Host field, enter Tocalhost:2506.
b. Inthe Connect ID field, enter Connl.

c. Inthe User field, enter Administrator.

d. Inthe Password field, enter Administrator.

e. Click Connect.

A node for this connection appears under the Message Brokers node in the left panel,
and the connection appears in the list of connections in the lower right panel.

3. To create a new queue session, in the left panel click the node for the broker you just
connected to: Tocalhost:2506:Connl.

In Create New Session area of the right panel:

a. Inthe Name field, enter Sess+ionl for the new session.
b. Inthe Type field, select Queue from the pull-down list.
c. Click Create.

A node for the new queue session appears under the node for your broker connection
in the left panel. The queue session is listed in the Established Sessions area in the
right panel.

Aurea Software, Inc. Confidential 101 Copyright © 2013 Aurea, Inc.

Chapter 3: Examining the SonicMQ JMS Samples

4. To create a queue sender, in the left panel, click the Senders node under
QueueSession:Sessionl node.

In the Create New Sender area of the right panel:
a. Inthe Queue field, enter Samp1eQl as the queue name.
b. Click Create.

A node for SampleQ1 appears under the Senders node in the left panel, and the new
sender is listed in the Established Senders area in the right panel. This new sender
will send messages to SampleQ1.

5. Create queue browsers for Samp1eQl and the DMQ:
a. Inthe left panel, click the Browsers node.
b. Inthe Create New Browser area, enter SampleQ1 in the Name field. Click Create.
A queue browser is created for Samp1eQ1.

c. Inthe Create New Browser area, enter SonicMQ.deadMessage in the Name field,
then click Create.

A queue browser is created for the DMQ.
Figure 26 shows the two queue browsers created for this queue session.

Figure 26: Create Queue Browsers

% JMS Test Client !EI

Filz ‘“iew Help

|| Message Brokers
E|_| localhost 2506: Connt Administrs

rCreate New Browser

E'":J@ueueSession: Session? ng Queue: [SonicMQ.deadMessage i Create |
=] Senders
[Sampleci Message Selectar: Cleat

o Receivers

Eztablished Browsers |
Sarnplec |
Sonichc deadMessage |

L@ SonicME deadMess

‘I I _'I Glose |

You will use these browsers to watch the message move to the dead message queue
after it has expired and the cleanup interval has passed.

Aurea Software, Inc. Confidential 102 Copyright © 2013 Aurea, Inc.

Reliable, Persistent, and Durable Messaging Samples

To create and send a PERSISTENT message that will expire:

1. To create and send a message to Samp1eQ1, in the left panel click the node for your
gueue sender: Sender: SampleQl.

a. Under the Body tab in the right panel:

e Enter some text for the body of the message.

° In the Summary area, choose the Delivery Mode option PERSISTENT and
enter a Time To Live value greater than zero, for example, 30000 [ms].

b. Under the Properties tab in the right panel:

e Choose the Property Name JMS_SonicMQ_preserveUndelivered from the
pull-down list. In the Property Value field, enter true. Click Set.

e Choose the Property Name JMS_SonicMQ_notifyUndelivered from the
pull-down list. Click Set. The Property Value true is carried forward, as
shown in Figure 27.

Figure 27: Persistent Message
2 JMS Test Client [_ O] =]
File ‘“iew Help
:J Meszane Brokers Header Properties I Bodyl
- localhost: 2506 Conn Adminiztrs
-] GueusSession: Sessiont nc| Property Name: HMS_SonicMQ_notifUndelivered LI St |
EJ SEnerS = Property ‘alue: [true
P e ENYEey|
o Receivers Property Type: |boolean LI Delete |
S Browsers
Mame | Walue | Type |
WS _SonichG_presery... hrue |Boolean |
JMS_SonicMQ_natifyUn...hrue |Boolean |

SISy

Message Type: |Text Message
Delivery Mode: FPERSISTEMNT
Priority: 1]
Time Ta Live (ms): 1000

‘I I _'I Send | Clear |

2. Click Send to send the message to SampleQ1.

Ledledle

The message will be enqueued on Samp1eQl for 30 seconds, the Time To Live value that
you specified. If you had put an active receiver on that queue before the message expired,
you would see that the message was listed in Samp1eQ1, awaiting receivers on that queue.
Then your receiver would have taken it off the queue. However, the purpose of this sample
is to demonstrate a message that expires while waiting for a receiver. For that reason, you
created queue browsers that allow you to browse the messages without removing them
from the queue.

Messages that have expired are not removed from the original queue until they are
examined by the broker and found to be expired.

Aurea Software, Inc. Confidential 103 Copyright © 2013 Aurea, Inc.

Chapter 3: Examining the SonicMQ JMS Samples

To view messages on SampleQ1 and the DMQ:

1. Inthe left panel of the JMS Test client, click the SampleQ1 browser node, then click
the left arrow button in the right panel.
If it has been less than a minute (the time you set for the queue cleanup interval) since
the message expired, the message is listed in the Messages area.
2. Click the SonicMQ.deadMessages browser node, then click the left arrow in the right
panel.
When more than a minute has passed since the message expired, the message will
appear on the DMQ and you will see it in the browser, as shown in Figure 28.
Figure 28: Expired PERSISTENT Message on DMQ
f2JMS Test Client M=
File “iew Help
|| Message Brokers T mm—
-] localhost:2506: Connd Administrator
E|_| GueueSession: Session] non-t
-] Senders
L b Sampledd
Receivers
=] _| Browveers
‘ amplem Buffer Size (megsl E Nl |4 | Nl
Headler | Proper‘tiesl Bodyl
Mame Walue I
M= Destination Sarmplec
I SDeliveryhlode PERSISTENT
IMSMeszagelD I 6329 bis8: a030004:F15503C24C
I = Timestamp Tue Mow 05 15:10:59 EST 2002
S CorrelationlC
IMEReply To
IMSRedelivered falze
IMSType
IMSEpiration Tue Mow 05151129 EST 2002
M ZPriority 4
K 0|
3. Click the Properties tab.
Figure 29 shows the properties of the undelivered, expired message.
Aurea Software, Inc. Confidential 104 Copyright © 2013 Aurea, Inc.

Reliable, Persistent, and Durable Messaging Samples

Figure 29: Expired PERSISTENT Message Properties

§2 JMS Test Client M= 3

File ‘“iew Help

| | Messane Brokers
E|_| Incalhost: 2306: Connt Administrator
EIJ QueuesSession: Session] non-
EJ Senders
L hee# Sample@d
Receivers
E---J Browwsers

0 mpIeG1 _. : Buffer Size (msgs): E ﬁl LI ﬂl

Header Properties | Body |

lessages

Mame “alue Type |
IS _SonichiC_undeliveredReasonCode [1 Integer
WS _SonichC_notifyUndelivered true Boolean
IS _SonichdC_undeliveredTimestamp [Tue Mow 0515, Date
IS _SonichiC_preservelndelivered true Eoolean

Kl I— 11|

The properties include the original settings to preserve and notify when undelivered.
The undelivered timestamp indicates the time of dequeuing into the DMQ. The reason
code, 1, indicates that the message expired.

4. Click the Body tab.
The body is unchanged, as shown in Figure 30.

Figure 30: Expired PERSISTENT Message Body

§2 JMS Test Client M= &3

File ‘“iew Help

|| Meszage Brokers
E|_| localhost: 2506: Connt Adinistrstor
EJ GuenesSession: Session] non-t
=[] Senders
Lo SampleGr
o Receivers
-] Brawsers

‘ ampIeQ1 : Butfer Size (mags) E ﬁl LI ﬂl

Header | Properties Body

Messages

This is a test message to SampleQl.

K — Joi|

5. Click the left arrow in the SampleQ1 browser to see that the message has been
removed from that queue.

Expired messages are examined and, with the appropriate properties set, are transferred
to the dead message queue. The property you set instructs the broker to transfer the
expired message to the DMQ, placing it under administrative control with no expiration. The
message must now be explicitly flushed or dequeued. You can remove this message from
the DMQ by creating a receiver to that queue, or by running an application that takes a
message off the DMQ. The following procedure explains how to run the Dead Message
browser sample application to remove the message from the DMQ and display it in a Java
window.

Aurea Software, Inc. Confidential 105 Copyright © 2013 Aurea, Inc.

Chapter 3: Examining the SonicMQ JMS Samples

To run the DeadMessages browser sample:

1. Open a console window to the QueuePTP\DeadMessages folder.
2. Type ..\..\SonicMQ DeadMessages and press ENTER.
The Dead Messages Received Java window opens.

3. The dead messages are listed in the Dead Messages Received window, as shown in
Figure 31.

Figure 31: Dead Messages Received Browser

& Dead Messages Received =] E3 I

Class: javaxjms. TexthMessage

Qriginal Destination: Samplecl

Undelivered Reason Code: TTL_EXFPIRED
Undelivered Timestamp: 20021 1/05 09:38:10

This is atest message to Sample@t.

[{[E

| Clear |

4. Inthe JMS Test client, click the SonicMQ.deadMessages browser node, then click the
left arrow in the right panel.

The message has been removed from the DMQ by the Dead Message browser sample
application.

A management application might clone the body into a new message and use some
business logic to reroute the message to an optional or fallback destination.

While expiration is common to all messaging deployments, there are several other reasons
a messages could be in-doubt or undeliverable in a dynamic routing architecture.

See the Aurea SonicMQ Application Programming Guide for information about using the
dead message queue and the dynamic routing architecture.

DurableChat Application (Pub/Sub)

In Pub/Sub messaging, when messages are produced, they are sent to all active
consumers who subscribe to a topic. Some subscribers register an enduring interest in
receiving messages that were sent while they were inactive. These durable subscriptions
are permanent records in the broker’s persistent storage mechanism.

Whenever a subscriber reconnects to the topic (under the registered username, subscriber
name, and client identifier), all undelivered messages to that topic that have not expired are
delivered immediately. The administrator can terminate durable subscriptions or a client
can use the unsubscribe() method to close the durable subscription.

Aurea Software, Inc. Confidential 106 Copyright © 2013 Aurea, Inc.

Reliable, Persistent, and Durable Messaging Samples

In an application, there are only a few changes to set up a subscriber as a durable
subscriber. Where Chat was coded as:

subscriber = subSession.createConsumer (topic) ;

DurableChat is coded as follows:

//Durable Subscriptions index on username, clientID, subscription name
//It is a good practice to set the clientID:

connection.setClientID (CLIENT ID);

subscriber = subSession.createDurableSubscriber (topic,
"SampleSubscription") ;

As with ReliableChat, using the PERSISTENT delivery mode ensures that messages are
logged before they are acknowledged and are nonvolatile in the event of a broker failure.

Figure 32 shows what occurs when the subscriber requests an extra effort to ensure
delivery.

Aurea Software, Inc. Confidential 107 Copyright © 2013 Aurea, Inc.

Chapter 3: Examining the SonicMQ JMS Samples

Figure 32: Sequence Diagram for the DurableChat Application
Broker's
Connection . . . Producer Consumer Broker Persistent
Factory Connection Session Topic (Publisher) (Subscriber) Message pro:[ss Dala)SLlore
request connection g
L
Connection:
- New connection - < >
- Set Clientld
- New session [
-
[-l < Lt
B § -
. topic
Topic: = p >
- Create Topic
- Create Producer |_| subscriber name, topic o
- Create Consumer 1= TDURABLE »
[topic >
-l i
X 1 1 acknowledge |
Connection: | o
- Start » »
topic
for
durable
topic subscribers
Message: |_ —>D LIS
- Publish to topic
message
Message:
- Listen (asynch) > Time
- Consume YES to
Copen e live
Restart <t
Connection
subscriber name .
Ll
Message: name
- Durable Subscription YES et __ topic
- Consume consume messages waiting? « 3
message '
close connection

To start DurableChat sessions:

1. Open a console window to the TopicPubSub\DurableChat folder, then enter:
..\..\SonicMQ DurableChat -u AlwaysUp
This command starts a DurableChat session for the user AlwaysUp.

2. Open another console window to the TopicPubSub\DurableChat folder, then
enter:

..\..\SonicMQ DurableChat -u SometimesDown

This command starts a DurableChat session for the user SometimesDown.

Aurea Software, Inc. Confidential 108 Copyright © 2013 Aurea, Inc.

Reliable, Persistent, and Durable Messaging Samples

3. Inthe AlwaysUp window, type text and then press ENTER.
The text is displayed on both subscriber’s consoles.

4. In the SometimesDown window, type text and then press ENTER.
The text is displayed on both subscriber’s consoles.

5. Stop the SometimesDown session by pressing CTRL+C.

6. Inthe AlwaysUp window, send one or more messages.
The text is displayed on that subscriber’s console.

7. Inthe window where you stopped the DurableChat session, restart the session under
the same name.

When the DurableChat session reconnects, the retained messages are delivered and
then displayed in the SometimesDown console window.

While durable, the messages were not implicitly everlasting. The publisher of the message
sets a time-to-live parameter—a value that, when added to the publication timestamp,
determines the expiration time of the message. The time-to-live value in milliseconds can
be any positive integer. In this sample, the time-to-live is 1,800,000 milliseconds (thirty
minutes). Setting the value to zero retains the message indefinitely.

Continuous Producer Demonstrating Client
Persistence

Note: This sample require the ClientPlus libraries for the SonicMQ client. When you have
the ClientPlus edition or the Enterprise Plus edition, these features are available to
you.

While the ReliableTalk sample (see ReliableChat Application (Pub/Sub) on page 98)
showed that the client can reconnect when the broker is again available, other features
enable the client to continue its work when it is sending messages and the broker
connections fails. The SonicMQ ClientPlus has an extended capability that enables the
client to establish a message cache on the client where a definable volume of sent
messages can be buffered while a connection is re-established. When the connection and
session are again active, the oldest messages buffered are sent normally and more recent
messages sent continue to accrue in the buffer. When the local store is empty, the use of
the local store is transparent.

The applications in the LocalStore sample provide the extended feature of client
persistence, a way for client application to continue sending messages despite losing
connection with the broker. Messages sent by the client are buffered in a persistent store
on the client system until connection is established at which time the accrued messages
are sent. This section includes two sets of samples, one for each messaging domain. Each
set runs a continuous producer that sends and displays a sequence number and a
consumer that receives the messages sent. The broker is stopped to effect the local store
of produced message. When the broker restarts, the messages are sent and the receiver
displays them.

Aurea Software, Inc. Confidential 109 Copyright © 2013 Aurea, Inc.

Chapter 3: Examining the SonicMQ JMS Samples

Local Store Sample (PTP)

This example includes two applications to continuously send and receive messages using
the PTP messaging model.

To send Chat messages even when the broker connection stops:

1. Open aconsole window to the ClientPlus\LocalStore folder, then enter:

..\..\SonicMQ MessageReceiver -u Warehouse -gr SampleQl
This command starts a MessageReceiver session for the receiver Warehouse.

2. Open another console window to the ClientPlus\LocalStore folder, then type:

..\..\SonicMQ ContinuousSender -u HandHeld -gs SampleQl
This command starts a MessageReceiver session for the sender HandHeld.

The sender connects and starts sending messages to the queue. The receiver takes
the enqueued messages from the queue.

3. Stop the broker by pressing CTRL+C in the SonicMQ Container console window.

The connection is broken for both the sender and the receiver. The receiver tries
repeatedly to reconnect. The sender continues to send messages without pause while
the broker is unavailable, as shown in Figure 33.

Figure 33: ContinuousSender Sample Sends Without Pause

[=2] C:AWINN TAS pstem32\cmd.exe - _.%..\SonicM@ ContinuousSende - EI|5|

Attempting to create connection... -
--..Connection created. o
...Setup complete.

--.Connection started.

Sending on gueue "SampleQl".
Sent Message
Sent Message
Sent Meszage
Sent Message
Sent Message
Sent Message
Sent Message
Sent Message
Sent Message
Sent Message
Sent Message
Sent Message 1
Sent Message 13
Sent Message 14
Sent Message 15
Sent Message 16
Sent Message 17
Sent Message 18
Sent Message 19
Sent Message 20
Sent Message 21
Sent Message 22
Sent Message 23
Sent Message 24
Sent Message 25
Sent Message 26 hd
i |

[P L R RT O

[
D

4. Restart the broker by using its Windows Start menu command or the startmf script.
Both applications reconnect to the broker.

Aurea Software, Inc. Confidential 110 Copyright © 2013 Aurea, Inc.

Reliable, Persistent, and Durable Messaging Samples

After reconnecting, the MessageReceiver application gets all the sent messages from
its local store, including those sent while the broker connection was broken, as shown
in Figure 34.

Figure 34: MessageReceiver Sample Handling Disconnection

EI::\W’INNT\SyslemBZ\cmd.exe - ... ASonicMB MessageReceivel =100 x|

Received Message 14 =]
Received Message 15
Received Message 16 o

There is a problem with the connection.

JMSException: Connection droppe
Please wait while the application tries to re—estabhlish the connection...
Attempting to create connection...

There is a problem with the connection.
JMSException: An open connection has not bheen established
Cannot connect to bhroker: localhost:2586. Pausing 18 seconds before retry.
Attenmpting to create connection...
Cannot connect to bhroker: localhost:2586. Pausing 18 seconds before retry.
Attempting to create connection...
Cannot connect to broker: localhost:2506. Pausing 18 seconds hefore retry.
Attempting to create connection...
-.-Gonnection_created.
- ..Setup complete.
Received Message 17
-.-Gonnection started.

Receiving messages on gueue “SampleQl*.

Press CIRL-C to exit.

Received Message 18
Received Message 19
Received Message 20
Received Message 21
Received Message 22 hd
] |

You can stop both sessions by pressing CTRL+C in the sender and receiver console
windows before proceeding to the next sample.

Local Store Sample (Pub/Sub)

This example includes two applications to continuously publish and subscribe using the
Pub/Sub messaging model.

To run the LocalStore Pub/Sub sample:
1. Open a console window to the ClientPlus\LocalStore folder, then enter:

..\..\SonicMQ ContinuousPublisher -u Wireless

The publisher connects and starts publishing messages to the LocalStore.sample
topic.

2. Open another console window to the ClientPlus\LocalStore folder, then enter:

..\..\SonicMQ MessageSubscriber -u Customer

The subscriber connects and receives messages published to the LocalStore.sample
topic.

Aurea Software, Inc. Confidential 111 Copyright © 2013 Aurea, Inc.

Chapter 3: Examining the SonicMQ JMS Samples

3. Stop the broker by pressing CTRL+C in the broker window.

The connection is broken for both the publisher and the subscriber. The subscriber
tries repeatedly to reconnect.

4. Restart the container and broker using Windows Start menu command or the startmf
script.

Both applications reconnect to the broker.

After reconnecting, the MessageSubscriber application gets all the published
messages from its local store, including those published while the broker connection
was broken.

You can stop both sessions by pressing CTRL+C in the sender and receiver console
windows before proceeding to the next sample.

Reviewing Reliable, Persistent, and Durable
Messaging

The characteristics demonstrated in this section improve Quality of Service (QoS) while
requiring modest overhead. The examples in this section can be combined so that you
create a reliable, persistent talk and a reliable, durable chat. The source code of these
samples is readily transferable into your applications.

The ClientPlus feature of persistence on the client shows how clients can store messages
to provide a higher level of reliability to supporting applications that need to produce
messages at will. There are also other facets to consider for optimal QoS, including the
various security, encryption, access control, and transport protocols. See the Aurea
SonicMQ Deployment Guide for information about security and protocols.

Request and Reply Samples

Loosely coupled applications require special techniques when it is important for the
publisher to certify that a message was delivered in either messaging domain:

e Point-to-point — While a sender can see if a message was removed from a queue,
implying that it was delivered, there is no indication where it went.

. Publish and Subscribe — While the publisher can send long-lived messages to
durable receivers and get acknowledgement from the broker, neither of these
techniques confirms that a message was actually delivered or how many, if any,
subscribers received the message.

A message producer can request a reply when a message is sent. A common way to do
this is to set up a temporary destination and header information that the consumer can
use to create a reply to the sender of the original message.

Aurea Software, Inc. Confidential 112 Copyright © 2013 Aurea, Inc.

Request and Reply Samples

In both Request and Reply samples, the replier’s task is a simple data processing exercise:
standardize the case of the text sent—receive text and send back the same text as either
all uppercase characters or all lowercase characters—then publish the modified message
to the temporary destination that was set up for the reply.

While request-and-reply provides proof of delivery, it is a blocking transaction—the
requestor waits until the reply arrives. While this situation might be appropriate for a system
that, for example, issues lottery tickets, it might be preferable in other situations to have a
formally established return destination that echoes the original message and a correlation
identifier—a designated identifier that certifies that each reply is referred to its original
requestor.

Note: JMSReplyTo and JMSCorrelationID are used as a suggested design pattern
established as a part of the JMS specification. The application programmer
ultimately decides how these fields are used, if they are used at all.

The sample applications use JMS sample classes, TopicRequestor and QueueRequestor.
You should create the Request/Reply helper classes that are appropriate for your
application.

Request and Reply (PTP)

In the PTP domain, the requestor application can be started and even send a message
before the replier application is started. The queue holds the message until the replier is
available. The requestor is still blocked, but when the replier's message listener receives
the message, it releases the blocked requestor. The sample code includes an option (-m)
to switch the mode between uppercase and lowercase.

To start the PTP Request and Reply sessions:
1. Open two console windows to the QueuePTP\RequestReply folder.
2. In one console window enter:
..\..\SonicMQ Requestor -u QRequestor
This command starts a PTP Requestor session for the user QRequestor.
3. Inthe other console window enter:
..\..\SonicMQ Replier -u QReplier
This command starts a PTP Replier session for the user QReplier.

The default value of the mode in this sample is uppercase.

Aurea Software, Inc. Confidential 113 Copyright © 2013 Aurea, Inc.

Chapter 3: Examining the SonicMQ JMS Samples

To test a PTP request and reply:

. In the Requestor window, type AaBbCc then press ENTER.
The Replier window reflects the activity, displaying:
[Request] QRequestor: AaBbCc

The Replier does its operation (converts text to uppercase) and sends the result in a
message to the Requestor. The Requestor window gets the reply from the Replier:

[Reply] Uppercasing-QRequestor: AABBCC

Request and Reply (Pub/Sub)

In this example in the Pub/Sub domain, the replier application must be started before the
requestor so that the Pub/Sub replier's message listener can receive the message and
release the blocked requestor.

To start the Pub/Sub Request and Reply sessions:
1. Open two console windows to the TopicPubSub\RequestReply folder.
2. In one of the windows enter:

..\..\SonicMQ Replier

This command starts a Pub/Sub Replier session.

The default value of the mode in this sample is uppercase.
3. Inthe other window enter:

..\..\SonicMQ Requestor

This command starts a Pub/Sub Requestor session.
To test a Pub/Sub request and reply:
1. Inthe Requestor window, type AaBbCc then press ENTER.

The Replier window reflects the activity, displaying:

[Request] SampleReplier: AaBbCc

The replier completes its operation (converts text to uppercase) and sends the result
in a message to the requestor. The requestor gets the reply from the replier:

[Reply] Uppercasing-SAMPLEREQUESTOR: AABBCC

Aurea Software, Inc. Confidential 114 Copyright © 2013 Aurea, Inc.

Selection, Group, and Wild Card Samples

Reviewing the Request and Reply Samples

These request and reply samples show:

e Request and reply mechanisms are very similar across domains.

e While there might be zero or many subscriber replies, there will be, at most, one PTP
reply.

e Using message header fields (JMSRep1yTo and JMSCorrelationID) and the requestor
sample classes (javax.jms.TopicRequestor and javax.jms.QueueRequestor) are
suggested implementations for request-and-reply behavior in JMS. These examples,
however, require you to use model-specific IMS Version 1.02b interfaces. For a
description about how you can accomplish request-reply functionality using interfaces
common to both models, see Reply-to Mechanisms on page 279.

Selection, Group, and Wild Card Samples

While specific queues and topics provide focused content nodes for messages that are of
interest to application producers and consumers, there are circumstances where the
programmer might want to control what subsets of messages a receiver actively selects, or
what subsets of messages a queue receiver is passively assigned to accept. The two
techniques are mutually exclusive for queue receivers. Either:

e Thereceiver decides which messages it wants through message selection based on
syntax much like an SQL WHERE clause.

e The receiver is assigned to one or more message groups defined by the queue
sender and dispatched by the broker.

A variation of selection is also explored in this section. SonicMQ lets you use dot-delimited
naming hierarchies so that a topic consumer can create wildcards that express interest in
receiving messages in leaf topic levels without knowing specific topic names.

Message Selection: SelectorTalk and
SelectorChat

While a consumer could declare each destination of interest, the dynamic naming of topics
(assuming there are no security constraints) means that a subscriber application might
need to scan many topics.

In PTP domains, all message selection takes place on the server. However, in Pub/Sub
domains, all messages for a subscribed topic are by default delivered to the subscriber and
then the filter is applied to decide what will be consumed. When the subscriber message
traffic is a burden and server resources can handle it, you can command a Pub/Sub
message selector to filter the messages on the server by calling
factory.setSelectorAtBroker(true) on the ConnectionFactory.

Aurea Software, Inc. Confidential 115 Copyright © 2013 Aurea, Inc.

Chapter 3: Examining the SonicMQ JMS Samples

SelectorTalk Application (PTP)

The SelectorTalk sample application starts by declaring a selector String-value that will
be attached to the message as PROPERTY_NAME=‘String_value’. The sessions send and
receive to alternate queues so that they pass each other messages. The receive method
has a selector string parameter (-s). In PTP domains, all messages for a queue topic are
filtered on the broker and then the qualified messages are delivered to the consumer.

To run SelectorTalk sessions:

1. Open a console window to the QueuePTP\SelectorTalk folder, then enter:

..\..\SonicMQ SelectorTalk -u AAA -s North -gr SampleQl -gs
SampleQ?2

This command starts a SelectorTalk session for the user AAA with the selector string
North.

2. Open another console window to the QueuePTP\SelectorTalk folder, then enter:

..\..\SonicMQ SelectorTalk -u BBB -s South -gr SampleQ2 -gs
SampleQl

This command starts a SelectorTalk session for the user BBB with the selector string
South.

3. Inthe AAA window, type any text and then press ENTER.

The message is enqueued but there is no receiver. The BBB selector string does not
see any enqueued messages except those that evaluate to South.

4. Stop the BBB session by pressing CTRL+C.

5. In the BBB window start a new session, changing the selector string:

..\..\SonicMQ SelectorTalk -u BBB -g North -qr SampleQ2 -gs Sample
ql

The session starts and the message that was enqueued is immediately received.
6. Inthe AAA window, again type any text and then PRESS ENTER.

The message is enqueued and the BBB selector string qualifies the message for
immediate delivery.

SelectorChat Application (Pub/Sub)

In the SelectorChat application, the application starts by declaring the String-value that
will be attached to the message as PROPERTY_NAME=‘String_value’. The method for the
subscription declares the sample’s topic, jms.samples.chat, and the selector string (-s).

Aurea Software, Inc. Confidential 116 Copyright © 2013 Aurea, Inc.

Selection, Group, and Wild Card Samples

To run SelectorChat sessions:
1. Open a console window to the TopicPubSub\SelectorChat folder, then enter:

..\..\SonicMQ SelectorChat -u Closer -s Sales

This command starts a SelectorChat session for the user Closer with the selector
string Sales.

2. Open another console window to the TopicPubSub\SelectorChat folder, then enter:

..\..\SonicMQ SelectorChat -u Presenter -s Marketing

This command starts a SelectorChat session for the user Presenter with the selector
string Marketing.

3. Inthe Closer window, type any text and then press ENTER.

The text is only displayed in the Closer window. The Presenter selector string
excludes the Sales message.

4. Inthe Presenter window, type any text and then press ENTER.

The text is only displayed in the Presenter window. The Closer selector string
excludes the Marketing message.

5. Stop the Closer session by pressing CTRL+C.

6. Inthe Closer window start a new session, changing the selector string:

..\..\SonicMQ SelectorChat -u Closer -s Marketing
7. Type text in either window and then press ENTER.

Because the selector string matches for the sessions, the text is displayed in both
windows.

MessageGroupTalk (PTP)

In the MessageGroupTalk sample, a queue is set up on the broker that will enable message
grouping. Then producer applications send messages with message group identifiers. As
consumer applications are allocated messages by the broker, they are bound to message
groups.

To set up a queue that enables message grouping:

1. Start the SonicMQ container and broker (or confirm that they are already running),
then start the Management Console.

See Starting the SonicMQ Container and Management Console on page 70 for
instructions.

2. In the Management Console, click the Configure tab.

Aurea Software, Inc. Confidential 117 Copyright © 2013 Aurea, Inc.

Chapter 3: Examining the SonicMQ JMS Samples

3. Inthe left panel of the Management Console, expand the node for your broker
connection, right-click on the Queues node and select New Queue.

2 Sonic Management Console !E[E I

Action Edit Wiew Tools Window Help

[Connectionl {Domainl @

Configure -
Configure | Manage I

' Configured Objects Mame AI Global I Exclusive Save Threshaold Mazximurm Size
BT Archives Samplel Ha Ha 1536 1000
=30 Brokers sampleqz Mo Mo 1536 1000
=@ MamtBroker CampleCi3 Mo Mo 1536 1000
2 amlacid Mo Mo 1536 1000

@g Routing Show System Queuss
#-|7) Containers

£-{7) ESB Containers
£-{7) Framework Comr #| Refresh

£ Annokations. ..
£
£
[H-{5) Hosts Properties
£
£
Lt

-) Resources
-1 Security
-1 System
I ESE Configured Objects
[-{5) Endpoints

[+#-{5) E3B Containers

- 5) Services

Ready

4. Inthe New Queue dialog box, enter the queue name MessageGroupTalkQueue, as

shown:

Z New Queue

General I Message Groups |
*hame: |MessageGroupTaIkQueue
Save Threshold: |1536 Kbytes
Maximum Size: IIDDD Kbytes
Global: r
Exclusive: o

Cancel |

Aurea Software, Inc. Confidential 118 Copyright © 2013 Aurea, Inc.

Selection, Group, and Wild Card Samples

5.

6.

Click the Message Groups tab, and then select (check) Enable Message Group

Handling, as shown:

£ New Queue
General Message Groups l

Message Group
Enable message group handing: v
Property name for grouping: ISR GrouplD

Initial Message Dispatch

Max, wait kime after first receiver: |10000 seconds
Min. consumers to start dispatch: |2

Message Group Receivers

Group idle timeout: |-1 minutes

Caneel

Click OK.

The queue is created and ready to dispatch messages that request grouping on

dispatch to consumers.

To run MessageGroupTalk sessions:

Open a console window to the QueuePTP\MessageGroupTalk folder, then enter:

This command starts a MessageGroupTalk receiver session for the user Claims1.

This command also starts a MessageGroupTalk receiver session for the user Claims2.

1.
..\..\SonicMQ MessageGroupTalk -u Claimsl -qr
MessageGroupTalkQueue
2. Open another console window, then enter:
..\..\SonicMQ MessageGroupTalk -u Claims2 -qr
MessageGroupTalkQueue
Aurea Software, Inc. Confidential 119

Copyright © 2013 Aurea, Inc.

Chapter 3: Examining the SonicMQ JMS Samples

These are undifferentiated receivers. Without message grouping, they would take turns
receiving the messages off the queue.

1.

Open a console window, then enter:

..\..\SonicMQ MessageGroupTalk -u Adjusterl -gs
MessageGroupTalkQueue -g ABC

This command starts a MessageGroupTalk send session for the group ABC.

Open another console window, then enter:

..\..\SonicMQ MessageGroupTalk -u Adjuster2 -gs
MessageGroupTalkQueue -g DEF

This command starts a MessageGroupTalk send session for the group DEF.
In the Adjusterl window, type any text and then press ENTER.
The text is displayed in the window of its assigned receiver.

Notice that the message indicates the message group. That message group is bound
to that receiver as long as the broker and the receiver are running. (There is a settable
timeout based on inactivity, and the sender can explicitly tell the broker to close the
assigned receiver. See Using Message Grouping on page 288 for details.)

Enter more messages in the Adjusterl1 window.
The text is also displayed in the window of the assigned receiver to group ABC.
In the Adjuster2 window, type any text and then press ENTER.

The text is displayed in the window of its assigned receiver, which likely is the other
receiver.

Enter more messages in the Adjuster2 window.

The text is displayed in the window of the assigned Claims receiver to group DEF.

Keep these windows open while you explore other message grouping behaviors.

Reassignhing a message group’s receiver

1.

Stop the Claims1 receiver session by pressing CTRL+C. Then start it again using the
same commandline as before.

In each of the sender (Adjusterl and Adjuster2) windows, enter text. The messages
are both received in the Claims2 window. When you closed the other receiver, its
message group was reassigned by the broker to another active receiver.

Aurea Software, Inc. Confidential 120 Copyright © 2013 Aurea, Inc.

Selection, Group, and Wild Card Samples

Adding another sender (and group) and another receiver:

1. Open another console window, then enter:

..\..\SonicMQ MessageGroupTalk -u Claims3 -qr
MessageGroupTalkQueue

This command starts a MessageGroupTalk receiver session for the user Claims1.

2. Open a console window, then enter:

..\..\SonicMQ MessageGroupTalk -u Adjuster3 -gs
MessageGroupTalkQueue -g GHI

3. Inthe Adjuster3 window, enter a few messages.

Either the new receiver or the restarted receiver get the new group.
You can continue to explore the behaviors with other exercises:

e Stop Claims2 and then restart it. Send messages from each Adjuster. Note the two
groups assigned to that receiver are assigned to the other receivers.

e Stop an Adjuster, change its group name to the same group name as an active
Adjuster, and then restart it. Send messages from each Adjuster. Note that senders
to the same group are all received by the same assigned group receiver. Also notice
that starting and stopping the sender had no impact on the assigned group receivers.

HierarchicalChat Application (Pub/Sub)

SonicMQ provides a hierarchical topic structure that allows wild card subscriptions. This
feature enables an application to have the power of a message selector plus a more
streamlined way to often get the same result. In this sample, each application instance
creates two sessions, one for the publish topic (-t) and one for the subscribe topic (-s).

To start HierarchicalChat sessions:

1. Open a console window to the TopicPubSub\HierarchicalChat folder then
enter:

..\..\SonicMQ HierarchicalChat -u HQ -t sales.corp -s sales.*
This command starts two HierarchicalChat sessions for the user HQ:

e One session that publishes messages to the topic sales.corp

e One session that listens for messages from the subscribe topic sales.*

2. Open another console window to the TopicPubSub\HierarchicalChat folder
then enter:

..\..\SonicMQ HierarchicalChat -u America -t sales.usa -s
sales.usa

Aurea Software, Inc. Confidential 121 Copyright © 2013 Aurea, Inc.

Chapter 3: Examining the SonicMQ JMS Samples

This command starts two HierarchicalChat sessions for the user America:

e One session that publishes messages to the topic sales.usa

e One session that listens for messages from the subscribe topic sales.usa
To run HierarchicalChat:

1. Inthe HQ window, type text and then press ENTER.

The text is displayed in only the HQ window because HQ subscribes to all topics in the
sales hierarchy while America is subscribing to only the sales.usa topic.

2. Inthe America window, type text and then press ENTER.
The text is displayed in both windows because:

e America subscribes to the sales.usa topic.

e HQ subscribes to all topics that start with sales.

Reviewing the Selection, Group, and Wild Card
Samples

While selector strings can provide a variety of ways to qualify what messages will be
chosen for receipt by a consumer, the overhead in the evaluation of the selectors can slow
down overall system performance. See Message Selection on page 271 for more
information about message selectors.

Message groups enable queue senders in concert with broker queue administrators to
focus receivers on the queue on a series of messages that should be consumed in order.
While not as strict as exclusive receivers or transactions, message grouping provides pretty
good handling of sets messages as identified entirely by the message producers. See
Using Message Grouping on page 288 for more information about message grouping.

HierarchicalChat illustrates a feature of SonicMQ that can provide the advantages of
selectors with minimal overhead. Note also that security access control uses similar wild
card techniques to enable read/write security for all subtopics within a topic node. See
Hierarchical Name Spaces on page 411 for more information about hierarchical name
spaces selectors. For information on hierarchical security, see the Aurea SonicMQ
Deployment Guide.

Test Loop Sample

A simple loop test lets you experiment with messaging performance.

Aurea Software, Inc. Confidential 122 Copyright © 2013 Aurea, Inc.

Enhancing the Basic Samples

QueueRoundTrip Application (PTP)

The RoundTr1ip sample application sends a brief message to a sample queue and then uses
a temporary queue to receive the message back. A counter is incremented and the
message is sent for another trip. After completing the number of cycles you entered when
you started the test, the run completes by displaying summary and average statistics.

To run QueueRoundTrip:

1. Open a console window to the QueuePTP\QueueRoundTrip folder then enter:

..\..\SonicMQ QueueRoundTrip -n 100

This command starts a QueueRoundTrip session that sends a message on 100 round
trips to a temporary queue.

The QueueRoundTrip window displays information about the cycles, as shown:
Sending Messages to Temporary Queue...

Time for 100 sends and receives: 631ms
Average Time per message: 6.31ms

Press enter to continue...

2. In the QueueRoundTrip window enter:

..\..\SonicMQ QueueRoundTrip -n 1000

This command starts a QueueRoundTr1ip session that sends a message on 1000 round
trips to a temporary queue.

The QueueRoundTrip window displays information for the 1000 cycles, as shown:
Sending Messages to Temporary Queue...

Time for 1000 sends and receives: 5538ms
Average Time per message: 5.538ms

Press enter to continue...

Note: This sample lets you evaluate features and is not intended as a performance tool.
For information on performance, see the Aurea SonicMQ Performance Tuning
Guide.

Enhancing the Basic Samples

After exploring the basic samples you can modify the sample source files to learn more
about SonicMQ. You need a Java compiler to compile your changes.

Aurea Software, Inc. Confidential 123 Copyright © 2013 Aurea, Inc.

Chapter 3: Examining the SonicMQ JMS Samples

Use Common Topics Across Clients

When you run the Pub/Sub samples you might notice that while all the Chat applications

get Chat messages and all the DurableChat applications get DurableChat messages, they
do not receive each other's messages. This is because the applications are publishing to
different topics. You can set the two applications to monitor messages on the same topic.

To put Chat and DurableChat on the same topic:

1. Open the SonicMQ sample file burableChat. java for editing.

2. Change the value of the variable APP_TOPIC from jms.samples.durablechat
to jms.samples.chat.

3. Save and compile the edited DurableChat. java file.

4. Run the new DurableChat.class file.

Now messages sent from DurableChat and Chat are received by both regular and durable
subscribers. The durable subscribers will receive messages when they recover from offline
situations, but the regular subscribers will not recover missed messages.

Important: If you make this change, the broker will maintain the durable subscriptions for
all the Chat messages. While Durab1eChat messages expire after 30 minutes,
Chat messages are published with the default time-to-live (never expire). The
Chat messages will endure for durable subscribers until one of the following
OCCUrs:

The durable subscriber connects to receive the messages.
The durable subscriber explicitly unsubscribes.

The persistent storage mechanism is initialized.

Trying Different RoundTrip Settings

The RoundTrip sample application lets you choose a number of produce-then-consume
iterations to perform when the application runs. You can enhance the application to explore
the time impact of other settings and parameters as well.

Note: This sample lets you evaluate features and is not intended as a performance tool.
For information on performance, see the Aurea SonicMQ Performance Tuning
Guide.

A counter is incremented and the message is sent for another trip. After completing the
number of cycles you entered when you started the test, the run completes by displaying
summary and average statistics.

Aurea Software, Inc. Confidential 124 Copyright © 2013 Aurea, Inc.

Enhancing the Basic Samples

To extend the QueueRoundTrip sample:

1. Edit the SonicMQ sample file QueuePTP\QueueRoundTrip. java to establish any
of the following behavior changes:

e Change the javax.jms.message.DeliveryMode from NON_PERSISTENT to
PERSISTENT. Run it, then change it to NON_PERSISTENT_ASYNC.

e You could change the priority or timeToLive values, but in this sample the
effect would be negligible.

e Change the message type from the bodyless createMessage() to a bodied
message type, such as createTextMessage().

e Create a set of sample strings (or other appropriate data type) to populate a
bodied-message payload with different size payloads.

e Use createXMLMessage() and load the message payload with well-formed XML
data. Then try the same payload as a TextMessage.

e Change the receiver session acknowledgement mode from AUTO_ACKNOWLEDGE to
DUPS_OK_ACKNOWLEDGEMENT. Change it again to CLIENT_ACKNOWLEDGE or
SINGLE_MESSAGE_ACKNOWLEDGE, then add an explicit acknowledge() after the
receive is completed.

2. Save and compile the edited . java file.

3. Open a console window to the QueuePTP\QueueRoundTrip folder then enter

..\..\SonicMQ QueueRoundTrip -n 100

4. Look at the results and compare them to other round trips (see QueueRoundTrip
Application (PTP) on page 123).

Modifying the MapMessage to Use Other Data
Types

The concept of the MapMessage sample application is limited when its content is just a
snippet of text. The key concepts of the MapMessage sample are that:

e The body is a collection of name-value pairs.
e The values can be Java primitives.
e The receiver can access the names in any sequence.

e The receiver can attempt to coerce a value to another data type.

The following exercise adds some mixed data types to the MapTalk source file before the
message is sent. Then the receiver takes the data in a different sequence and formats it for
display.

The example uses typed set() methods to populate the message with name-typedvalue
pairs. The get() methods retrieve the named properties and attempt coercion if the data
type is dissimilar.

Aurea Software, Inc. Confidential 125 Copyright © 2013 Aurea, Inc.

Chapter 3: Examining the SonicMQ JMS Samples

To extend the MapTalk sample to use and display other data types:

1.

4,

5.

Edit the SonicMQ sample file MapTalk.java at the lines:
javax.jms.MapMessage msg = sendSession.createMapMessage () ;
msg.setString ("sender", username) ;

msg.setString ("content", s);

Add the lines for the set() methods (or your similar lines):

msg.setInt ("FiscalYearEnd", 10);

msg . setString ("Distribution", "global") ;

msg.setBoolean ("LineOfCredit", true) ;

You must extract the additional data by get() methods to expose the values in the
receiving application. Because the sample is a text-based display, you can include the
getString () methods in the construction of the string that will display in the console.

Change this:
String content = mapMessage.getString("content") ;
System.out .println(sender + “: “ + content) ;

to:

SString content =

("Content: " + mapMessage.getString("content") + "\n" +

"Distribution: " + mapMessage.getString("Distribution™") + "\n"
+

"FiscalYearEnd: " + mapMessage.getString("FiscalYearEnd") +
"\I’l" +

"LineOfCredit: " + mapMessage.getString("LineOfCredit") +
ll\nll) ;
System.out .println("MapMessage from " + sender + "\n------- \n" +
content) ;

Save and compile the edited . java file.

Run the edited .class file.

Now when the MapTalk sample runs, the content is the text you typed plus the mapped,
resequenced, and converted properties.

Aurea Software, Inc. Confidential 126 Copyright © 2013 Aurea, Inc.

Enhancing the Basic Samples

Modifying the XMLMessage Sample to Show
More Data

The XMLDOMTalk and XMLDOMChat samples for the XMLMessage type are limited to the data
that is input as text as a single content node. While the data collection/validation loops and
the data transfers from application data stores are reserved as more advanced exercises,
this example demonstrates how well-formed XML data is transformed into DocNodes from
the org.w3c.dom.Node standards.

To extend the XMLDOMChat sample to show more data:

1. Edit the SonicMQ sample file XMLDOMChat. java starting after:
// Note that the XMLMessage is a aurea Software extension

progress.message.jclient.XMLMessage XMsg =

StringBuffer msg = new StringBuffer () ;

msg.append ("<?xml version=\"1.0\"?>\n");

msg.append ("<message>\n") ;

msg.append (" <sender> + username + “</sender>\n");
msg.append (" <content> + s + “</content>\n");

2. Insert the formatted, tagged XML lines you want to append to the message. For
example:

msg.append ("<RFP>\n") ;

msg.append ("<REQUEST>\n") ;

msg.append ("<REQ ID>1125-2000-225</REQ ID> \n");
msg.append ("<FOB>Portland Maine</FOB> \n") ;
msg.append (" <RFP_DUE>31—JAN—2000</RFP_DUE> \n") ;
msg.append ("<DELIVERY DUE>15-AUG-2 OOO</DELIVERY_DUE> \n") ;
msg.append ("<CATEGORY>Grains</CATEGORY> \n") ;
msg.append ("<LINE ITEMS>\n") ;

msg.append ("<LINE>\n") ;

msg.append ("<ITEM>1125-2000-225.1 Wheat</ITEM> \n");
msg.append ("<QTY>10000 tons</QTY>\n");

msg.append ("</LINE> \n");

msg.append ("<LINE>\n") ;

msg.append ("<ITEM>1125-2000-225.2 Rice</ITEM> \n");

Aurea Software, Inc. Confidential 127 Copyright © 2013 Aurea, Inc.

Chapter 3: Examining the SonicMQ JMS Samples

msg.

msg.

msg.

msg.

msg.

msg.

msg.

msg

msg.

msg.

append

append

append

append

append

append

append

. append

append

append

("<QTY>20000 tons</QTY>\n") ;
("</LINE>\n") ;

("<LINE>\n") ;
("<ITEM>1125-2000-225.3 Corn</ITEM>
("<QTY>40000 tons</QTY> \n");
("</LINE> \n");

("</LINE ITEMS> \n");

("</REQUEST> \n") ;

("</RFP> \n") ;

("</message> \n") ;

3. Save and compile the edited .java file.

4. Run the edited .class file.

\n") ;

Aurea Software, Inc. Confidential

128

Copyright © 2013 Aurea, Inc.

Enhancing the Basic Samples

When you run the application and enter a basic text message, the complete document
object model (DOM) is also displayed, similar to the subscriber session listing in Figure 35.

Figure 35: XMLMessage Parsed into a Document Object Model

samples TopicPubSub - __\ \SonicM XMLChat -u Central_Grain_Coop !Em

[XML from "UNICEF'] New RFP, issued 11-NHO¥-1999 11:15 AM
ELEMENT: message
| -—-NEWLINE
+-—ELEMENT: RFP
| --NEWLINE
+--ELEMENT : REQUEST

| -—NEWLINE

+-—ELEMENT: REQ_ID

| --TEXT_NODE: 1125-2000-225
| -—-TEXT_NODE :

+--ELEMENT: FOB
| --TEXT_NODE: Portland Maine
| -——TEXT_NODE:

+-—ELEMENT: RFP_DUE
| --TEXT_NODE: 31-JAN-2000
| -—-TEXT_NODE :

+——ELEMENT: DELIVERY_DUE
| --TEXT_NODE: 15-AUG-2000
| -——TEXT_NODE:

+--ELEMENT: CATEGORY
| --TEXT_NODE: Grains
| --TEXT_NODE =

+——ELEMENT: LINE_ITEMS
| -—-NEWLINE
+--ELEMENT: LINE
| --NEWLINE
+-—-ELEMENT: ITEM
|-—-TEXT_NODE: 1125-2000-225.1 Wheat
| --TEXT_NODE :

+-—-ELEMENT: QTY
| -——-TEXT_NODE: 10000 tons
| -—NEWLINE
| --TEXT_NODE :

+-—ELEMENT: LINE
| -—NEWLINE
+-—-ELEMENT: ITEM
| -—TEXT_HODE: 1125-2000-225.2 Rice
| -—TEXT_NODE :

+--ELEMENT: OTY
|--TEXT_NODE: 20000 tons
| --NEWLINE
| -—NEWLINE
+--ELEMENT: LINE
| -—NEWLINE
+——-ELEMENT: ITEM
|--TEXT_NODE: 1125-2000-225.3 Corn
| --TEXT_NODE :

+-—ELEMENT: QTY
| --TEXT_NODE: 40000 tons
| --TEXT_NODE :
| --TEXT_NODE:
| -——TEXT_NODE :
| --TEXT_NODE :
| --TEXT_NODE :
+--ELEMENT: sender
| --TEXT_HODE: UNICEF
| -—-NEWLINE
+--ELEMENT: content
|--TEXT_NODE: Hew RFP, issued 11-NOV-1999 11:15 AM
| -—-NEWLINE

4| | v

Aurea Software, Inc. Confidential 129

Copyright © 2013 Aurea, Inc.

Chapter 3: Examining the SonicMQ JMS Samples

Because the data is interpreted in the DOM format only when the message is an instance
of an XMLMessage, a Chat session displays the same message as a TextMessage—
the XML-tagged text without DOM interpretation, as shown in Figure 36.

Figure 36: XMLMessage as Tagged Text

r; samples TopicPub5ub - __%\ _\SonicMO Chat -u Just_Text

cmessages
<RFP>
<REQUEST> J
<REQ_ID>1125-2000-225 < /REQ_ID>

<FOB>Portland Mainec</FOB>»
<RFP_DUE>31-JAN-2000</RFP_DUE>
«DELIVERY_DUE>15-AUG-2000 </DELIVERY_DUE>
«CATEGORY»Grainsc/CATEGORY >

<LINE_ITEMS>»

<LINE>

<ITEM>1125-2000-225.1 Wheat</ITEM>
<«QTY>10000 tonsc/QTY>

</LINE>

<LINE>

<cITEM>1125-2000-225.2 Ricec/ITEM>»
<«QTY>20000 tons</QTY>

</LINE>

<LINE>»

<ITEM>1125-2000-225.3 Cornc/ITEM>»
<QTY>40000 tons</QTY>

</LINE>»

</LINE_ITEMS>

</REQUEST>»

</RFP>

<sender>UNICEF ¢/senders

ccontents>New RFP, issued 11-NDV-1999 11:15 AMc/content>s
</messager

fm
il

4

Note: You could have appended the XML tagged lines without the \n, suppressing the
blank TEXT_MODE lines in the DOM. It would, however, make one unbroken text line
for general text or raw XML review.

You can continue working with the samples by changing broker settings to explore
connection protocols and protocol handlers. You can also enable security on the broker
persistent storage mechanism then examine the protocols that provide connection security.

For information about using protocols and security, see the Aurea SonicMQ Configuration
and Management Guide.

Aurea Software, Inc. Confidential 130 Copyright © 2013 Aurea, Inc.

SonicMQ Connections

This chapter explains the programming concepts and actions required to establish and
maintain SonicMQ connections. This chapter contains the following sections:

Overview of SonicMQ Connections on page 132
Protocols on page 133

JVM Command Options on page 139

Connection Factories and Connections on page 142
Client Persistence on page 163

Asynchronous Message Delivery on page 167
Fault-Tolerant Connections on page 172

Starting, Stopping, and Closing Connections on page 202
Using Multiple Connections on page 203

Communication Layer on page 203

Aurea Software, Inc. Confidential 131

Copyright © 2013 Aurea, Inc.

Chapter 4: SonicMQ Connections

Overview of SonicMQ Connections

The SonicMQ clients provide a lightweight platform that can access the messaging features
provided by the SonicMQ brokers. In the JMS programming model, a programmer creates
JMS connections that establish the application’s identity and specify how the connection
with the broker will be maintained. Within each connection, one or more sessions are
established. Each session is used for a unique delivery thread for messages that are
delivered to the client application. This chapter explains the programming required to
establish and maintain client connections to brokers. Chapter 5, SonicMQ Client Sessions
on page 205 explains the programming required to establish and maintain client sessions.

A SonicMQ application starts by accessing a ConnectionFactory and using this to create
a connection that binds the client to the broker (see JVM Command Options on page 139).
ConnectionFactory objects are administered objects—objects with connection
configuration parameters that can be defined by an administrator (see Connecting to
SonicMQ Using Administered Objects on page 152), or created by the client application.

Within a connection, one or more sessions can be created. Each session establishes a
single-threaded context in which messages can be sent or received. Figure 37 shows a
client application where one connection has been made through which one session has
been established. The client application uses programmatic interfaces to the JMS Client
API that are executed through the SonicMQ client runtime on the session.

Figure 37: JMS Session on a Connection

Client Application

JMS Client API

[ConnectionFactory

SonicMQ
Broker

Z0—unumwm

Multiple sessions can be established on a single connection. Once the connection and
sessions are established, the broker traffic can be either:

e A message producer delivering a message to its broker

e A broker delivering a message to an application that will consume it

Aurea Software, Inc. Confidential 132 Copyright © 2013 Aurea, Inc.

Protocols

In the example shown in Figure 38, two sessions exist on the same connection.

Figure 38: Producers and Consumers
S
E
S
S -
| SonicMQ
[e) Broker
N PRODUCER publishes, sends
Messages DESTINATION
CONSUMER subscribes, receives

Z0—uwunmw

See Chapter 7, on page 261 for more information about message producers and
consumers.

Protocols

This section describes the protocols that client applications use for broker communication
from a JMS client application:

e TCP on page 133

e SSL onpage 134

e HTTP on page 138

e HTTPS on page 138

e “sonicrn:///" on page 138

These protocols are nearly transparent within the application. When the port acceptor on

the broker matches the connection factory parameter from the application, connection can
be established under that protocol.

See Connecting to SonicMQ Directly on page 152 for details on explicit use of the protocol
value.

Note: For information on "sonicrn:///" Protocol, refer to Location Tranparency chapter in
Aurea SonicMQ Deployment Guide.

TCP

TCP is the default socket type for SonicMQ. Client applications that are Internet-enabled
generally use TCP/IP protocols.

Aurea Software, Inc. Confidential 133 Copyright © 2013 Aurea, Inc.

Chapter 4: SonicMQ Connections

SSL

SonicMQ supports encryption at the connection level through SSL. SonicMQ ships with
Java Secure Socket Extensions (JSSE) SSL. If you have a business arrangement with RSA
Security such that you have BSAFE-J SSL libraries from RSA Security, you can add the
RSA libraries to your broker installation, and set the broker to use RSA SSL.

See the Aurea SonicMQ Deployment Guide for more information about SSL, and how to
configure JSSE and RSA SSL on the broker and between brokers.

Using SSL on the Client

Transport layer security between a client application and a broker involves a set of libraries
and files on the client and the broker that enable SSL connectivity. Clients need to set
several Java runtime properties to identify the SSL provider, the certificates, and the cipher
suites preferred for the encryption of the communication channel.

These properties can be established in any one of the following ways:

e Command line — Pass the SSL properties at the command line when starting the
application.

e Programmatically — Code the SSL properties directly into your application.
e Properties — Create and reference a properties file containing SSL properties.

e Scripts — Create and run a script to pass the SSL properties when starting the
application. If you plan to run an application with SSL more than once, you will save
time by writing a script to add the properties.

Authentication

Authentication is the process of presenting an identity to the broker and then providing a
password or certificate that certifies the user’s credentials.

Using Authentication via Username and Password

The following procedure explains how to run an application with SSL with client
authentication via username and password.

Aurea Software, Inc. Confidential 134 Copyright © 2013 Aurea, Inc.

Protocols

To run the Talk sample application using SSL with password-based client
authentication:

Note: The following steps on the broker use the Management Console. For detailed
procedures to perform these steps, see the section “Configuring SSL on
Acceptors” in the chapter “Configuring Acceptors” in the Aurea SonicMQ
Configuration and Management Guide.

1. Onthe broker:
a. Set up or choose an acceptor for SSL connections.

b. Clear the option to enable client authentication, as shown in this view from the
Management Console:

Client Authentication

Enable: [

Directary: I

c. Set up two users on the broker:
e aUser with the password aPassword
e buUser with the password bPassword
2. On the client:

a. Open a console window at the directory level of the application you want to run.
For example:

MQ2013_install root\samples\QueuePTP\Talk
b. Enter the following code as a single line in the console window:

..\..\SonicMQ -DSSL CA CERTIFICATES DIR=MQ2013 install root\certs\CA
Talk -b ssl://localhost:2506 -u aUser -p aPassword
-gr SampleQl -gs SampleQ2

The authenticated user is accepted and the application starts.

3. Youcan send messages between clients using SSL. To demonstrate this process with
the Talk sample application, you can either administratively add another user to the
broker’s authentication domain or start another instance of the user already added, as
follows:

a. Open another console window to the directory level of the Talk application, and
start the Talk application in this window:

..\..\SonicMQ -DSSL CA CERTIFICATES DIR=MQ2013 install root\certs\CA
Talk -b ssl://localhost:2506 -u aUser -p aPassword
-gr SampleQ2 -gs SampleQl

b. Send messages from each console window and observe the messages as each
is received in the other window.

Aurea Software, Inc. Confidential 135 Copyright © 2013 Aurea, Inc.

Chapter 4: SonicMQ Connections

Using SSL Authentication via Mutual Certificates

SonicMQ always uses server authentication when using SSL. To have mutual
authentication, you must enable Client Authentication on the broker’s acceptor. The
following procedure explains how to run an application with SSL with client authentication
via client certificate.

To run the Talk sample application with client authentication via a client certificate:

Note: The following steps on the broker use the Management Console. For detailed
procedures to perform these steps, see the section “Configuring SSL on
Acceptors” in the chapter “Configuring Acceptors” in the Aurea SonicMQ
Configuration and Management Guide.

On the broker:

1. Set up or choose an acceptor for SSL connections.

2. Choose the option to enable client authentication, as shown in this view from the
Management Console:

Clienkt Authentication

Enable: v

Directory: Icerts,l'C.ﬂ.

On the client:

1. Open a console window at the directory level of the application you want to run. For
example:

MQ2013 install root\samples\QueuePTP\Talk
2. Enter the following code as a single line in the console window:

..\..\SonicMQ

-DSSL_CA CERTIFICATES DIR=MQ2013 install root\certs\CA
-DSSL_CERTIFICATE CHAIN=MQ2013 install root\certs\client.p7c
-DSSL_PRIVATE KEY=MQ2013_install_root\certs\clientKey.pkcs8
-DSSL_PRIVATE KEY PASSWORD=password

-DSSL _CERTIFICATE CHAIN FORM=PKCS7

Talk -b ssl://localhost:2506 -u AUTHENTICATED

-gr SampleQl -gs SampleQ2

The connection is authenticated by a mutual exchange of certificates between the
client and broker.

Optional:

You can also open another console window at the directory level of the application and
start the application by passing the username and password in the command line. This
step requires that you have previously added a user with username and password to

Aurea Software, Inc. Confidential 136 Copyright © 2013 Aurea, Inc.

Protocols

the broker’s authentication domain. For example, if you have added a user with
username bUser and password bPassword, you can enter the following command:

..\..\SonicMQ

-DSSL_CA CERTIFICATES DIR=MQ2013 install root\certs\CA
-DSSL_CERTIFICATE CHAIN=MQ2013 install root\certs\client.p7c
-DSSL_PRIVATE KEY=MQ2013 install root\certs\clientKey.pkcs8
-DSSL_PRIVATE KEY PASSWORD=password
-DSSL_CERTIFICATE CHAIN_ FORM=PKCS7

Talk -b ssl://localhost:2506 -u bUser -p bPassword
-gr SampleQ2 -gs SampleQl

The connection is authenticated by a mutual exchange of certificates between the
client and broker, and the broker additionally authenticates the client with the
username and password.

Enter messages in both windows, and observe the messages as each is received in
the other window.

Now you can open more clients and work with the Talk sample application, or implement
SSL for other sample applications included with SonicMQ. For each client application, you
must either:

e Import a certificate and include the user parameter with username AUTHENTICATED
when running the sample application.

e Add the user with username and password and provide the password parameter with
the password when running the sample application.

Setting Cipher Suites

In SonicMQ), if no cipher suite is specified explicitly, all supported cipher suites are enabled.
The client application can provide a subset of the available cipher suites by listing them in
the preferred order. For example, using JSSE cipher suites:

-DSSL_CIPHER SUITES=SSL RSA WITH NULL_MD5,SSL_DH anon WITH RC4 128 MD5
This statement indicates the following:

e If the broker has the cipher suite SSL_RSA_WITH_NULL_MD5, that suite should be used.

. If the broker does not have that suite, the suite SSL_DH_anon_WITH_RC4_128_MD5
should be tried.

. If neither suite is available, the SSL communication fails regardless of whether the
client and server might have compatible cipher suites available in their libraries.

For a list of cipher suite options for SonicMQ, see the section “Cipher Suites” in the chapter
“Channel Encryption” in the Aurea SonicMQ Deployment Guide.

For information about implementing your own security using the SonicMQ Login SPI, or
about using the Login SPI to plug in a Java Authentication and Authorization Service
(JAAS) based authentication feature, see the chapter “Security Considerations in System
Design” in the Aurea SonicMQ Deployment Guide.

Aurea Software, Inc. Confidential 137 Copyright © 2013 Aurea, Inc.

Chapter 4: SonicMQ Connections

HTTP

HTTP is used extensively in SonicMQ. This book focuses on HTTP as a way to establish
and maintain client connection to a messaging broker on host port. HTTP's other
functionality is discussed in the following sections of the Aurea SonicMQ Deployment
Guide:

e HTTP Tunneling — How to set up firewalls and proxy servers is discussed in the
Aurea SonicMQ Deployment Guide chapter “Security Considerations in System
Design.”

e HTTP Direct — SonicMQ can interface with pure HTTP Web applications and Web
Servers. For example:

e Inbound to the SonicMQ broker, protocol handlers on acceptors let SonicMQ act
as a Web Server, transforming received HTTP documents into JMS messages.

e OQutbound from the SonicMQ broker, sending JMS messages to routing
connections that translate the JMS message into a well-formed HTTP message
before sending to the designated URL (typically a Web server).

HTTP Direct is a way to handle messages one-by-one at the broker without
establishing connections and sessions. Other than programmatically setting X-HTTP-*
properties on the IMS message outbound to the routing node (see page User-defined
Properties on page 256 for details), this book does not discuss the general
functionality of HTTP Direct. See the Aurea SonicMQ Deployment Guide section on
“Using HTTP(S) Direct” for information about HTTP Direct.

Using HTTP in a connection attempts to use the host and port that you designate as an
entry pointto HTTP tunneling. See the “TCP and HTTP Tunneling Protocols” chapter of the
Aurea SonicMQ Deployment Guide for information about HTTP tunneling.

HTTPS

HTTPS tunneling is similar to HTTP except that data is transmitted over a secure socket
layer instead of a normal socket connection. The broker has a different acceptor
(configured for HTTPS) than the acceptor that accepts HTTP requests.

Secured HTTP tunneling is discussed in the chapter “SSL and HTTPS Tunneling
Protocols” in the Aurea SonicMQ Deployment Guide.

HTTPS can be implemented:

° In client-to-broker or broker-to-broker connections
e With or without proxy servers

e Under HTTP forward proxy

sonicrn:///

The "sonicrn://[" protocol can be specified as an alternative to regular SonicMQ factory
connection URLs in:

Aurea Software, Inc. Confidential 138 Copyright © 2013 Aurea, Inc.

JVM Command Options

e SonicMQ connection factories stored in the Sonic JNDI SPI

e SonicESB connection configurations.

Note: Only a single “sonicrn:///” URL may be specified.

JVM Command Options

Several command options can be used in the client application command line, whether it is
in a script or an entry line. The following are some of the Java command options available
in SonicMQ.

HTTP Tunneling through an Authenticating
Proxy

SonicMQ supports three HTTP Authentication schemes for HTTP tunneling connections:
Basic, Digest and NTLM. When a proxy presents multiple authentication challenges the
client selects the preferred scheme in the following order Digest, NTLM then Basic.

Specifying Credentials

There are several ways to specify the username and password to use for HTTP
authentication. (When running from an applet, this is not necessary as the browser handles
HTTP credentials.)

e By setting the following System properties:
-Dsonic.http.proxyUsername=username

-Dsonic.http.proxyPassword=password

e By setting the following System property:
-Dsonic.http.authenticator=className

where className is the name of an accessible class that provides a concrete
implementation of java.net.Authenticator.

e By registering an instance of a java.net.Authenticator via
java.net.Authenticator.setDefault(java.net.Authenticator)

NTLM Authentication

A client can perform NTLMv1 authentication if a proxy requests it. For regular Java
applications SonicMQ NTLM authentication is supported on all platforms. When running
from an Applet NTLM authentication is currently only supported on Windows machines and
it is up to the browswer plugin to handle NTLM authentication.

Aurea Software, Inc. Confidential 139 Copyright © 2013 Aurea, Inc.

Chapter 4: SonicMQ Connections

When NTLM is used as the authentication scheme a Windows domain name must be
provided. This can be done in one of two ways:

e By prepending the domain to the username separated by a backslash, as shown:
DOMAIN\<usernames.
This method takes precedence over the following one.

e By setting the following System property:
-Dhttp.auth.ntlm.domain=domain

where domain is the Windows domain name.

NTLM authentication also requires that a workstation name be provided. By default the
machine’s hostname is used if it can be obtained, otherwise it can be specified explicitly by
setting the following System property:

-Dsonic.http.auth.ntlmWorkStation=workstation

HTTP Forward Proxy

In order to configure an HTTP tunneling client through a forward proxy, the following
standard JDK properties are supported to specify the forwarding proxy host:

-Dhttp.proxyHost=proxy host name
-Dhttp.proxyPort=proxy host port

HTTPS Forward Proxy

In order to configure an HTTPS tunneling client through a forward proxy, the following
SonicMQ properties are supported to specify the forwarding proxy host:

-Dhttps.proxyHost=proxy host name
-Dhttps.proxyPort=proxy host port

Aurea Software, Inc. Confidential 140 Copyright © 2013 Aurea, Inc.

JVM Command Options

HTTPS Tunneling Through an Authenticating
Forward Proxy

If you want to tunnel through a secure forward proxy server using HTTPS, use the following
procedures for authentication:

Note: Proxy authentication requires that the client uses Sun JVM 1.4.1 02 or similar.

1. Enable tunneling via a secure proxy

Set the system property -Dsonic.https.proxyAuthentication on the client's Java
command line to enable tunneling through a secure proxy using
javax.net.ss1.HttpsURLConnection. Since the JVM's HttpsURLConnection class
uses JSSE, the required CA certificates must be imported to a trustStore.

If client authentication is enabled on the broker, the client certificate and its
corresponding private key must be imported to a keyStore as well.

See Sun's JSSE documentation for more details.
2. Register an Authenticator

A concrete subclass of java.net.Authenticator is required to handle proxy
authentication. Applications register an authenticator programatically using the static
method setDefault of the java.net.Authenticator class.

Instead, you can direct the Sonic runtime to install an authenticator by specifying the
package qualified class name as the -D system property
sonic.https.proxyAuthenticator on the client's Java command line.

A default authenticator for BASIC authentication is provided if the system properties
sonic.https.proxyUsername and sonic.https.proxyPassword are specified.

3. Register a Hostname Verifier

A concrete subclass of javax.net.ss1.HostnameVerifier is required to register a
hostname verifier. An application can register a hostname verifier programatically
using the setHostnameVerifier method of the HttpsURLConnection class.

Instead, you can direct the Sonic runtime to install a hostname verifier by specifying
the -D system property sonic.https.hostnameVerifier on the client's Java
command line.

A default hostname verifier that accepts any hostname in the certificate is provided if
the -D system property sonic.https.useAnyHostnameVerifier is specified.

Aurea Software, Inc. Confidential 141 Copyright © 2013 Aurea, Inc.

Chapter 4: SonicMQ Connections

SSL/HTTPS

The following SSL command options were shown in the procedure for running the Talk
sample application with client authentication via a client certificate on page 136:

-DSSL_CA CERTIFICATES DIR=MQ2013 install root\certs\CA
-DSSL_CERTIFICATE CHAIN=MQ2013_ install root\certs\client.p7c
-DSSL_PRIVATE KEY=MQ2013_install root\certs\clientKey.pkcs8
-DSSL PRIVATE KEY PASSWORD=password

-DSSL CERTIFICATE CHAIN FORM=PKCS7

Nagle Algorithm

The Nagle algorithm allows buffering of small data before sending the data as a fully
constructed IP packet. By default, this algorithm is disabled.

To enable this algorithm, set -DSonicMQ. TCP_NODELAY=false on the JVM command line; to
disable it, set -DSonicMQ.TCP_NODELAY=true.

HTTP Map Host to IP

This client setting indicates whether conversion of the host name to its corresponding IP
Address should be attempted before connecting. In some environments, the client system
does not have a DNS available but the forward proxy server system does. When this
property is set to false, the HTTP requests are sent from the client to the forward proxy,
with the HOST header set to the host name instead of the host's IP address. This allows the
DNS lookup to be delayed until the proxy server tries to establish the connection to that
host.

The syntax of the property is:

-DHTTP_MAP HOST TO IP=[true|false]

where:

e true causes conversion of the host name to its IP address before connecting (this
is the default value)

e false causes no conversion of the host name to its IP address before connecting

Connection Factories and Connections

The following sections describe how to use connection factories to create connections with
SonicMQ broker.

Aurea Software, Inc. Confidential 142 Copyright © 2013 Aurea, Inc.

Connection Factories and Connections

Connection Factories

To establish a Java connection with the SonicMQ broker, a Java client uses a
ConnectionFactory object. Prior to JMS 1.1, model-specific factories were required for the
Pub/Sub and Point-to-Point message models; however, beginning in JMS 1.1, common
connection factories can be used for both models.

These common connection factories are:

e ConnectionFactory

e XAConnectionFactory
Java clients can obtain a connection factory in the following three ways:

e Instantiating a new connection factory object by specifying connection information in
the object constructor (and possibly customizing further using set methods on the
factory)

e Obtaining a preconfigured connection factory object from a JNDI store

e Deserializing a preconfigured factory object from a file
Each of these techniques is described in this chapter.

SonicMQ connection factory objects encapsulate the information needed to connect and
configure the SonicMQ JMS client connection. This information might be specified or
defaulted to include:

e Host, port, and protocol information
e User, password, and other identity information

e Load balancing, fault-tolerance, selector location, and similar connection or session
behavioral settings

The most important connection factory, and hence connection, settings are discussed
below. Some of the settings are identifiers that differentiate and distinguish JMS client
registrations. These identifiers have specific name restrictions, shown in Table 4.

Important: Table 4 lists characters that are not allowed in SonicMQ. You must not use
these restricted characters in your identifier names.See also Appendix A of
Aurea Sonic Installation and Upgrade Guide for a complete reference to use
of characters in SonicMQ names.

Table 4: Restricted Characters for Names
Parameter Restricted Characters
ClientID pound (#), dollar sign ($), percent sign (%), asterisk (*), and
period (.)
ConnectID pound (#), dollar sign ($), asterisk (*), period (.), and slash (/)

Aurea Software, Inc. Confidential 143 Copyright © 2013 Aurea, Inc.

Chapter 4: SonicMQ Connections

Table 4: Restricted Characters for Names
Parameter Restricted Characters
Durable dollar sign ($), period (.), slash (/), and backslash (\).

Subscription | Note that asterisk (*) and pound sign (#) have wildcard meaning.

User asterisk (*), pound (#), dollar sign ($), slash (/), and backslash (\).

Note: Although a Durable Subscription name is not a connection factory setting, it is
included in Table 4 for completeness.

A "sonicrn://[" URL is specified in the form:

sonicrn:///<routing node name>[?<parameter name>=<parameter
value>[&<parameter name>=<parameter value>]...]

where:
<routing node name> is the SonicMQ routing node name for the broker or cluster
to which connections will be made
<parameter name>=<parameter value> is a supported "sonicrn:///" URL
parameter from the following:
Parameter Name Parameter Value
acceptor The value should map to the name given to one or more
configured broker acceptors (e.g. the default TCP acceptor
of a new SonicMQ broker is "TCP_ACCEPTOR".
Note: This parameter can be specified multiple times.
visibility Legal values are "all", "external” or "internal" (default "all")
(see “Visibility” discussion below)

At runtime, a connecting SonicMQ JMS client using a “sonicrn:///" URL will actually connect
using the resolved form of the URL.

URL

The Uniform Resource Locator identifies the broker where the connection is intended. The
URL is in the form:

[protocol://]lhostname [:port]
where:

e protocol is the broker's communication protocol (default value: tcp).

e hostname is a networked SonicMQ broker machine.

Aurea Software, Inc. Confidential 144 Copyright © 2013 Aurea, Inc.

Connection Factories and Connections

e port isthe port on the host where the broker is listening. The broker’s default
port value is 2506.

e For HTTP direct, you can also add a ur1 extension that determines the
parameters and factories.

ConnectlID

The ConnectID determines whether the broker allows multiple connections to be
established using a single username/ConnectID combination. You control the broker’s
behavior by calling the ConnectionFactory.setConnectID(String connectID) method:

e To allow only one connection, provide a valid connectID.

° To allow unlimited connections, use null as the connectID.

You can create a valid ConnectID by combining the username with some additional
identifier.

Note: See Table 4 for a list of restricted characters for ConnectID names.

ConnectID can also be preconfigured in a ConnectionFactory administered object, or
passed as an argument to a SonicMQ ConnectionFactory object constructor.

Username and Password

The username and password define a principal’s identity maintained by the SonicMQ
broker’'s authentication domain to authenticate a user with the SonicMQ broker and the
broker’s authorization policy to establish permissions and access rights. These parameters
are optional. When both parameters are omitted, they both default to “”, an empty string.
When security is not enabled, the username is simply a text label.

A username can be:

e Preconfigured in a ConnectionFactory administered object

J Passed as a parameter to a ConnectionFactory constructor

) Passed as a parameter to the ConnectionFactory.createConnection() method
Under the SSL protocol, client authentication can be achieved by retrieving the username

from the client certificate. In that case you simply pass the special-purpose username
AUTHENTICATED. The password is ignored.

Note: See Table 4 for a list of restricted characters for usernames.

ClientID

The ClientID is a unique identifier that can avoid conflicts for durable subscriptions when
many clients might be using the same username and the same subscription name.

Aurea Software, Inc. Confidential 145 Copyright © 2013 Aurea, Inc.

Chapter 4: SonicMQ Connections

To set the value of the ClientID, do one of the following:

1. Inthe client application, immediately after creating a connection, call the
Connection.setClientID(String clientid) method.

2. Setthe ClientIDinthe ConnectionFactory. You can either preconfigure the ClientID
via the IMS Administered Objects tool in the Sonic Management Console, or you can
call ConnectionFactory.setClientID(String clientid) in the client application.

If you preconfigure the C1ientID, calling ConnectionFactory.setClientID(String
clientid) throws an I11egalStateException.

See Table 4 for a list of restricted characters for C1ientID names.

Load Balancing

Any broker in a cluster can redirect incoming client connections to another broker in the
same cluster for the purpose of load balancing. Load balancing must be configured on the
broker. The client must also be configured to indicate that it is willing to have a connect
request re-directed to another broker.

To configure the client to allow load-balancing redirects of connect requests:

Call ConnectionFactory.setLoadBalancing(true) prior to calling the create
connection method.

To check the client load-balancing setting:

Call ConnectionFactory.getLoadBalancing() to return a boolean indicator of whether
load-balancing redirects are allowed by the client.

Note: When using custom load balancers on the broker, you can provide hints to the
broker by using the method setLoadBalancingClientData(String clientData) in
the Java client and then using getClientData() in the load balancer.

See the Aurea SonicMQ Configuration and Management Guide for information about
configuring broker load balancing from the Management Console.

Alternate Connection Lists

Independent of load balancing, a client can specify a list of broker URLSs to which the client
can connect. The connection is made to the first available broker on the list. Brokers in the
list are tried in random or sequential order.

To create a connection list programmatically:

1. Create a comma-separated list of broker URLs. The client will attempt to connect to
brokers in this list.

2. Call ConnectionFactory.setConnectionURLs (brokerList) to point to the text list you
created. The client will connect to the first available broker on the list.

Aurea Software, Inc. Confidential 146 Copyright © 2013 Aurea, Inc.

Connection Factories and Connections

3. Call ConnectionFactory.setSequential (boolean) to set whether to start with the first
name in the list (true) or a random element (false).

Important: When a client traverses a connection URL list, the client uses the same userld
and password for each broker in the list. If a security exception occurs while
the client tries to connect to a broker in the list, the connection fails and the
client stops any further traversal of the list.

To check connection lists, call ConnectionFactory.getConnectionURLs () to return the
broker list, and then call ConnectionFactory.getSequential() to return the boolean
indicator of whether the list is used sequentially or randomly.

Note: Not applicable for “sonicrn:///" urls

Obtaining the Connected Broker URL or Node Name

To get the URL or routing node name of the broker that the client connects to as a result of
load balancing or alternate connection lists, call the following methods (on the connection
object, not the factory object):

. For the connected broker's URL, call the method getBrokerURL.

. For the connected broker’s routing node name, call the method getRoutingNodeName.

Setting Server-based Message Selection

Connections where message selectors are used can receive a large number of messages
from the broker and select only a few messages for processing. This condition can be
relieved by setting the connection to evaluate messages through a given message selector
on the broker and then deliver only the qualified message to the client.

For example, in the SelectorChat sample, adding a method call chooses message
selection on the server. Notice that it is called after the connection factory is created and
before the connection is created, as shown:

javax.jms.ConnectionFactory factory;

factory = (new progress.message.jclient.ConnectionFactory (broker)) ;
factory.setSelectorAtBroker(true);
connect = factory.createConnection (username, password) ;

Choosing where message selectors do their filtering does not effect the messages
processed, but might drastically reduce the message traffic at the expense of some
additional overhead on the broker.

This option can be set on Connection Factories that are defined as Administered Objects.
See the Aurea SonicMQ Configuration and Management Guide for information.

Aurea Software, Inc. Confidential 147 Copyright © 2013 Aurea, Inc.

Chapter 4: SonicMQ Connections

Setting a Socket Connect Timeout

You can specify a timeout to be used when establishing a socket connection to a broker.
The ConnectionFactory method setSocketConnectTimeout (int timeout) lets you set
the number of milliseconds to allow for the socket connection to be established, as shown:

javax.jms.ConnectionFactory factory;

factory = (new progress.message.jclient.ConnectionFactory (broker));
factory.setSocketConnectTimeout(5000);
connect = factory.createConnection (username, password) ;

Setting a value of 0, the default value, means the socket connect request does not time out.

If the socket connection is not established within the timeout interval, an exception is
returned to the caller with the error code ERR_SOCKET_CONNECT_TIMEOUT.

Note: The SocketConnectTimeout setting interacts with the InitialConnectTimeout
setting described in Specifying Connection Timeouts on page 176, and—for fault
tolerant connections—the operating systems settings discussed in the “Tuning
TCP to Optimize CAA Failover” in the SonicMQ V6.1 Performance Tuning Guide.

The socket connect timeout should enable an attempt at every listed URL. For
example, where a URL list contains six URLSs, the default setting for the
InitialConnectTimeout of 30 seconds would require that the
SocketConnectTimeout value be set to 5 seconds. The tuning of the operating
system for fault tolerant failover assures that the OS does not add unintended
delays.

This option can be set on Connection Factories that are defined as Administered Objects.
See the Aurea SonicMQ Configuration and Management Guide for information.

Setting QoP Cache Size

Brokers that enable security and Quality of Protection (QoP) require that clients enforce (or
override) the QoP setting specified for each destination when sending messages.
Whenever a broker responds to a client with the appropriate setting, the client caches the
values in its QoP cache, adequate for 128 QoP settings for topics and queues as well as
other connection administration, actions, sessions, and message producers/consumers.
Using a least-recently-used algorithm for clearing the cache so that it can accomodate new
entries, the cache is adequate and efficient in most situations. However some
circumstances make it crucial to increase the size of the cache so that the cache is not
constantly being updated.

When using MultiTopics (see MultiTopics on page 336), the topic list might easily surpass
the client connection’s cache limit. If this situation occurs, every topic is sent with QoP set
to PRIVACY, and the response from the broker indicates whether that level of protection was
required. That QoP setting is cached but might be promptly dropped when other QoP
settings are recorded in the cache. In that case, you can modify the cache size through the
ConnectionFactory parameter:

ConnectionFactory.setQopCacheSize (Integer size)

Aurea Software, Inc. Confidential 148 Copyright © 2013 Aurea, Inc.

Connection Factories and Connections

where size needs to accomodate the application topics yet leave space for other cached
items. The recommended value when you choose to reset the QoP cache is:

(the number of application topics or queues) + 128
For example:

javax.jms.ConnectionFactory factory;

factory = (new progress.message.jclient.ConnectionFactory (broker)) ;
factory.setQoPCacheSize(256);
connect = factory.createConnection (username, password) ;

This option cannot be set on Connection Factories that are defined as Administered
Objects.

Setting the Maximum DeliveryCount

The setMaxDeliveryCount method in progress.message.jclient.ConnectionFactory
sets the maximum number of times delivery of a message to a consumer should be
attempted. Messages that have exceeded the delivery limit are processed according to
message properties that govern disposition of undeliverable messages.

The following syntax sets the maximum delivery count:

ConnectionFactory.setMaxDeliveryCount(java.lang.Integer value)

where:

e value is 0 when you want no redelivery limit

e value is an positive integer that specifies to deliver and then redeliver the
specified number of times

A related method is public java.lang.Integer getMaxDeliveryCount(). It returns the
integer value set (or defaulted) for the maximum delivery limit.

For example:

javax.jms.ConnectionFactory factory;

factory = (new progress.message.jclient.ConnectionFactory (broker)) ;
factory.setMaxDeliveryCount(10);
connect = factory.createConnection (username, password) ;

This option can be set on Connection Factories that are defined as Administered Objects.
See the Aurea SonicMQ Configuration and Management Guide for information.

Setting to Minimize Subscriber Traffic

The setMinimizeSubscriberTraffic method in
progress.message.jclient.ConnectionFactory provides control over TopicSubscribers
and DurableSubscribers. When set to true, the subscriber will attempt to flow control the
broker as soon as messages are delivered into the client’s buffer. The subscriber could
receive more messages put on the wire by the broker before it receives the flow control
message. Sending resumes when the subscriber's buffer becomes empty.

Aurea Software, Inc. Confidential 149 Copyright © 2013 Aurea, Inc.

Chapter 4: SonicMQ Connections

The feature lets an applications effectively shut down or reduce the subscriber’s client
buffer to minimize the background priming (at the cost of increased latency).

The following syntax sets the option to minimize subscriber traffic:

ConnectionFactory.setMinimizeSubscriberTraffic(boolean value)
where:

e value is true when you want to minimize subscriber traffic

A related method is public java.lang.boolean getMinimizeSubscriberTraffic().
It returns the value that indicates whether subscriber traffic is being minimized.

This option can be set on Connection Factories that are defined as Administered Objects.
See the Aurea SonicMQ Configuration and Management Guide for more information.

Note: Featurein Cand C++ clients — This feature is also in the Sonic C and C++ clients.
In those clients, the option is set in a parameter of a new ConnectionFactory
signature. See the Aurea SonicMQ C Client Guide and Aurea SonicMQ C++ Client
Guide for more information.

Aurea Software, Inc. Confidential 150 Copyright © 2013 Aurea, Inc.

Connection Factories and Connections

Enabling Message Compression

Some throughput problems are caused by large messages and low bandwidth networks.
Applications that produce and consume messages of significant size over these slow
networks might improve overall performance by compressing messages.

The setEnableCompression method in progress.message.jclient.ConnectionFactory
causes messages produced in the scope of the connection factory to be compressed so
that:

e MessageProducers compress every message before sending it, and the broker
decompresses every message it receives on these connections.

e MessageConsumers decompress every message when received because the broker
compressed every message it delivered to the consumer on these connections.

When a SonicMQ client application enables message compression, the client negotiates
with the broker to which it is connecting to agree on the compression characteristics and
error checking. The actual compression and decompression functions are implicit when the
option is enabled.

Message compression has time and space requirements on both the client and the broker.
An administrator needs to determine which connections can offset the compression
overheads with the savings in message transfer time, and how many connections that
enable compression can be supported by the broker’s resources.

The following syntax enables message compression on a connection factory:
ConnectionFactory.setEnableCompression(boolean value)
For example:

javax.jms.ConnectionFactory factory;

factory = (new progress.message.jclient.ConnectionFactory (broker)) ;
factory.setEnableCompression(true);
connect = factory.createConnection (username, password) ;

This option can be set on Connection Factories that are defined as Administered Objects.
See the Aurea SonicMQ Configuration and Management Guide for information.

Aurea Software, Inc. Confidential 151 Copyright © 2013 Aurea, Inc.

Chapter 4: SonicMQ Connections

Connecting to SonicMQ Directly

An application can use the SonicMQ API directly to create a new ConnectionFactory object,
as shown in Figure 39. This method usually hard-wires many default values into the
compiled application. Any overrides to the settings can be read in through a properties file
or command-line options when the application is started.

Figure 39: Connecting to SonicMQ Directly

factory = new ComnectionFactory (brokerURL)

SonicMQ [Broker
Qlient comnect = factory.createComnection (username, password) brokertRL
4 Connection

There are several supported constructors for creating a ConnectionFactory object. The
constructors use combinations of the brokerURL, brokerHostName, brokerPort,
brokerProtocol, connectID, defaultUsername, and defaultPassword parameters.

Note: When user identification is omitted when creating a connection, the connection
uses the default values from the ConnectionFactory. If authentication is enabled
and the username is invalid, a javax.jms.JMSSecurityException is thrown.

You can use the common name from a certificate when you use SSL mutual
authentication. See the Aurea SonicMQ Deployment Guide for more about SSL
and security.

Connecting to SonicMQ Using Administered
Objects

JMS administered objects are objects containing JMS configuration information that are
created by a JMS administrator and later used by JMS clients. These objects make it
practical to administer JMS applications in the enterprise.

Aurea Software, Inc. Confidential 152 Copyright © 2013 Aurea, Inc.

Connecting to SonicMQ Directly

JMS specifies the following types of administered objects:

. Connection Factories:
° ConnectionFactory and XAConnectionFactory
° QueueConnectionFactory and XAQueueConnectionFactory

° TopicConnectionFactory and XATopicConnectionFactory

Note: The JMS 1.1 specification states that some JMS version 1.02b
(model-specific) interfaces might be deprecated in the future.
Consequently, if you are developing new JMS client applications, it is
recommended that, wherever possible, you use the common interfaces in
place of the older model-specific interfaces. Here, you should use
ConnectionFactory and XAConnectionFactory instead of the
model-specific interfaces.

° Destinations

. Queue

. Topic

JMS client applications obtain instances of SonicMQ connection factory objects (see
Lookup Using the Sonic JNDI SPI on page 154) and use JMS specified factory methods on
those objects to create connections. (See Lookup and Use of Administered Objects on
page 154.)

Important: Permission Denied Issues for Older Clients — If you are using JNDI SPI
clients and your domain enforces management permissions (a feature
introduced in VV7.5), the JNDI SPI clients should be upgraded to at least V7.5
to avoid the potential of spurious ConfigurePermissionsDenied exceptions
which could deny JNDI access.

Advantages of Using JMS Administered Objects

JMS administered objects can be created using tools provided in SonicMQ (see the Aurea
SonicMQ Configuration and Management Guide for information on using the Management
Console to create JMS administered objects). Administered objects hide vendor-specific
information. Since administered objects implement a public interface and can be retrieved
using JNDI, JMS client applications can be coded to be independent of JIMS vendor
implementations.

The indirection the JNDI lookup name provides has an additional and more significant
benefit: IMS client applications can be coded to be independent of broker location. For
example, the application can be coded to use a factory located under the name cn=QCF,
without knowing which broker will service the application. When some deployment change
is made (for example, when a backup system comes online or if during certain hours load
is directed to another machine), the administrator simply replaces the connection factory
stored at the location cn=QCF with another factory instance that encapsulates connection
information to a broker running on a different system.

Aurea Software, Inc. Confidential 153 Copyright © 2013 Aurea, Inc.

Chapter 4: SonicMQ Connections

The Sonic JMS Administered Objects Toolis modified to support the display of the
ResolvedConnectionURLSs property in a new field, "Resolved Connection URLs".

Lookup and Use of Administered Objects

SonicMQ administered objects are both serializable and referenceable, and thus can be
stored in a wide range of JNDI accessible stores, including Sonic's own internal JNDI store
and LDAP. SonicMQ provides tools and APIs with which to create, store and lookup
SonicMQ implementations of administered objects.

This chapter describes how to use the following JNDI SPIs:

e Inthe SonicMQ internal JNDI store (see page 155 for details)

e In an external LDAP server through JNDI (see page 158 for details and a code
sample)

See the Aurea SonicMQ Configuration and Management Guide for information about using
the Sonic Management Console. See Appendix A, Using the Sonic JNDI SPI on page 443
for information about programming using the JNDI SPI.

In the code samples that follow, the name used to find an administered object is formatted
to correspond to the store implementation used to store the object:

e Simple name: ContextName — For the SonicMQ internal JNDI store.
e Schema name: cn=ContextName — For an external LDAP server through JNDI.

e Filename: ContextName.sjo — For a serialized file object.

Lookup Using the Sonic JNDI SPI

JNDI defines the way an initial context is obtained; obtaining a Sonic context follows these
same techniques. The INDITalk sample (an excerpt of which is shown in Programming with
the Sonic JNDI SPI (JNDITalk Sample) on page 155) provides a simple demonstration of
JNDI programming with the Sonic SPI. The sample shows:

e Creating a JNDI environment (hash table) with Sonic SPI specific values and
additional properties

e Obtaining an initial context

e Using the context to perform a lookup of a ConnectionFactory object

Aurea Software, Inc. Confidential 154 Copyright © 2013 Aurea, Inc.

Connecting to SonicMQ Directly

Programming with the Sonic JNDI SPI (JNDITalk Sample)
private static final String QCF_LOOKUP_NAME = "TalkQCF";
Context context = null;

Hashtable env = new Hashtable() ;
env.put (Context. INITIAL CONTEXT FACTORY,
"com.sonicsw.jndi.mfcontext .MFContextFactory") ;
env.put (Context .PROVIDER URL, "tcp://localhost:2506");
env.put ("com.sonicsw.jndi.mfcontext.domain", "Sonic") ;
env.put ("com.sonicsw.jndi.mfcontext.idleTimeout", "60000") ;
env.put (Context.SECURITY PRINCIPAL, "Administrator");
env.put (Context.SECURITY CREDENTIALS, "Administrator");

context = new InitialContext (env) ;
javax.jms.ConnectionFactory factory = null;

factory = (javax.jms.ConnectionFactory)context.lookup (QCF_LOOKUP_NAME) ;

This type of lookup submits a name to the JNDI store for lookup. In Figure 40 the factory
name TalkQCF (a simple arbitrary name for a ConnectionFactory object used in these
examples) is submitted in the format Ta1kQCF.

Figure 40: Connecting to SonicMQ Using JNDI
lookup TalkQCF - INDI SOI’]iCMQ
- ConnectionFactory Object for 'TalkQCF' JNDI Store
SonicMQ containing: host:port, user, password, options
Client Broker
connect host:port, user, password, options brokerURL
; Connection

Note: The context name can also be submitted in the LDAP format: cn=Ta1kQCF, but this
format is not required.

Setting up an Administered ConnectionFactory Object

The INDITalk example attempts to lookup a ConnectionFactory object. For the lookup to
succeed, the administered ConnectionFactory object must be defined in the Sonic JNDI
store. You can define and store an administered ConnectionFactory object using the IMS
Administered Objects tool. The Aurea SonicMQ Configuration and Management Guide
provides detailed instructions on the JMS Administered Objects tool.

To create an administered ConnectionFactory object for the INDITalk sample:

1. Start the SonicMQ Container that hosts the Directory Service that the broker will use.

2. Start the Sonic Management Console.

Aurea Software, Inc. Confidential 155 Copyright © 2013 Aurea, Inc.

Chapter 4: SonicMQ Connections

3. Select Tools > JMS Administered Objects. Select the local JNDI store:

a.

b.

e.

f.

Choose JNDI Naming Service.

Select the Sonic Storage option.

Enter the URL for the Directory Service container.(localhost:2506 for example.)
Enter the user, such as Administrator.

Enter the user’s password, such as Administrator.

Click Connect.

The provider URL you entered appears in the Object Stores list in the JIMS
Administered Objects window, and a node for this provider URL appears in the left
panel.

4. Set up the connection factory. For the example:

a.

In the left panel of the Sonic Management Console, choose the connection you
just established to the JNDI Naming Service.

In the right panel, choose the Connection Factories tab then click New.

In the Lookup Name field, enter a new record with Ta1kQCF as the name value.
From the Factory Type pull-down list, choose ConnectionFactory.

Enter an URL for the application connection, such as Tocalhost:2506

Do not enter a user or password. The example will override the username and
password and show how they can be supplied in application parameters, thus
enabling varied authorizations for applications that use the lookup information.

Enter a Connect ID such as First. This is a value that will be changed in the
example to demonstrate how administrative changes to the lookup value are
passed through the connections that use the connection factory.

Click Update.

The TalkQCF object is entered in the JNDI store.

Running the JNDITalk Sample

You are now ready to run the modified Talk sample that performs a lookup to the JNDI store
to get a context.

To run the JNDITalk sample, do the following:

1. Inaconsole window at the JNDITalk directory, enter:

..\..\SonicMQ JNDITalk -u Administrator -p Administrator -qr
SampleQl -gs SampleQ2

2. Open a console window to the Talk directory then enter:

..\..\SonicMQ Talk -u Administrator -p Administrator -qgr
SampleQ2 -gs SampleQl

Aurea Software, Inc. Confidential 156 Copyright © 2013 Aurea, Inc.

Connecting to SonicMQ Directly

Each sample will receive the messages sent by the other application.

1. Inthe Talk console window, type some text and press Enter.
The INDITalk window displays the text, preceded by:
Administrator:

2. Inthe INDITalk window, enter text and press Enter.
The Talk window displays the text preceded by:

Administrator:

You can extend this test by looking at the connection through the Sonic Management
Console:

e Under the Manage tab, in the left panel click Containers\Containerl, then click the
node for your broker. Click the Connections node under the broker.

The right panel lists the connections for this broker, as shown in Figure 41.

Figure 41: Connection Using JNDI Store Lookup

E Sonic Management Console -EE
Action Edit Yiew Tools window Help

Gilw B xRAX BEEow | H| 9 A

| Manage |
Managed Objects Uzer lelertity - Host Connection Type
—\l Brokers Administrator ConnectD=SonicMmfNDICLIENTH72_16_1 . localhost JMS
A= Containers scministrator ConnectD=SonicME@mfANDICLIENTH72_16_1 .. localhost JMS
= Domainkianager . .
EI AGENT MANAGER Administrator ConnectiD=SonichkQinfiMXCLIENTA T2_16_10... localhost JMS
E DIRECTORY SERVICE Administrator ConnectiD=SonichGint Damaint Domaintanag. . localhost JMS

localhost

2 hgmiBroker LA cministrator ok J=First o
localhost JME

Wil Advertized Global Queves Administrator ConnectD=§TMPAPPIDFES

Durable Subscriptions
Global Subscriptions
Queves

& Soap Reliable Sequences
A XA Transactions

EFE pogsairtma

+ _| Framewark Comnponerts

{1 Security

L) System

Filter Using Prefix I Refresh

One of the connections lists its Connect ID as First, the name used for the
ConnectionFactory stored in the JNDI store.

If you use the IMS Administered Objects window to update the Ta1kQCF object to have
a Connect ID of Next, that value will not be reflected in the connections until the
connection factory is looked up again. By stopping the JNDITalk application and then
restarting it, the connection listed in the Management Console will display the revised
Connect ID for TalkQCF.

Aurea Software, Inc. Confidential 157 Copyright © 2013 Aurea, Inc.

Chapter 4: SonicMQ Connections

Using the LDAP JNDI SPI

JNDI provides interfaces to standard directory servers such as those that are compliant
with the Lightweight Directory Access Protocol (LDAP). With SonicMQ, you can either use
the internal JNDI package provided with SonicMQ to access objects stored in the SonicMQ
directory server, or you can access an external LDAP directory server, as described in this
section.

Important: External LDAP directory servers are distinct products that you must install and
configure separate from SonicMQ. The Javasoft JNDI Web site can point you
to evaluation editions of LDAP directory servers so that you can explore these
services.

In Figure 42 the context name TalkQCF is submitted as cn=Ta1kQCF.

Figure 42: Alternate Connection Techniques Using Factory Objects or JNDI Lookup
lookup TalkQCF - LDAP
JNDI
< ConnectionFactory Object for 'TalkQCF Store
SonicMQ containing: host:port, user, password, options
. Broker
Client
connect host:port, user, password, options brokerURL
; Connection

From a client program, select an external LDAP server such as the JNDI store by setting
the system property “javax.naming.Context.INITIAL_CONTEXT_FACTORY” to
“com.sun.jnd1i.1dap.LdapContextFactory”. The property
“javax.naming.Context.PROVIDER_URL” specifies how to locate to LDAP server and
establish the initial INDI naming context. For example:
“ldap://mypc.a.sonicmg.com:389/ou=jmsao, ou=sonicMQ, o=a.sonicmg. com

See Java JNDI SPI Sample on page 447 for information about a sample application that
demonstrates using the Sonic JNDI SPI.

Connecting to SonicMQ Using Serialized
Factories

SonicMQ allows you to administratively store objects as Serialized Java Objects (.sjo) in
a file system. By updating the .sjo objects with the JIMS Administered Objects tool in the
Sonic Management Console, you can isolate the programmer from specific broker
configuration parameters and destination names. However, the programmer must still
maintain and deploy the .sjo files.

Aurea Software, Inc. Confidential 158 Copyright © 2013 Aurea, Inc.

Connecting to SonicMQ Directly

Figure 43 illustrates deserializing a factory from a specified path location. An administrator
stores serialized Java objects as files with .sjo extensions. The files can then be loaded
(and deserialized) using the java.1io package.

Figure 43: ConnectionFactory Object Instantiated By Lookup of a Serialized Java Object
Load file "QCF.sj0" >
< Get Connection Object containing: Simple File Store
SOHiCMQ host:port, user, password, options
Client connect host:port, user, password, options Broker
host :port
—F Connection

Setting Up Serialized Objects

readFile Method on page 159 provides an example of how serialized objects can be set up.
This example assumes:

e The ConnectionFactory for the sample application is stored in the file
ChatConnectionFactory.sjo.

e The Topic for the application is stored in the file ChatTopic.sjo.

e A new method, readFile(), is used for both administered objects.

readFile Method

/**

*Read an object from the given file.

*@param filename The name of the file.

*@return The deserialized object. If the file does not contain

* a valid JMS managed object or there is some

* read/deserialization problem, then return null.
*/

private Object readFile(String filename)

{

try

java.io.FileInputStream fis = new java.io.FileInputStream(filename) ;
java.io.ObjectInputStream ois = new java.io.ObjectInputStream(fis) ;
Object readObj = ois.readObject() ;

fis.close();

return readObj;

}

catch(java.io.IOException e) { } // return null

return null;

}

Aurea Software, Inc. Confidential 159 Copyright © 2013 Aurea, Inc.

Chapter 4: SonicMQ Connections

Using Serialized Objects

After serialized objects are set up, those objects can be used in your applications. Within
the application code where the connection is established, use the readFile() method to
read the active javax.jms objects, as shown in Using readFile to Read Active javax.jms

Objects on page 160.

Using readFile to Read Active javax.jms Objects

javax.jms.ConnectionFactory factory;
// Read in the factory from a file
factory = (javax.jms.ConnectionFactory)
readFile ("ChatConnectionFactory.sjo") ;

// Continue, creating connection from the factory
// Continue, creating the session from the connection.

// Finally, retrieve the TOPIC for our application
javax.jms.Topic topic = (javax.jms.Topic) readFile ("ChatTopic.sjo");

Connections

After instantiating a ConnectionFactory object, the factories’ createConnection()
methods are used to create a connection. The first action a client must take is to identify
and establish connection with a broker. The following constructors use a connection factory
object to get the connection.

Important: The JMS specification states that an application should not use a Java
constructor to create connections directly, otherwise applications will not be
portable.

Creating a Connection

A Connection is an active connection to a SonicMQ broker. A client application uses a
connection to create one or more Sessions, the threads used for producing and consuming
messages.

You create Connection by using a ConnectionFactory object. There are two variants of the
createConnection() method:

e Use the default username and password:

connect = factory.createConnection();

Important: Use this method only when you are not concerned about security, or
when your JNDI store is very secure.

e Supply the preferred username and its authenticating password:

connect = factory.createConnection (username, password) ;

Aurea Software, Inc. Confidential 160 Copyright © 2013 Aurea, Inc.

Connecting to SonicMQ Directly

Creating and Monitoring a Connection

ReliableChat: setupConnection on page 161, taken from the ReliableChat sample’s
setupConnection() method, shows how to create and monitor a connection. This code
uses active pings to check the health of the connection.

ReliableChat: setupConnection

// Get a connection factory

javax.jms.ConnectionFactory factory = null;

try

{

factory = (new progress.message.jclient.ConnectionFactory (m broker));
} catch (javax.jms.JMSException jmse) ..

// Wait for a connection.

while (connect == null)

try

System.out.println("Attempting to create connection...");
connect = (progress.message.jclient.Connection)

factory.createConnection (m username, m password) ;

// Ping the broker to see if the connection is still active.
connect.setPingInterval (30) ;
} catch (javax.jms.JMSException jmse)

{

System.out.print ("Cannot connect to broker: " + m broker);
System.out.println("Pausing " + CONNECTION RETRY PERIOD / 1000 +
" seconds before retry.");

try

{

Thread.sleep (CONNECTION RETRY PERIOD) ;
} catch (java.lang.InterruptedException ie) { }
continue;

}

In ReliableChat: setupConnection on page 161, the statement

connect.setPingInterval (30) indicates the use of a method that lets the application
detect when a connection gets dropped by setting a PingInterval of 30 seconds. The
active pings are a SonicMQ feature that allows an application to check the presence and
alertness of the broker on a connection. This technique is particularly useful for connections
that listen for messages, but do not send messages.

Invoking setPingInterval (interval_in_seconds) on a connection sends a ping
message to the broker on that connection at the specified interval to examine the health of
the connection.

Aurea Software, Inc. Confidential 161 Copyright © 2013 Aurea, Inc.

Chapter 4: SonicMQ Connections

The broker is required to respond to each ping sent by the client. If the client does not
receive any traffic within a ping interval, then the client assumes the connection is bad and
drops the connection. See Handling Dropped Connection Errors on page 163 for more
information. But this is true only when the connection is not fault tolerant. When a
connection is fault tolerant, pings are still necessary for monitoring the network. When a
fault tolerant connection is in use, the ping is activated by default and is set to 30 seconds.
However, unlike non-fault tolerant connections, a ping response is not required from the
broker, and will not cause a connection drop. See Fault-Tolerant Connections on page 172
for additional information about fault tolerant connections.

You can also configure active pings in the ConnectionFactory by invoking the
ConnectionFactory.setPingInterval (interval_in_seconds) method, or by
preconfiguring ConnectionFactory administered objects with a ping interval.

Synchronous pings are always used when you explicitly set a non-zero ping interval. The
difference between fault tolerant and non-fault tolerant is when the ping interval is not set.
There are no pings by default on a non-fault tolerant connection, whereas there are
asynchronous pings by default on a fault tolerant connection.

Note: Avoid setting a small ping interval. This wastes cycles and your application will be
burdened with temporary network unavailability. Also, if you set a ping interval that
is too small, it might give false connection drops.

Handling Exceptions on the Connection

The exception handler can handle errors actively as shown in ReliableChat: Reconnection
Routine on page 162, from the ReliableChat sample, where a connection problem initiates
a reconnection routine.

ReliableChat: Reconnection Routine

// Handle asynchronous problem with the connection.

public void onException (javax.jms.JMSException jsme)

{

// See if connection was dropped.

// Tell the user that there is a problem.

System.err.println ("\n\nThere is a problem with the connection.");
System.err.println (" JMSException: " + jsme.getMessage()):;

//If the error is a dropped connection, try to reconnect.

// NOTE: the test is against aurea SonicMQ error codes.

int dropCode = progress.message.jclient.ErrorCodes.ERR CONNECTION DROPPED;
if (progress.message.jclient.ErrorCodes.testException(jsme, dropCode))
{

System.err.println ("Please wait while the application tries to "+
"re-establish the connection...");

// Reestablish the connection

connect = null;

setupConnection () ;

Aurea Software, Inc. Confidential 162 Copyright © 2013 Aurea, Inc.

Client Persistence

Handling Dropped Connection Errors

When broker failure occurs, the existing protocol reset initiates the onException() method
of the ExceptionListener with the error code:
progress.message.jclient.ErrorCodes.ERR_CONNECTION_DROPPED.

In the case of network failure, when a broker becomes disconnected from the network JIMS
clients generally notice some time after they try to publish or send a message. If the
application is only acting as a subscriber, network failure might not be detected by the
client. Enabling active ping will ensure timely detection of loss of network.

Exception Listeners Are Not Intended for JMS Errors

The ExceptionListener provides a way to pass information about a problem with a
connection by calling the listener's onException() method and passing it a JMSException
describing the problem.

Using the ExceptionListener in this way allows a client to be asynchronously notified of a
problem. Some connections only consume messages, and have no other way to learn that
their connection has failed. Also, if you have many sessions in the connection, you should
not tie reconnect logic to the session. Reconnecting should be done only once at the
connection level.

The exceptions delivered to ExceptionListener are those that do not have any other place
to be reported. If an exception is thrown on a JMS call, then by definition the exception must
not be delivered to an ExceptionListener. In other words, the ExceptionListener is not
for the purpose of monitoring all exceptions thrown by a connection.

Client Persistence

SonicMQ installations that provide ClientPlus features have the option of enabling client
persistence. Client persistence provides a higher level of reliability than is defined in the
JMS specification. Where a network failure during a JMS send would normally cause a
message being sent to be effectively lost unless the user application takes additional
precautions, client persistence enables client-based logging of messages sent until the
broker connection is re-established. This feature enhances delivery guarantees and
provides disconnected operation.

When flow control forces a message producer to pause, clients that have enabled client
persistence continue to produce messages into the persistent store. When producer flow
control is no longer in effect, persisted messages flow to the broker in order while the
message producer continues to add messages to the local store. When the local store is
cleared, messages flow directly from the producer to the broker.

The persistent store is a set of files in a directory name specified by the user in association
with a JMS connection. The client run time uses the files to store messages and manage
their delivery to the SonicMQ broker.

The characteristics of the client persistence store and the wait time before flow controlled
messages are persisted in the store can be set programmatically on the connection factory
or on connection factory administered objects.

Aurea Software, Inc. Confidential 163 Copyright © 2013 Aurea, Inc.

Chapter 4: SonicMQ Connections

For each connection using persistence, the persistence directory on the client includes a
subdirectory identified by C1ientId that contains:

e One or more files to store messages rejected by the broker
e Recovery files for logging restart information

e For each session on the connection, a file that records all messages sent while in the
disconnected state

When the client has an active connection to the broker, the client operates normally.
Messages are not written to the persistent store until a network outage or a flow control
pause is detected.

When a network outage or a flow control pause is detected, the currently active message
is written to the persistent store and the client switches to writing all messages—persistent
and non-persistent—to the store. The size of the session log is limited by the local store
size. Non-persistent messages in memory when the outage is detected are dropped.

While disconnected because of a network outage, the client runtime tries to reconnect to a
broker. It is possible for the client to reconnect to a different broker (than it originally
connected to) if you provided a list of brokers in the connection parameters of the factory,
or if broker load balancing is configured and the client elected load balancing.

When a connection is reestablished or the flow control is no longer in effect, the client
runtime sends all persistent messages in memory at the time of the disconnect, then
replays the session log. New messages are accepted while the messages in the session
log are sent to the broker and acknowledged. The persistent client controls the rate of
accepting messages into the store relative to the rate of sending stored messages out of
the local store to the broker in an effort to drain the backlog of messages. The sender
experiences a slower producer rate while messages are being restored. However, it is
possible for messages to accumulate in the store faster than they can be sent to the broker.
If this occurs, the local store size might be exceeded in which case the sender gets an
exception.

Files are deleted after all messages have been sent to the broker and acknowledged and
all rejections have been processed by the RejectionListener. An application should
explicitly close sessions and connections to allow the client runtime to perform cleanup. In
the event of an abnormal end to the client connection, the next startup will send
unacknowledged messages and cleanup unneeded files.

Using Client Persistence

SonicMQ applications that want to use client persistence require some modest coding
changes from existing SonicMQ applications. Because this feature is asynchronous
store-and-forward, immediate feedback on delivery failures is not available. To
compensate, the application must set up a listener to handle send failures. Also JIMS
functions such as creation of receivers and transacted sessions are not allowed when using
client persistence (see Coding Limitations on page 166). The directory and size of the
persistent store is specified on the ConnectionFactory.

Aurea Software, Inc. Confidential 164 Copyright © 2013 Aurea, Inc.

Client Persistence

Continuous Sender: Implementing Client Persistence on page 165, from the
ContinuousSender sample application, shows a coding construct for implementing client
persistence.

Continuous Sender: Implementing Client Persistence

// Connect id is required when using local Store

factory = (new progress.message.jclient.QueueConnectionFactory
(m_broker,"StoreTest")) ;

// Configure factory for local store

// ClientId must be set in the factory when using the local store
factory.setClientID (CLIENT ID);
factory.setEnableLocalStore (true) ;
factory.setLocalStoreDirectory ("MyDir") ;
factory.setLocalStoreSize(1000); // 1 MB

// seconds before client persists when flow controlled

Integer waitPersist = new(Integer(5)):;
factory.setlLocalStoreWaitTime (waitPersist) ;

connect = (progress.message.jclient.QueueConnection)
factory.createQueueConnection(m username, m password) ;

// Enable client ping to expedite loss of network detection
// on some UNIX platforms

connect.setPingInterval (30) ;

connect.setRejectionListener (this);

This sample accepts the default values of the parameters for reconnect timeout and
reconnect interval. The parameters in this example are similarly used for
TopicConnectionFactory in the ContinuousPublisher sample.

The setter methods for client persistence are listed in Table 5.

Table 5: ConnectionFactory Methods for Client Persistence
Method Default Description
setEnableLocalStore(boolean value) false Enables use of the local store.
setLocalStoreDirectory(String name) current The name of the directory that the local
working stores for the connection factory will use.

directory When you have multiple connection
factories, use different directories to avoid
unpredictable behaviors.

setLocalStoreSize(long size) 10000 The maximum size of the local store (in
(10MB) Kilobytes). The size puts a limit on how many
messages can be stored while operating in
disconnected mode.

setReconnectTimeout(int minutes) 0 (none) Sets how long (in minutes) the runtime
should try to make a connection to the broker
at which point an exception will be returned to
the ExceptionListener. A value of 0 indicates
no timeout—the runtime will try indefinitely.

Aurea Software, Inc. Confidential 165 Copyright © 2013 Aurea, Inc.

Chapter 4: SonicMQ Connections

Table 5: ConnectionFactory Methods for Client Persistence
Method Default Description
setReconnectinterval(int seconds) 30 Sets the interval between reconnect
seconds attempts.
setLocalStoreWaitTime(Integer 0 Sets the wait time before messages paused
seconds) (indefinite | by flow control are written to the local store.
wait)

Rejection Listener

The client is notified of delivery failures by a RejectionListener established by a method
of progress.message.jclient.Connection:

setRejectionListener (RejectionListener rl);
The user must provide an implementation of the RejectionListener interface:

public interface RejectionListener

{

void onRejectedMessage (javax.jms.Message msg, javax.jms.JMSException e);

}

The message is removed from the persistent store when onRejectedMessage returns.

See also RejectionListener Semantics on page 171 for additional information.

Coding Limitations

A message that is in transit when a disconnect occurs is resent when the connection is
reestablished. A consumer receiving messages sent by a persistent client should be
prepared to handle duplicates.

Transacted sessions and message consumers are not supported in sessions where the
connection implements client persistence. The following methods return an error when the
connection has local persistence:

. Connection: Creation of transacted sessions, createConnectionConsumer,
createDurableConnectionConsumer

. Session: createBrowser, createDurableSubscriber, createReceiver,

createSubscriber, createTemporaryQueue, createTemporaryTopic,
setMessagelListener

Note: An application can create a separate connection without persistence to use
message consumers and transacted sessions.

Aurea Software, Inc. Confidential 166 Copyright © 2013 Aurea, Inc.

Asynchronous Message Delivery

Client persistence can be combined with fault-tolerant connections. For information about
the considerations involved, see Client Persistence and Fault-Tolerant Connections on
page 183.

Asynchronous Message Delivery

Asynchronous message delivery provides increased performance for delivery modes that
are not explicitly asynchronous—NON_PERSISTENT on a security-disabled broker and
NON_PERSISTENT_ASYNC delivery mode. This feature adds asynchronous operation to the
NON_PERSISTENT_REPLICATED delivery mode, a delivery mode used by fault-tolerant brokers
replicating nonpersistent messages from the active peer to its standby.

Asynchronous message delivery does not impact and is not applicable to DISCARDABLE
delivery mode, or delivery within a transaction.

Asynchronous message delivery can be set in the connection factory to address the
following challenges associated with asynchronous message delivery:

e Close Behavior — When asynchronous delivery mode is used, there may be some
messages still in client buffers that have not been delivered to (or acknowledged by)
the broker. This could be caused by SonicMQ flow control, TCP flow control, or just
several sends followed immediately by a close.

e Error propagation on failed sends — When sending asynchronously, it is not possible
to throw an exception to the caller on the send call if there is a problem with the
message send. Examples of send errors are: the connection was dropped, an ACL
check failed, queue or node was not found error, and message too large for a queue.

e Number of in doubt messages — For some applications, it is good practice to limit the
number of messages that can be in-doubt, in case of an application failure or
connection drop. JMS defines the number of in-doubt messages as 1 for each session.

Delivery Mode Behavior

Whether messages are delivered to the broker synchronously or asynchronously can be
set on the ConnectionFactory by the method:

ConnectionFactory.setAsynchronousDeliveryMode (Integer mode)

or, using the constants:

ConnectionFactory.setAsynchronousDeliveryMode.ASYNC DELIVERY MODE DEFAULT
ConnectionFactory.setAsynchronousDeliveryMode.ASYNC DELIVERY MODE_ ENABLED

ConnectionFactory.setAsynchronousDeliveryMode.ASYNC DELIVERY MODE DISABLED

The following table describes how the setting for asynchronous delivery mode at the
ConnectionFactory level is handled for each non-transacted MessageProducer or Message
Del1iveryMode:

Aurea Software, Inc. Confidential 167 Copyright © 2013 Aurea, Inc.

Chapter 4: SonicMQ Connections

Delivery Mode Asynchronous Delivery Mode Setting
DISABLED ENABLED DEFAULT

PERSISTENT Synchronous | Allowed? Synchronous
NON_PERSISTENT_REPLICATE | Synchronous |Asynchronous|Synchronous

D

NON_PERSISTENT Synchronous | Asynchronous| Q: Synchronous?

T: Asynchronous?2

NON_PERSISTENT_SYNC* Synchronous | Synchronous | Synchronous

NON PERSISTENT ASYNC? Asynchronous | Asynchronous | Asynchronous

DISCARDABLE Asynchronous | Asynchronous | Asynchronous

1 PERSISTENT Delivery is allowed on an ASYNC_DELIVERY_MODE_ENABLED connection.
2 Queue messages are sent synchronously, Topic messages are sent asynchronously.

3 When security is enabled on the broker, Topic messages are sent synchronously.

4 Specified De11iveryMode is deprecated.

Reliability of Produced Messages

The meaning of successful delivery of a message to the broker depends on the delivery
mode with which the message is sent. The available delivery modes are as follows:

e PERSISTENT — The message has been received by the broker and will be delivered
to each durable subscriber even if the broker crashes or fails over. If the producer is
fault tolerant, message doubt can be resolved in transient connection failures or
failovers.

e NON_PERSISTENT_REPLICATED — The message has been received by the broker
and additionally replicated to the broker's backup. Messages will be sent to fault
tolerant subscribers and durable subscribers unless the active broker is brought down
from any state other than ACTIVE. If the producer is fault tolerant, message doubt can
be resolved in transient connection failures or failovers.

e NON_PERSISTENT — The message has been received by the broker, but is not
guaranteed to survive if the broker goes down or fails over to a backup. If the producer
is fault tolerant messages can be lost in a transient connection failure or failover. The
broker can be configured to instruct clients to internally upgrade messages produced
with NON_PERSISTENT delivery mode to NON_PERSISTENT_REPLICATED.

e DISCARDABLE — This delivery mode can only be used by TopicPublishers and
non-transacted sessions. The client and broker make a best effort to deliver the
message to receivers, but the message will be discarded if it would trigger flow control
or otherwise block the publisher. DISCARDABLE messages will not survive broker failure
or client application/connection failure. DISCARDABLE messages are not fault tolerant.

Aurea Software, Inc. Confidential 168 Copyright © 2013 Aurea, Inc.

Asynchronous Message Delivery

Synchronous Message Reliability

For synchronously produced messages, the reliability guarantees described above are met
when the send or publish call returns without an error. Otherwise, until the send call returns,
message delivery to the broker is in doubt. Because sessions are single threaded at most
one message is ever in doubt at any time per session.

Asynchronous Message Reliability

For asynchronously produced messages, the reliability guarantee is not met until the
session is closed. If close returns successfully, then all asynchronously produced
messages have been delivered to (or rejected by) the broker; otherwise, all asynchronously
produced messages are in doubt. See Close Behavior on page 170 for more details.

Setting a connection’s delivery doubt window can limit the number of asynchronously
produced messages that are in doubt at any time. See Close Behavior on page 170 for
more information.

Setting a RejectionListener on the connection is critical for ensuring that asynchronously
produced messages have been accepted by the broker. The broker may reject a message
sent to it for any of the reasons that would cause a synchronous send to throw a
JMSException. See RejectionListener Semantics on page 171 for more information.

Ordering of Asynchronously Produced
Messages

Messages sent asynchronously follow the same ordering guarantees outlined in Message
Ordering and Reliability on page 262. Messages that are of the same DeliveryMode,
Destination and JMSPriority define an ordered stream of messages to the broker. Using
asynchronous delivery can complicate ordering if a particular message in a stream is
rejected by the broker, as subsequent messages in the stream that do not produce an error
are successfully delivered.

Delivery Doubt Window

Delivery of asynchronously produced messages is in doubt until the session on which they
are produced is successfully closed. A connection’s delivery doubt window can be set by
the method:

ConectionFactory.setDeliveryDoubtWindow (Integer numMessages)

Specifying a value of 0 indicates that there is no explicit limit on the number of
asynchronously produced messages at a given time.

Setting a positive integer value n for the number of messages in the delivery doubt window
means that the send call will block when n number of messages have not been reliably
delivered to the broker. Therefore, setting this value limits the number of messages that can
be lost in a failure.

Aurea Software, Inc. Confidential 169 Copyright © 2013 Aurea, Inc.

Chapter 4: SonicMQ Connections

Failure conditions when fault tolerant brokers are not in use include an application crash,
connection failure, broker failure, or an unsuccessful attempt to close the session.

Brokers licensed for fault tolerance that are replicating messages under PERSISTENT and
NON_PERSISTENT_REPLICATED delivery mode do not experience message loss due to a
connection or broker failure.

Close Behavior

Asynchronously produced messages are in doubt until a session is successfully closed.
A successful close of a session is accomplished by either session.close() or
connection.close() returning without throwing an exception. Upon successful close, any
message not reported on the connection's RejectionListener has been successfully
delivered to the broker. If close does not complete successfully, then the delivery status of
any message not reported on the connection's RejectionListener is in doubt. In other
words, if close generates an error, it is not guaranteed that all indoubt messages are
reported on the RejectionListener. This is because some JMS delivery modes will not be
acknowledged by the broker, and, as such, their acknowledgement is implicitly achieved by
the synchronous close call. If the close call throws an exception, then some messages
might not be reported on the RejectionListener.

Close Timeout

When messages are produced asynchronously, it is possible that some messages are
pending delivery when close is called. These messages may be in transit to the broker, in
a client queue, or being processed by the broker. If the producer is flow controlled or the
client has a large backlog of undelivered messages, it is possible that close could take a
substantial amount of time. For applications that are unwilling to wait for asynchronous
message delivery to complete and are capable of handling message loss, a close timeout
can be configured that specifies how long to wait for undelivered or in-doubt messages to
reach the broker.

ConnectionFactory.setDeliveryCloseTimeout (Long timeout)

If the close timeout value is -1, close will block until message delivery is either complete
or there is an exception in close. If the connection’s close timeout value is greater than or
equal to 0, any asynchronously produced messages for which delivery guarantees cannot
be met within the timeout are reported on the connection's RejectionListener with a
JIMSAsyncDeliveryException and an error code of ERR_IMS_DELIVERY_TIMEOUT_ON_CLOSE.
The delivery status of such a message is in doubt. Delivery timeout will not cause an
exception to be thrown from close. Therefore, in the absence of another exception being
thrown, any message not reported on the RejectionListener were successfully delivered.
In the absence of an exception on close, all undelivered messages are reported on the
RejectionListener.

Although the default value for close timeout is 0, it is recommended that you increase this
value, or set it to -1 when using asynchronous delivery.

Aurea Software, Inc. Confidential 170 Copyright © 2013 Aurea, Inc.

Asynchronous Message Delivery

Delivery close timeout also applies to synchronously produced messages. If a call to
publish(Q) or send() is blocked waiting for delivery to complete, it will throw a JMSException
with the error code ERR_IMS_DELIVERY_TIMEQUT_ON_CLOSE if the timeout is reached during
close.

Delivery close timeout also applies to DISCARDABLE messages. DISCARDABLE messages are
written to the wire—in a best effort to deliver the messages—instead of dropping them
when a close timeout is specified. However, if the session becomes flow controlled,
DISCARDABLE messages are dropped.

The close timeout does not specify a timeout for the entire close operation, only the
amount of time that close will wait for message delivery to complete.

RejectionListener Semantics

The RejectionListener reports asynchronously delivered messages that could not be
delivered to the broker. All asynchronous delivery failures are reported using a
JMSAsyncDeliveryException. For errors that are reported by the broker, the
JMSAsyncDeliveryException will generally include a linked JMSException with the delivery
error. When this is the case, JMSAsyncDel1iveryException.getErrorCode() returns the
error code of the linked exception.

When ASYNC_DELIVERY_MODE_ENABLED is not set, delivery failures are not reported on the
RejectionListener to avoid breaking existing applications that use the
RejectionListener. Instead these messages are silently dropped (preserving the existing
behavior).

Because the RejectionListener is single threaded, the connection serializes its execution.

If a RejectionListener results in an unchecked exception being thrown it will be caught,
and the RejectionListener will not be called again. It is good practice to ensure that all
unchecked exceptions are handled by a RejectionListener implementation.

Because session.close() cannot complete until all RejectionListener calls have
completed, RejectionListener implementations should take care not to perform any
operations that could block for an extended period of time. A RejectionListener must
never call a JMS close method. This restriction is in place because close itself cannot
complete prior to all RejectionListener calls returning.

Once a session is closed, the RejectionListener will no longer be called for any messages
that were produced by any of its MessageProducers, regardless of whether or not close
returned successfully.

A delivery failure for a DISCARDABLE message is never reported on the RejectionListener.

The RejectionListener does not guarantee that errors are reported in any particular order.

Aurea Software, Inc. Confidential 171 Copyright © 2013 Aurea, Inc.

Chapter 4: SonicMQ Connections

The RejectionListener should be set prior to sending any asynchronous messages. If the
RejectionListener is set after sending an asynchronous message then applications can't
count on errors being reported. You can change the RejectionListener—doing so will
cause new delivery failures to be reported on the new RejectionListener. You could unset
the RejectionListener by specifying a null RejectionListener, but it is not
recommended.

Fault-Tolerant Connections

The client aspect of the Sonic Continuous Availability Architecture is client connections that
are fault tolerant. A fault-tolerant connection is designed to be resilient when it detects
problems with the broker or network. A standard connection, in contrast, is immediately
dropped when the broker or network fails. Because the standard connection is immediately
dropped, your client application has to explicitly deal with the situation, possibly trying to
create a new connection and resolve any in-doubt messages.

A fault-tolerant connection, unlike a standard connection, is kept alive when the broker or
network fails. It automatically performs several tasks on your behalf when a problem
occurs. For example, it automatically attempts to reconnect when it encounters a problem
with a connection. If it successfully reconnects, it immediately executes several state and
synchronization protocol exchanges, allowing it to resynchronize client and broker state
and resolve in-doubt messages. When the connection successfully resynchronizes client
and broker state, the connection is said to be resumed, and your client application can
continue its operations without any directly visible disruption.

A fault-tolerant connection can respond to broker or network failure in a variety of ways.
How it responds depends on how you have deployed SonicMQ and on the nature of the
failure. There are several possibilities:

o If the network experiences a transient failure, the fault-tolerant connection can
repeatedly try to recover the connection until the network returns to normal.

. If your client application has redundant network pathways to the broker, one pathway
can fail, and the fault-tolerant connection can use the other pathway to resume the
connection.

e If your client application is connected to a standalone broker, which fails, the
fault-tolerant connection can repeatedly try to reconnect to the broker, until it is
recovered and restarted.

. If you have configured and deployed a backup broker, and the primary broker fails, the
fault-tolerant connection can connect to the backup broker.

Aurea Software, Inc. Confidential 172 Copyright © 2013 Aurea, Inc.

Fault-Tolerant Connections

Fault-tolerant connections are designed to provide continuous operation across failures for
JMS operations that are intended for high reliability:

e Production of PERSISTENT messages to both topics and queues.

e Consumption (that is, acknowledgement) of messages from queues and durable
subscriptions.

e Production and consumption of messages in a transacted session, integrity of the
transaction demarcation operations commit() and rollback(), including duplicate
transaction detection.

e Client requests that manage temporary queues.
For more information about fault-tolerant deployments and continuous availability, see the

Aurea SonicMQ Deployment Guide. For more information about configuring fault-tolerant
brokers, see the Aurea SonicMQ Configuration and Management Guide.

Note: Fault-tolerant connections are not supported for HTTP Direct.

How Fault-Tolerant Connections are Initially
Established

To initially establish a fault-tolerant connection, the client runtime works through a
connection URL list, which can include multiple broker URLs. You add URLSs to this list by
calling the ConnectionFactory.setConnectionURLs() method.

If your client application wants to use fault-tolerant connections against a replicated broker,
the programming model requires you to specify the URLSs for your primary and backup
brokers in the ConnectionFactory URL list. Before the client application initially connects,
it does not know which broker (primary or backup) is active; if you omit the active broker
from the list, the client will not be able to initially connect.

See Alternate Connection Lists on page 146.

The client runtime works through the list one URL at a time, and connects to the first
available broker on the list. The client runtime can work through the list in either of two
ways:

e In sequential order, starting from the beginning of the list (this is the default behavior).

. In sequential order, starting from a random entry in the list (to get this behavior, you
must call the ConnectionFactory.setSequential (false) method).

The following code snippet demonstrates how to make the client runtime randomly choose
a broker from a list:

//cf is a ConnectionFactory
cf.setSequential (false);

//primary and backup brokers paired in list
cf.setConnectionURLs (“B1P,B1B,B2P,B2B,B3P,B3B,B4P,B4B") ;

Aurea Software, Inc. Confidential 173 Copyright © 2013 Aurea, Inc.

Chapter 4: SonicMQ Connections

Table 6:

The following code snippet demonstrates how to make the client runtime choose a broker
by starting at the beginning of the list:

cf.setSequential (true) ;

//primary and backup brokers paired in list
cf.setConnectionURLs (“*B1P,B1B,B2P,B2B,B3P,B3B,B4P,B4B") ;

The following code snippet also demonstrates how to make the client runtime choose a
broker by starting at the beginning of the list:

cf.setSequential (true) ;

//primary brokers listed before backup brokers
cf.setConnectionURLs (“*B1P,B2P,B3P,B4P,B1B,B2B,B3B,B4B") ;

However, in this snippet, the primary brokers are listed before their corresponding backup
brokers. This approach would be appropriate, for example, if the backup brokers were on
slower machines than the primary brokers.

ConnectionFactory Methods for
Fault-Tolerance

The ConnectionFactory class has several methods related to fault tolerant connections, as
shown in Table 6. The usage of these methods is described in more detail in the sections
following the table.

ConnectionFactory Methods for Fault-Tolerance

Method Signature

Description

Long getClientTransactionBufferSize()

Gets the client transaction buffer size.

Boolean getFaultTolerant()

Indicates whether new Connections will be fault
tolerant.

Integer

getFaultTolerantReconnectTimeout()

Gets the fault tolerant reconnect timeout.

Integer getlnitialConnectTimeout()

Returns the initial connect timeout.

setClientTransactionBufferSize(Long size)

Sets the client transaction buffer size.

setFaultTolerant(Boolean faultTolerant)

Enables and disables fault tolerance for new
connections.

setFaultTolerantReconnectTimeout(Integer
seconds)

Sets the fault tolerant reconnect timeout.

setlnitialConnectTimeout(Integer seconds)

Sets the initial connect timeout.

Aurea Software, Inc. Confidential

174 Copyright © 2013 Aurea, Inc.

Fault-Tolerant Connections

Enabling Fault-Tolerant Connections

By default, a ConnectionFactory creates standard connections, not fault-tolerant ones. If
you want to create a fault-tolerant connection, you must first call the following method:

ConnectionFactory.setFaultTolerant (Boolean faultTolerant)

If faultTolerant is true, the ConnectionFactory creates fault tolerant connections; if
false, the ConnectionFactory creates standard connections.

To get the ConnectionFactory’s current fault-tolerance setting, call the following method:
Boolean ConnectionFactory.getFaultTolerant()

You cannot create a fault-tolerant connection unless the broker is licensed to support-fault
tolerance. A broker that is not licensed to support fault tolerance will effectively ignore the
ConnectionFactory setting. You can determine if a connection is fault tolerant by calling
the progress.message.jclient.Connection.isFaultTolerant() method.

Client Transaction Buffers

When a fault-tolerant connection fails in the middle of a transaction, the client runtime
attempts to resume the connection with the broker. If the broker is down, the client runtime
attempts to connect to a standby broker, provided you're using broker replication. If the
client runtime is able to resume the connection with either broker, it must make sure that its
transaction state is synchronized with the broker’s transaction state.

The broker, for performance reasons, buffers transacted messages in memory, instead of
saving each message individually as it is received. Consequently, the client runtime also
buffers t,he unsaved messages, so that if the broker goes down and loses the buffered
messages, they can be automatically resent by the client runtime.

The broker tuning parameter, Transactions: Buffer Size, specifies the size of the broker’'s
buffer on a per-transaction basis. In general, performance improves as the buffer size is
increased. However, the improved performance has two costs: the client runtime uses
more memory, and it takes longer to resend the unsaved messages if the broker goes
down.

The client application can override the transaction buffer size. This is done by calling the
following method:

ConnectionFactory.setClientTransactionBufferSize (Long size)

Aurea Software, Inc. Confidential 175 Copyright © 2013 Aurea, Inc.

Chapter 4: SonicMQ Connections

Valid values for size are as follows:

e Zero (0) (the default) — Indicates the broker Transactions: Buffer Size is applied. The
client runtime must be able to buffer up to the broker Transactions: BufferSize
parameter per transaction.

e Positive Long integer — Specifies the size, in bytes, that the client runtime is willing
to buffer per transaction. If the buffer size is reached, JMS client sending threads will
block until further messages are saved by the broker. The broker will apply a
transaction buffer size that is the lesser of the client-specified value and the broker’s
Transactions: Buffer Size.

The client runtime must be able to allocate sufficient memory to buffer messages for
each active transaction. For local transactions, each JMS Session can have at most
one transaction active. For global transactions, every active XA transaction branch is
considered an active transaction.

The broker flushes transacted messages to disk when the amount of transacted messages
exceeds a calculated amount: the lesser of the broker’s Transaction Buffer Size parameter
or the fault-tolerant client’s transaction buffer size.

To get the client’s transaction buffer size, call the following method:

public Long getClientTransactionBufferSize()

Specifying Connection Timeouts

When a client application tries to establish an initial connection or resume a fault-tolerant
connection, it might not succeed immediately. The client can continue to try until it
succeeds, or it can specify a time interval (timeout) beyond which it will stop trying.

The client application can specify two timeouts related to fault tolerant connections:

e Initial connect timeout — Indicates how long the client runtime tries to establish an
initial connection to the broker

e Fault tolerant reconnect timeout — Indicates how long the client runtime tries to
resume a fault tolerant connection after a problem is detected

To set the initial connect timeout, call the following method:
ConnectionFactory.setInitialConnectTimeout (Integer timeout)
The default timeout is 30 seconds.

When the client runtime tries to establish an initial connection, it sequentially tries the URLs
listed in the ConnectionFactory. You can set this list programmatically with the
ConnectionFactory.setConnectionURLs () method (see How Fault-Tolerant Connections
are Initially Established on page 173).

Aurea Software, Inc. Confidential 176 Copyright © 2013 Aurea, Inc.

Fault-Tolerant Connections

The client runtime continues to try to establish a connection until either a connection is
successful or the initial connect timeout is exceeded. If the client runtime is trying to connect
to a URL when a timeout occurs, it will not stop immediately. It must complete its current
attempt (and fail) before returning a failure to the client application. However, it can return
a failure before trying all URLSs in the list.

Note: The InitialConnectTimeout setting interacts with the setting described in Setting
a Socket Connect Timeout on page 148, and—for fault tolerant connections—the
operating systems settings discussed in the “Tuning TCP to Optimize CAA
Failover” in the SonicMQ V6.1 Performance Tuning Guide.

The socket connect timeout should allow for an attempt at every listed URL.
For example, where a URL list contains six URLS, the default setting for the
InitialConnectTimeout of 30 seconds would require that the
SocketConnectTimeout value be set to 5 seconds. The tuning of the operating
system for fault tolerant failover assures that the OS does not add unintended
delays.

When you call the setInitialConnectTimeout() method, valid values are as follows:

e Positive non-zero value — Specifies a timeout; the client runtime will abandon further
connection attempts if the timeout is exceeded.

e Zero (0) — Specifies no timeout; the client runtime will try indefinitely.

e Negative one (-1) — Specifies that each URL is tried one time only; the client runtime
will try each URL sequentially one at a time until a successful connection is made or
until all URLs have been tried. This sequence is the same as the connection sequence
used for standard connections.

If a connection cannot be established within the allocated time, a connection exception will
be thrown.

To set the fault tolerant reconnect timeout, call the following method:

ConnectionFactory.setFaultTolerantReconnectTimeout (Integer
timeout)

The default timeout is 60 seconds.

When a problem is detected with a fault tolerant connection, the client runtime tries to
resume the connection. If it can connect to the same broker, it will; otherwise, it will try to
reconnect to a standby broker (if you are using broker replication).

When the client runtime successfully establishes a fault tolerant connection with a broker,
the broker sends a list of URLSs to the client runtime to be used for the purpose of
reconnection. If replicated, the broker also sends a list of standby broker URLs for the
purpose of reconnection. After a connection is established, you can see the values in these
lists by calling the following methods:

° progress.message.jclient.Connection.getBrokerReconnectURLs ()

o progress.message.jclient.Connection.getStandbyBrokerReconnectURLs

()

Aurea Software, Inc. Confidential 177 Copyright © 2013 Aurea, Inc.

Chapter 4: SonicMQ Connections

When you call the setFaultTolerantReconnectTimeout() method, valid values are as
follows:

e A positive integer — Specifies a timeout; the client runtime will abandon further
reconnection attempts if the timeout is exceeded.

e Zero (0) — Specifies no timeout: the client runtime will try to reconnect indefinitely.

If the client is using the client persistence feature and the client runtime fails to reconnect,
the connection will go offline. For more information, see Client Persistence and
Fault-Tolerant Connections on page 183.

If the client is not using the client persistence feature and the client runtime fails to resume
a connection, the client runtime drops the connection and returns a connection dropped
exception to the client application’s ExceptionListener.

The client’s ability to reconnect is also influenced by the advanced broker property Client
Reconnect Timeout. The default timeout is 600 seconds—10 minutes. This property limits
the overall length of time the broker will maintain state for any fault-tolerant connection that
fails and cannot reconnect. The maximum length of time that a broker maintains state is the
lesser of the client-specified fault tolerant reconnect timeout and the value set in Client
Reconnect Timeout.

If the client fails to reconnect in the allocated time, the client is completely disconnected by
the broker. A fault-tolerant client runtime that attempts to reconnect late and after the broker
has discarded state will encounter a connection failure.

Connection Methods for Fault-Tolerance

The progress.message.jclient.Connection class has several methods related to fault
tolerant connections, as shown in Table 7. The usage of these methods is described in
more detail in the sections following the table.

Table 7: Connection Methods for Fault-Tolerance
Method Signature Description
int getConnectionState() Returns the current connection state.
ConnectionStateChangeListener Returns the current
getConnectionStateChangeListener() ConnectionStateChangelListener.
setConnectionStateChangelListener(Sets the current ConnectionStateChangeListener.

ConnectionStateChangeListener listener)

String getBrokerURL() Returns the URL of the currently connected broker.

String[] getBrokerReconnectURLSs() Returns a String array containing all of the URLSs that
the client runtime can use to try to resume a
connection to the connected broker.

Aurea Software, Inc. Confidential 178 Copyright © 2013 Aurea, Inc.

Fault-Tolerant Connections

Table 7: Connection Methods for Fault-Tolerance

Method Signature

Description

String[] getBrokerStandbyReconnectURLS()

Returns a String array containing all of the URLSs that

the client runtime can use to try to resume a
connection to a backup broker.

boolean isFaultTolerant() Returns true if the connection is fault tolerant.

Handling Connection State Changes

If a fault-tolerant connection fails for some reason, the client runtime reacts differently than
it does for a standard connection. When a standard connection fails, the client runtime
immediately drops the connection and raises an exception. How the exception is returned
to the client application depends on what the application was doing when the exceptional
condition was raised. If the client application was in the middle of a synchronous call, the
exception would be thrown by the invoked method. If the exception occurred
asynchronously, the client runtime would pass an exception to the connection’s
ExceptionListener.

When a fault tolerant connection encounters a problem and cannot communicate with the
broker, the client runtime does not immediately drop the connection. Instead, it tries to
resume the connection. While it is trying to resume the connection, it defers passing any
exceptions to the client application. If it fails in its attempt to reconnect, it then passes the
exceptions to the client application, in the same manner as it would for a standard
connection.

While the client runtime is trying to resume a fault-tolerant connection, the client application
appears to block. However, the client application can stay informed about the state of the
connection by implementing a ConnectionStateChangeListener and registering it with the
appropriate Connection object.

Whenever the state of the connection changes, the client runtime calls the listener’s
connectionStateChanged(int state) method. This method accepts the following valid
values (each value represents a different connection state):

. progress.message.jclient.Constants.ACTIVE — The connection is active.

e progress.message.jclient.Constants.RECONNECTING — The connection is
unavailable, but the client runtime is trying to resume the connection.

. progress.message.jclient.Constants.FAILED — The client runtime has tried to
reconnect and failed.

. progress.message.jclient.Constants.CLOSED — The connection is closed.

A client application can obtain the connection’s current state by calling the following method
on the Connection object:

int getConnectionState()

If a standard connection calls the getConnectionState() method, it will never get a
RECONNECTING state.

Aurea Software, Inc. Confidential 179 Copyright © 2013 Aurea, Inc.

Chapter 4: SonicMQ Connections

When a fault tolerant connection is working normally, the connection state is ACTIVE. If a
problem occurs with the connection, the client runtime changes the state to RECONNECTING
and attempts to resume the connection. If the attempt is successful, the client runtime
changes the state back to ACTIVE; if all attempts to reconnect fail, the client runtime
changes the state to FAILED. Finally, if an ExceptionListener is registered, the client
runtime calls its onException() method.

When you implement a ConnectionStateChangelListener, you must not perform any JMS
operations related to the connection, except for calling the following informational methods:

. progress.message.jclient.Connection.getConnectionState()
° progress.message.jclient.Connection.getBrokerURL()
° progress.message.jclient.Connection.getBrokerReconnectURLs ()

e progress.message.jclient.Connection.getBrokerStandbyReconnectURLs

()

It is recommended that you do not perform any time- or CPU-intensive processing in the
connectionStateChanged() method, as this may impede the client reconnect.

Getting the URL of the Current Broker

If you are using client URL lists or broker load-balancing, a client connection (fault-tolerant
or standard) can be made to one of a number of brokers. Further, with broker
load-balancing, it is typical that the URL provided by a load-balancing broker is not
configured by the client. With fault-tolerance enabled, the connection can reconnect to a
different URL or to a different broker than it initially connected to. In all these cases, a client
application can determine which broker it is currently connected to by calling the
progress.message.jclient.Connection getBrokerURL() method. The signature of this
method is as follows:

public String getBrokerURL()

This method returns the URL of the currently connected broker. If the current connection
state is RECONNECTING, this method returns the URL of the last broker connected when the
connection state was ACTIVE. This method may be called after the connection is closed.

URL Lists for Reconnecting

When a client initially establishes a fault-tolerant connection to a broker, the broker passes
two URL lists to the client runtime. The first list contains all of the URLSs that are tried to
resume a connection to the connected broker; the second list contains all of the URLSs that
are tried to resume a connection to its standby broker.

A client application can access the first list by calling the
progress.message.jclient.Connection getBrokerReconnectURLs() method. The
signature of this method is as follows:

public String[] getBrokerReconnectURLs()

Aurea Software, Inc. Confidential 180 Copyright © 2013 Aurea, Inc.

Fault-Tolerant Connections

A client application can access the second list by calling the
progress.message.jclient.Connection getStandbyBrokerReconnectURLs() method.
The signature of this method is as follows:

public String[] getStandbyBrokerReconnectURLs()

Both of these methods are used for purely informational purposes, such as for writing to an
audit log; the reconnect logic is automatically performed by the client runtime. These
methods can both be called after the fault-tolerant connection is closed.

Broker Reconnect URLSs

These are URLSs the client runtime can use to try and reconnect to the current broker, in the
event of connection failure (transient or other). The broker reconnect URLs allows multiple
acceptors on redundant network interfaces to be configured and included in client
reconnect logic. The broker reconnect URLs are derived from the configuration by the
following rules:

e If the active broker has a default routing URL configured, return the currently
connected URL.

. If the active broker has one or more URLSs with same acceptor name as the currently
connected URL, return the URLs with same acceptor name, and include the currently
connected URL (getBrokerURL()).

e Otherwise return the currently connected URL (getBrokerURL()).

If getBrokerReconnectURLs() is called against a fault-tolerant connection that is
RECONNECTING, the method returns the broker reconnect URLs when the connection state
was last ACTIVE.

Standby Broker Reconnect URLs

These are URLSs the client runtime can use to connect to a standby broker (a broker that is
paired for fault-tolerance with the current broker) if it cannot successfully resume its
connection with the current broker. The list of standby broker reconnect URLs is derived
from the configuration by the following rules. These rules are consistent with how broker
load-balanced connections are selected:

. If the broker is standalone, return null.

e If the standby broker has a default routing URL configured, return the standby broker
default routing URL.

o If the standby broker has one or more URLs with same acceptor name as the primary
broker URL, return the standby broker URLs with same acceptor name.

. Otherwise return null.

The final case is regarded as a configuration error. Replicated brokers must be configured
with corresponding acceptor names.

If getStandbyBrokerReconnectURLs() is called against a fault-tolerant connection that is
RECONNECTING, the method returns the standby broker reconnect URLs of the last broker
connected when the connection state was ACTIVE.

Aurea Software, Inc. Confidential 181 Copyright © 2013 Aurea, Inc.

Chapter 4: SonicMQ Connections

Reconnect Errors

A fault-tolerant connection might fail to reconnect for a variety of reasons. When a failure
occurs, the ERR_CONNECTION_DROPPED error code is included in the exception returned to the
Connection’s ExceptionListener; a linked exception provides more information about the
specific cause of the failure.

Load Balancing Considerations

When a client is connecting to a replicated broker, both the primary and backup URLs
should be specified in the ConnectionFactory’s URL list. This holds true if the replicated
broker is also a load-balancing broker. If a fault-tolerant client is redirected to a broker that
is replicated, the client is automatically capable of reconnecting that broker’s list of
reconnect URLs and standby reconnect URLSs.

To get the URL of the broker that the client connects to as a result of load balancing, call
getBrokerURL() on the connection object.

To get the reconnect URLs of the broker that the client connects to as a result of load
balancing, call getBrokerReconnectURLs() on the connection object.

To get the URLs of the backup broker for the broker that the client connects to as a result
of load balancing, call getStandbyBrokerReconnectURLs() on the connection object.

Acknowledge and Forward Considerations

The acknowledge-and-forward feature allows clients to atomically acknowledge a queue
message and move it a new queue. The acknowledge operation and move operation either
both succeed or both fail. As part of the acknowledge-and-forward call, the message
consumer can optionally change the delivery mode of the message.

The only reliable acknowledge-and-forward operation that will be supported with
fault-tolerant connections is PERSISTENT t0 PERSISTENT.

PERSISTENT to NON_PERSISTENT, and vice-versa, will throw an I11egalStateException
when attempted on a fault-tolerant connection.

Forward and Reverse Proxies

Fault-tolerant connections will work through forward proxy servers.

Fault-tolerant connections will also work through reverse proxy servers that provide
address translation. URLs for primary and backup brokers that are exterior to the firewall
should be configured in the ConnectionFactory. When configuring a broker for
fault-tolerance behind a firewall, you must configure the default routing URL to the exterior
URL.

Aurea Software, Inc. Confidential 182 Copyright © 2013 Aurea, Inc.

Fault-Tolerant Connections

Client Persistence and Fault-Tolerant
Connections

Fault-tolerant connections and client persistence can be used together. When you use
these features together, you need to understand how the client runtime makes the
transition from ordinary messaging to client persistence, and vice versa.

You need to understand the purpose of the settings in Table 8 and how they affect client

behavior.
Table 8: Timeout Settings
Setting progress.message.jclient.ConnectionFactory Method
Initial connect timeout setlnitialConnectTimeout()

Fault-tolerant reconnect setFaultTolerantReconnectTimeout()

timeout
Reconnect timeout setReconnectTimeout()
Reconnect interval setReconnectinterval()

When the client runtime initially establishes a fault-tolerant connection, it checks the value
of the initial connect timeout, set with the setInitialConnectTimeout() method. This
method determines how long the client runtime tries to establish an initial fault-tolerant
connection.

After the fault-tolerant connection is successfully established, it will continue to operate
normally until a problem occurs with the network or broker. If a problem occurs, the client
runtime will try to resume the connection. The setFaultTolerantReconnectTimeout()
method determines how long the client runtime attempts to resume the connection.

While the client runtime tries to resume the fault-tolerant connection, the persistent client is
still online. However, once the fault-tolerant reconnect timeout expires, the persistent client
goes offline, and JMS message sends are saved to the client’s local disk.

While offline, the persistent client runtime internally attempts to reconnect. This process is
controlled by two persistent client settings: reconnect interval and reconnect timeout. The
setReconnectInterval () method determines the interval between reconnect attempts.
The setReconnectTimeout() method determines how long the client runtime tries to
reconnect before returning an exception to the application; this method effectively puts a
cap on how long the persistent client is willing to operate offline.

The client persistence feature is essentially indifferent to the type of connection you are
using, whether standard or fault-tolerant. The only difference between a standard
connection and a fault-tolerant connection is when the transition to client persistence takes
place. If a standard connection has a problem with the broker or network, the connection is
immediately dropped, and the transition to client persistence immediately follows. If a
fault-tolerant connection has a problem with the broker or network, it tries to resume the
connection, delaying the transition to client persistence until the fault-tolerant reconnect
timeout expires.

Aurea Software, Inc. Confidential 183 Copyright © 2013 Aurea, Inc.

Chapter 4: SonicMQ Connections

Consider the following example. Suppose a client application wants to use the client
persistence feature and combine it with fault-tolerant connections. Further suppose the
client application uses the following settings:

° Initial connect timeout — 30 seconds
° Fault-tolerant reconnect timeout — 60 seconds
° Reconnect timeout — 360 minutes

. Reconnect interval — 600 seconds

When the client application initially connects to the broker, it does so within 25 seconds, so
the fault-tolerant connection succeeds. The persistent client application goes online. When
the client is online, JIMS messages are transmitted directly to the broker. Later, the network
fails, and the client runtime attempts to resume the connection, but fails to do so within 60
seconds, so the fault-tolerant reconnect timeout expires. At this time, the persistent client
goes offline.

When the client is offline, IMS messages are saved on the client's local disk. The offline
persistent client runtime continues to save JMS messages, but internally the runtime is
attempting to reconnect to the broker. This process is controlled by two persistent client
settings: reconnect interval and reconnect timeout. After every reconnect interval, the
persistent client will attempt to reconnect. If the reconnect timeout is exceeded the
persistent client will fail and return an exception to the application. By default, the reconnect
timeout is set to 0, which means that the client runtime will continually try and connect to
the broker.

Continuing this example, suppose the broker restarts after 15 minutes. Since the reconnect
interval is set to 600 seconds (10 minutes), on the second reconnect attempt the client will
succeed and go back online. In this case the client operates offline for a period of 20
minutes.

JMS Operation Reliability and Fault-Tolerant
Connections

Reliability refers to resilience after a broker failure—a broker crashed, recovered fully, and
restarted successfully; or a replicated broker crashed and failed over to its backup broker.
The general term failure means either a broker failure or a transient network failure. The
reliability of various JIMS and SonicMQ-specific operations in the event of a client reconnect
after a failure are as follows:

e Production and consumption of persistent messages to temporary queues for
fault-tolerant clients are highly reliable across failures.

e Production and consumption of persistent messages to temporary topics are
unreliable across failure. For fault tolerant request-reply, applications should use a
durable subscriber to handle replies.

e Transaction timeouts (a Sonic-specific feature) are restarted when a broker fails.

Aurea Software, Inc. Confidential 184 Copyright © 2013 Aurea, Inc.

Fault-Tolerant Connections

e QueueBrowsers are unreliable if a fault-tolerant connection detects a problem with the
broker or network; all QueueBrowsers are immediately closed. The current browse
cursor will throw a java.util.NoSuchElementException exception with text indicating
that the browse has been terminated due to fail-over. Any attempt to call a
QueueBrowser method after fail-over will result in a
javax.jms.I11egalStateException. Explanatory text is provided in the exception.
The following String error code will be provided:

progress.message.jclient.ErrorCodes.BROWSER CLOSED DURING RECO
NNECT

e Access to read-exclusive queues (a Sonic-specific feature) may be lost during
fail-over. It is possible for a fault-tolerant connection with a QueueReceiver open on a
read-exclusive queue to fail to reconnect after broker failure. This will happen if
another client opens a receiver to the same queue before the fault-tolerant client
reconnects. In this case, normal JMS connection failure occurs. This problem cannot
occur when the client connection recovers from transient network failure.

When a message is sent from a client to an active broker, the client maintains a copy of the
message until two acknowledgements are received. The first acknowledgement is from the
active broker, the second acknowldegement is from the standby broker through the active
broker. If the active broker fails before the second acknowledgement is returned,
then—when the client reconnects to the standby as it assumes the active state—it
negotiates its state: what was the last message received, what was the last
acknowledgement received by the client, and so on. When the now-active broker has
synchronized with the client, any missed messages are resent from the client cache. If the
active broker fails prior to replication, then—when the client negotiates its state at
reconnection—missing messages are resent from the client cache. Messages are removed
from the client cache after both acknowledgements have been received.

Reconnect Conflict

Connect conflicts are possible during client connection recovery. Conflicts can happen at
the JMS connection level and at the durable subscriber level.

JMS Connection Reconnect Conflict

To uniquely identify connections, the ConnectionFactory username and connectID values
are used. A non-null connectID is required, so that only one connection with the
particular username and connectID combination is permitted, and connected when failover
occurs. Before reconnecting, another client can attempt to connect using the same
connectID and username identifiers. A normal (non recovery) connect is received for this
client. To the broker this also happens if the original client application inelegantly
disconnects then attempts to create a new connection. For this reason, it is undesirable for
the broker to reject new connects while maintaining state for a fault-tolerant connection that
has failed and is pending reconnect. Therefore if a fault-tolerant connection has failed and
is pending reconnect in the broker and a new connection (non-recovery) is received with
the same connectID and username, the new connection will be accepted and the previous
connection state will be discarded.

Aurea Software, Inc. Confidential 185 Copyright © 2013 Aurea, Inc.

Chapter 4: SonicMQ Connections

If connectID is null (default) a unique connect identifier is allocated by the broker.
Therefore, by specifying a null connectID, the username is permitted to establish any
number of connections.

This means that a client using fixed connect identifiers to gain exclusive access can lose
such access (have it “stolen” by a different client) during pending reconnect state.

Durable Subscriber Reconnect Conflict

To uniquely identify durable subscriptions the ConnectionFactory username and c1ientID,
in conjunction with the subscription name parameter provided to javax.jms.Session
createDurableSubscriber are used. A client may create a fault-tolerant connection,
session and a durable subscriber. If the connection fails, the connection enters pending
reconnect state in the broker. During pending reconnect state, no connection is permitted
to create (gain access to) the durable subscriber unless the underlying connectID is
identical to that of the connection in postponed disconnect state.

Message Reliability

Table 9 describes message reliability levels for clients that reconnect to the broker or its
backup after a failure. The reconnect is automatic for fault-tolerant connections, and
application driven for standard connections. This table assumes that clients reconnecting
using standard connections do not resend in-doubt messages upon reconnecting.

Asynchronous message delivery set on the ConnectionFactory allows for a wider delivery
doubt window than possible with asynchronous message production, as the reliability
guarantee is not met until the session is closed. Setting a connection's delivery doubt
window can limit the number of asynchronously produced messages that are in doubt at
any time. See Asynchronous Message Delivery on page 167 for more information.

Note: The only way to guarantee exactly-once delivery is to use a fault-tolerant persistent
MessageProducer and a fault-tolerant MessageConsumer.

Table 9: Message Reliability
Message Producer Message Consumer
Connection Delivery Mode Standard Connection Fault Tolerant Connection
Type Topic Topic (Durable | Topic Topic
Subscription) (Durable
or Queue Subscription)
or Queue
Standard DISCARDABLE At most once! | At most once! | At mostonce® | At most oncel
Connection > 1 1 1
PERSISTENT At most once? | Atleastonce®’ | At mostonce® | Exactly once
2
NON_PERSISTENT | At most oncel | At most oncel | At mostonce® | At most once®

Aurea Software, Inc. Confidential 186 Copyright © 2013 Aurea, Inc.

Fault-Tolerant Connections

Table 9:

Message Reliability

Message Producer

Message Consumer

Fault-Tolerant
Connection

DISCARDABLE At most once At most once At most once | At most once

PERSISTENT Exactly once

At most once® | At least once? | At most once

NON_PERSISTENT | At most once | At mostonce | At mostonce | At mostonce

1in the case of a standard connection failure, if the last message sent was in doubt, your application logic may
decide to retry the publication, after creating a new connection, session, and MessageProducer. This
causes the generation of a duplicate message if the broker had received the original message. According to
JMS this is not a redelivery since the message was delivered from a new session. This ambiguity is resolved
for fault-tolerant MessageProducers: PERSISTENT messages are exactly-once; DISCARDABLE and
NON_PERSISTENT messages are dropped in a failure.

2In the case of a standard connection failure, the acknowledgement for the last message may be lost. In this case
the broker will redeliver the message with JMS_REDELIVERY set to true in accordance with the JMS
Specification.

31f a message consuming client reconnects using a standard connection at the same time as a fault-tolerant
publisher is reconnecting, it is possible that the publisher will resend a message that had been delivered to the
previously connected client. According to JMS this is not a redelivery since the message was delivered to a
new session.

NON_PERSISTENT REPLICATED Delivery
Mode

SonicMQ provides the NON_PERSISTENT_REPLICATED delivery mode for fault-tolerant
deployments. For messages sent with this delivery mode, SonicMQ will protect against
message loss due to broker failures by replicating the messages to the standby broker. This
feature is Fast Forward mode in Sonic’s Continuous Availability Architecture (CAA-FF).

In contrast, if the delivery mode is NON_PERSISTENT, SonicMQ does not replicate
the messages. However, setting the advanced broker property
BROKER_FAULT_TOLERANT_PARAMETERS . FT_REPLICATE_NON_PERSISTENT tO true,
upgrades the delivery mode of any messages sent using the NON_PERSISTENT
delivery mode to NON_PERSISTENT_REPLICATED for a fault tolerant deployment. For
more information on setting this and other exposed advanced broker properties,
see the “Configuring MQ Brokers” chapter of the SonicMQ V6.1 Configuration and
Management Guide.

Note:

The NON_PERSISTENT_REPLICATED delivery mode also ensures once-and-only-once deliver
to fault-tolerant subscribers (both durable and non-durable), provided that after a failure the
subscriber either successfully resumes its connection at the same broker or fails over to the
standby broker.

This delivery mode provides a more satisfactory level of performance for applications that
do not want to use PERSISTENT messages. If the delivery mode is PERSISTENT and a durable
subscriber consumes the message, SonicMQ replicates the messages to the standby
broker (as with NON_PERSISTENT_REPLICATED) but also persists the messages to the
recovery log (which requires disk I/O).

Aurea Software, Inc. Confidential

187 Copyright © 2013 Aurea, Inc.

Chapter 4: SonicMQ Connections

The NON_PERSISTENT_REPLICATED delivery mode instructs SonicMQ to protect the message
in the event of the following types of failure:

e Aclient application submits a message to a fault-tolerant broker that is in the ACTIVE
state and is replicating messages to a standby broker. If the active broker fails, the
application fails over to the standby broker. The message is not lost. Also, the
message is not redelivered to its consumers, provided that both the producer and the
consumers use fault-tolerant connections.

e Aclient application submits a message to a fault-tolerant broker that is working in the
STANDALONE or ACTIVE_SYNC replication state. Later, the messaging state of the
standby broker is synchronized with the active broker. The active broker is now
running in the ACTIVE replication state.

If the active broker, B1, fails, the application fails over to the configured backup broker
standby broker, B1_BU. The message is not lost. Also, the message is not redelivered
to its consumers, provided that both the producer and the consumers use fault-tolerant
connections.

The standby broker B1_BU runs in the STANDALONE replication state until its peer
broker, B1, restarts, establishes a replication connection between B1 and B1_BU,
and starts synchronizing its data to the active broker’s data. When the brokers are fully
synchronized, B1_BU assumes the active role and B1 assumes the standby role.

Important: Time is of the essence — When synchronization is in process, the
messages produced with the NON_PERSISTENT_REPLICATED delivery
mode are not protected from a crash of broker B1_BU. That is, if broker
B1_BU fails while running in the STANDALONE or ACTIVE_SYNC replication
state, the NON_PERSISTENT_REPLICATED messages can be lost or
redelivered (or both) when B1_BU is restarted, because the messages
and their acknowledgements have not been persisted to the recovery
log. In this scenario, applications cannot failover to broker B1 because it
does not have its messages completely synchronized with broker
B1_BU and, therefore, it does not failover and does not accept client
connections.

When an active broker fails and the client connections failover to the
standby broker, it is very important to recover and restart the failed broker
as soon as possible. Otherwise, if the other broker also fails, message
loss or duplication (or both) can occur. See the section “Recovery of a
Broker” in the chapter “Broker Replication” in the Aurea SonicMQ
Deployment Guide for detailed instructions for both recoverable
interruptions and disaster recovery.

When the crash of the active broker is followed by a prompt, successful
restart of the failed broker, and then recovery to the protected state (one
broker in the ACTIVE state and its peer in the STANDBY state),
NON_PERSISTENT_REPLICATED messages are protected and no loss or
duplication of messages occurs.

Aurea Software, Inc. Confidential 188 Copyright © 2013 Aurea, Inc.

Fault-Tolerant Connections

e Aclient application submits a message to a broker. In this type of failure, the broker
does not have to be configured for replication but it does have to be licensed for
fault-tolerance.

Important: Exactly-once recovery for the broker’s recovery logs must be enabled on
your broker. This feature is enabled by default on every broker but if you
had been advised by your Sonic representative to clear the XONCE
Recovery option on the broker’'s Tuning properties, consult with your
Sonic representative to determine whether the setting can be selected
(set to true) at this time.

e Aclient application experiences a transient network failure. In this type of failure, the
SonicMQ client runtime successfully resumes its connection at the same broker. The
message is not lost. Also, the message is not redelivered to its consumers, provided
that both the producer and the consumers use fault-tolerant connections.

Failures That Cause Message Loss or Duplication

There are severe circumstances that can result in message loss or redelivery/duplication
of NON_PERSISTENT_REPLICATED messages:

. If a broker is restarted when it is running without a standby or the broker's replication
state is not ACTIVE.

e Ifthe broker is running in the ACTIVE state and both the active broker and the standby
broker crash before the applications can failover.

Lost Messages

In these cases, NON_PERSISTENT_REPLICATED messages might be lost once the brokers are
restarted even if client applications resume their connections and sessions without
receiving an exception. Some messages can be lost because they have not been written
to the recovery log.

Redelivered/Duplicated Messages

In these cases, NON_PERSISTENT_REPLICATED messages might be redelivered. This might
happen because when a consumer acknowledges a NON_PERSISTENT_REPLICATED
message, the broker does not record the acknowledgement in its recovery log.

Setting the Default Delivery Mode for a Message
Producer

An application can use the setDeliveryMode(int deliveryMode) method in the
MessageProducer class to set the default delivery mode to NON_PERSISTENT_REPLICATED.

Aurea Software, Inc. Confidential 189 Copyright © 2013 Aurea, Inc.

Chapter 4: SonicMQ Connections

The default delivery mode is used when an application calls a variation of the send() or
publish() methods that do not have the delivery mode as one of their arguments. These
methods are defined in the MessageProducer, QueueSender and TopicPublisher classes.

Note: Enabling asynchronous message delivery on the ConnectionFactory interprets
NON_PERSISTENT_REPLICATED delivery mode as an asynchronous delivery yet
supported by a specified indoubt window and timeout and management of delivery
through the close of the session. See Asynchronous Message Delivery on
page 167 for more information.

Overriding the Default Delivery Mode on a Message

An application can request the NON_PERSISTENT_REPLICATED delivery mode explicitly in
several signatures of send() and pub1ish() methods, thereby overriding the delivery
mode of the message producer for the message that is being sent or published.

Note: While an application can pass the NON_PERSISTENT_REPLICATED delivery mode to
the setIMSDeliveryMode() method inthe javax.jms.Message interface, the value
set by this method is used only to return it when the application calls the
getIMSDel1iveryMode() method. You can use this setting to restate the selected
delivery mode into the message so that it can be retrieved by the consumer as for
informational use.

Redelivery of NON_PERSISTENT _REPLICATED
Messages

If a message consumer uses a fault-tolerant connection and does not specify the DUPS_OK
acknowledgement mode, SonicMQ guarantees once-and-only-once delivery for the
NON_PERSISTENT_REPLICATED messages in presence of the failures described in
NON_PERSISTENT_REPLICATED Delivery Mode on page 188. This means that no
message are delivered to the consumer more than once.

If the consumer uses the DUPS_OK acknowledgement mode, NON_PERSISTENT_REPLICATED
messages can be redelivered to the consumer after a failure.

Regardless of the acknowledgement mode, NON_PERSISTENT_REPLICATED messages can
be redelivered after any of the failures described in Failures That Cause Message Loss or
Duplication on page 190.

Nondurable Subscribers of
NON_PERSISTENT_ REPLICATED Messages

In the case of topic messages, once-and-only-once delivery is guaranteed for
NON_PERSISTENT_REPLICATED messages even if the subscriber is non-durable. That is
different from the behavior of the PERSISTENT messages received by non-durable
subscribers; those messages can be redelivered after a failure.

Aurea Software, Inc. Confidential 190 Copyright © 2013 Aurea, Inc.

Fault-Tolerant Connections

SonicMQ processes NON_PERSISTENT_REPLICATED messages sent to a non-durable
subscriber in a manner that is similar to how it processes PERSISTENT messages sent to a
durable subscriber. (Note that PERSISTENT messages to a non-durable subscriber are
treated as NON_PERSISTENT—they are neither replicated nor logged.)

The main differences are as follows:

e Unlike a PERSISTENT message, a NON_PERSISTENT_REPLICATED message is not written
to the recovery log.

e When the subscriber application closes the subscriber, the subscription is deleted
from the broker and remaining unprocessed messages are dropped.

Clients Resuming Fault Tolerant JMS Sessions on an Unclustered
Broker

When fault tolerant connections are used by message publishers sending
NON_PERSISTENT_REPLICATED messages that are received by non-durable fault-tolerant
subscribers, then once-and-only-once delivery of messages is guaranteed. But action on a
fault tolerant connection might not be broker interruptions or failover, it might be when the
subscriber experiences a temporary network failure. In that case, the client resumes its
JMS session at the same broker without message loss or duplication.

If the subscriber does not resume its session before the reconnect timeout expires, the
subscription is deleted, the unprocessed messages are dropped.

Clients with Fault Tolerant JMS Sessions on Clustered Brokers

When brokers are clustered, it could occur that the message publisher has a fault tolerant
connection on one cluster member, CLUSTERA_B1, while the message consumer has a
fault tolerant connection to a another cluster member, CLUSTERA_B?2. If the messages are
published with the NON_PERSISTENT_REPLICATED delivery mode, then once-and-only-once
delivery is guaranteed. That's the same as the behavior on an unclustered broker.

If broker CLUSTERA_B1 loses its connection to broker CLUSTERA_B2, the new
NON_PERSISTENT_REPLICATED messages are retained at broker CLUSTERA_B1 as
described in the previous section. This does not present a problem if the connection loss is
caused by a temporary network failure, because broker CLUSTERA_B1 only needs to retain
the new messages for a short period of time.

If broker CLUSTERA_B2 is a fault-tolerant replicated broker pair, when CLUSTERA_B?2 fails
over to its backup (CLUSTERA_B2_BU), CLUSTERA_B1's interbroker connection and the
subscriber’s client connection failover to CLUSTERA_B2_BU. Therefore, CLUSTERA_B1
does not need to retain the new messages for a long time.

In situations where CLUSTERA_B1 cannot reconnect to CLUSTERA_B?2 (or its peer) for a
long time, retention of the new messages published to the subscriber's topic might present
a problem because writing messages to the database affects CLUSTERA_B1's
performance. It is also possible that the database of broker CLUSTERA_B1 becomes full.

Aurea Software, Inc. Confidential 191 Copyright © 2013 Aurea, Inc.

Chapter 4: SonicMQ Connections

The salient difference between the cluster case and the single broker case is that in the
case of a single broker there is a reconnect timeout that prevents the broker from retaining
new messages for the disconnected subscriber for a long time. In the cluster case, there is
no such timeout. Therefore broker CLUSTERA _B1 retains the subscription and retains new
NON_PERSISTENT_REPLICATED messages published to the subscriber's topic, until it can
reconnect to a broker in the CLUSTERA_B?2 replicated pair. At that point, if the subscriber
application has already closed the subscriber, the subscription and its messages are
deleted. If the subscriber is still connected at CLUSTERA_B?2, the retained messages are
delivered to the subscriber.

If you know that a broker member and its peer will be unavailable for a long time, remove
that broker from the cluster. That deletes the subscription at CLUSTERA_B1, so that
CLUSTERA_B1 stops retaining new messages published to the subscriber’s topic.

Broker Storage of NON_PERSISTENT REPLICATED
Messages

Even though NON_PERSISTENT_REPLICATED messages are not written to the recovery log,
they can still incur disk 1/O overhead if the broker writes them into its persistent storage.

The broker can write a NON_PERSISTENT_REPLICATED message to persistent storage in one
of the following situations:

e A NON_PERSISTENT_REPLICATED message is a queue message and the in-memory
save extent of its destination queue is full. The broker writes the message to the
database part of the queue. Note that this does not happen if the max size of the queue
is less or equal to the size of its save extent.

e A NON_PERSISTENT_REPLICATED message is a topic message that needs to be
delivered to one or more durable subscribers and some of those subscribers are
disconnected. The broker will store the message in the database. The message is
read back from the broker’s persistent storage when the subscriber connects back.

To avoid that, you can either use non-durable subscription or configure their durable
subscriptions with a very short expiration period so that a subscription is deleted after
the subscriber gets disconnected. That means that all messages published after the
subscription has expired and before the subscriber reconnected are lost.

Note that there is a difference between resuming a fault-tolerant connection and
disconnecting. The latter means that either the application disconnected on its own or
the pending reconnect interval has expired before SonicMQ client runtime attempted
to resume the lost connection.

Aurea Software, Inc. Confidential 192 Copyright © 2013 Aurea, Inc.

Fault-Tolerant Connections

e A NON_PERSISTENT_REPLICATED message is a topic message and the flow-to-disk
feature is in effect. If a subscriber (durable or non-durable) falls behind and its
messages fill up one of the subscriber's in-memory buffers in the broker (see the
SonicMQ Performance Tuning Guide), subsequent messages are stored in the
broker’s persistent storage. They are read back from persistent storage when the
subscriber processes and acknowledges enough messages to make room for more.

e A NON_PERSISTENT_REPLICATED message is a topic message and a fault-tolerant
subscriber of the message is placed in the PENDING_RECONNECT state by the broker
after a failure such as a crash of the active broker or a network failure on the
subscriber's connection. The subscriber is in the PENDING_RECONNECT state at the
broker until the subscriber's application resumes its connection to the broker. While
the subscriber is in the PENDING_RECONNECT state, new NON_PERSISTENT_REPLICATED
messages are stored in an in-memory buffer at the broker (each subscriber has one
such buffer at the broker). Once that buffer becomes full, subsequent
NON_PERSISTENT_REPLICATED messages are stored in the broker’s persistent storage,
and the messages are read back from the database when the subscriber resumes its
connection. This behavior is the same for both durable and non-durable subscribers.

Effect of Broker Restart on
NON_PERSISTENT REPLICATED Messages

Topic and queue messages in the NON_PERSISTENT_REPLICATED delivery mode stored in
the broker’s persistent storage are processed differently when the broker is restarted:

e Queues — The NON_PERSISTENT_REPLICATED queue messages are deleted from the
broker’s persistent storage during broker restart.

e Topics for Non-Durable Subscribers — The NON_PERSISTENT_REPLICATED topic
messages that were stored in the broker’s persistent storage for non-durable
subscribers either because of the flow-to-disk feature or because the subscriber's
Pending Reconnect buffer became full are also deleted from the database during
broker restart.

e Topics for Durable Subscribers — The NON_PERSISTENT_REPLICATED topic messages
stored in the database for durable subscribers are not deleted from the database
unless the subscription expires. After the broker restart, the messages are delivered
to the subscriber.

NON_PERSISTENT_REPLICATED Messages in
Transactions

A transaction might have producer overrides of the delivery mode such that the transaction
under construction has a mixture of NON_PERSISTENT_REPLICATED, PERSISTENT and
NON_PERSISTENT messages. When fault tolerant brokers and fault tolerant client
connections are not being used, a broker failure loses the transaction in process and the
client session is rolled back.

Aurea Software, Inc. Confidential 193 Copyright © 2013 Aurea, Inc.

Chapter 4: SonicMQ Connections

When fault tolerant brokers and fault tolerant client connections are in use, transactional
behavior on a restart of a standalone broker or failover in a replicated broker pair depends
on whether or not the broker had to write the transaction to a file because the transaction’s
in-memory buffer was filled:

e If the transaction did not fill up its transaction buffer, each message in the transaction
is treated according to its delivery mode meaning that in certain situations, part of the
transaction can be lost, depending on the broker configuration and state:

e When a non-fault tolerant broker, a standalone fault tolerant broker, or both
brokers in a fault tolerant pair simultaneously have to restart, only PERSISTENT
messages will be available.

e When a broker in a fault tolerant pair fails over to its standby, the PERSISTENT
messages and NON_PERSISTENT_REPLICATED messages will be available.

e If the transaction buffer becomes full, all messages in the transaction a kept together
and all of them are replicated; therefore, no messages are lost once the application
has committed the transaction, depending on the broker configuration and state:

e When a non-fault tolerant broker, a standalone fault tolerant broker, or both
brokers in a fault tolerant pair simultaneously have to restart, only the PERSISTENT
messages will be available.

e When a broker in a fault tolerant pair fails over to its standby, the complete
transaction buffer (as well as any messages from committed transactions that
were PERSISTENT or NON_PERSISTENT_REPLICATED) will be available.

Using NON_PERSISTENT_REPLICATED in
acknowledgeAndForward
The ACKNOWLEDGEANDFORWARD feature for queue messages lets an application

atomically acknowledge a received message and forward it to another queue in one
application call.

The application can generally request that the received message is forwarded to another
queue using a delivery mode that is different from the delivery mode that was used when
the message was originally produced.

The valid transitions of delivery mode for non-fault tolerant ACKNOWLEDGEANDFOWARD are:
persistent to persistent, persistent to non-persistent, non-persistent to persistent and
non-persistent to non-persistent.

However, when the forwarding application uses a fault-tolerant client connection,
change is not permitted. The original delivery mode must be used as the forwarding
delivery mode. The valid modes are:

° PERSISTENT > PERSISTENT
o NON_PERSISTENT > NON_PERSISTENT

o NON_PERSISTENT_REPLICATED > NON_PERSISTENT_REPLICATED

Aurea Software, Inc. Confidential 194 Copyright © 2013 Aurea, Inc.

Fault-Tolerant Connections

Using NON_PERSISTENT_REPLICATED Delivery
Mode on Non-Fault Tolerant Connections

If the NON_PERSISTENT_REPLICATED delivery mode is used on a non-fault-tolerant
connection, the SonicMQ client runtime code cannot guarantee once-and-only-once
delivery. Specifically, if the message producer receives an exception as a result of some
failure while trying to send or publish a NON_PERSISTENT_REPLICATED message, there is an
uncertainty regarding whether or not the broker received the message. If the application
reconnects to the broker and resubmits the message, the consumer(s) of the message may
receive it twice (the JMSUndelivered flag will be set to false).

This is a specified behavior for the PERSISTENT messages in the JMS standard.

The above behavior also applies when where an application attempts to create a
fault-tolerant connection to a broker that is not licensed for fault tolerance and then uses
the NON_PERSISTENT_REPLICATED delivery mode.

If NON_PERSISTENT_REPLICATED messages are being delivered to a non-fault-tolerant
consumer and a failure takes place, the consumer has to manually re-connect to the broker.
In this situation, there is an uncertainty regarding the last message that was consumed prior
to the failure. That message may be redelivered by SonicMQ to the consumer (the
JMSRedel1ivered flag is set to true). This is a specified behavior for the PERSISTENT
messages in the JMS standard.

Modifying the Chat Example for
Fault-Tolerance

This section describes how to modify the Chat sample provided with SonicMQ to use
fault-tolerant connections.

To modify the Chat sample:

1. Create a directory
MQ2013 install root/samples/TopicPubSub/Chat/ChatFT.

2. Create a copy of the file
MQ2013 install root/samples/TopicPubSub/Chat/Chat.java and paste
it in the directory you just created.

3. Set the file to be write enabled.

4. Open the copied file Chat.java in a text editor or Java IDE.

Aurea Software, Inc. Confidential 195 Copyright © 2013 Aurea, Inc.

Chapter 4: SonicMQ Connections

5. Inthe body of the chatter() method, replace the first try block with the following:
try
{
javax.jms.ConnectionFactory factory;

factory = (new progress.message.jclient.ConnectionFactory
(broker)) ;

// Tell the ConnectionFactory to create a fault-tolerant
connection

((progress.message.jclient.ConnectionFactory) factory) .
setFaultTolerant (new Boolean (true)) ;

// Increase the default connect timeout to 90 seconds
((progress.message.jclient.ConnectionFactory) factory) .
setInitialConnectTimeout (new Integer (90)) ;

// If the connection fails, keep retrying the connection
indefinitely

((progress.message.jclient.ConnectionFactory) factory) .
setFaultTolerantReconnectTimeout (new Integer (0)) ;
connect = factory.createConnection (username, password) ;

// Set the fault-tolerant connection's
ConnectionStateChangelistener

((progress.message.jclient.Connection) connect) .

setConnectionStateChangelListener (new
ConnectionStateMonitor()) ;

pubSession =

connect.createSession(false,javax.jms.Session.AUTO ACKNOWLEDGE

) i

subSession =

connect.createSession(false,javax.jms.Session.AUTO ACKNOWLEDGE

)i
}

Aurea Software, Inc. Confidential 196 Copyright © 2013 Aurea, Inc.

Fault-Tolerant Connections

6. Near the end of the file, after the printUsage() method body, insert the following
internal class definition:

class ConnectionStateMonitor

implements
progress.message.jclient.ConnectionStateChangelListener

{

public void connectionStateChanged (int status)

{

System.out.println ("++++++++++++++++\n") ;

// Check status and write appropriate message to the console
switch (status)

{

case progress.message.jclient.Constants.RECONNECTING:
System.out.println("SYSTEM: Connection is inactive. " +
"Trying to reconnect. Please wait."); break;

case progress.message.jclient.Constants.ACTIVE:
System.out.println("SYSTEM: Connection is active" +

" and operating normally."); break;

case progress.message.jclient.Constants.FAILED:
System.out.println ("SYSTEM: Connection has failed." +

" Cannot reconnect."); break;

case progress.message.jclient.Constants.CLOSED:
System.out.println ("SYSTEM: Connection is closed.");

}

// Write the reconnect and standby URLs to the console

String[] brokerURLs =
((progress.message.jclient.Connection) connect) .

getBrokerReconnectURLs () ;

String[] standbyURLs =
((progress.message.jclient.Connection) connect) .

getStandbyBrokerReconnectURLs () ;
if (brokerURLs == null)

System.out.println("SYSTEM: No broker reconnect URLsS
provided.") ;

Aurea Software, Inc. Confidential 197 Copyright © 2013 Aurea, Inc.

Chapter 4: SonicMQ Connections

7.

if (brokerURLs != null) {

System.out.println ("SYSTEM: The broker reconnect URLs are as
follows:") ;

for (int i = 0; i < brokerURLs.length; ++i){

System.out.println ("Reconnect URLI[" + 1 + "] is " +
brokerURLs [i]) ;

}

}

if (standbyURLs == null)

System.out .println ("SYSTEM: No standby broker URLs provided.") ;
if (standbyURLs != null && standbyURLs.length > 0)

System.out .println ("SYSTEM: The standby broker URLs are as
follows:") ;

for (int i = 0; i < standbyURLs.length; ++i) {

System.out.println("Standby URL[" + i + "] 1is " +
standbyURLs [1]) ;

}
}
}
}

Save the modified file.

To compile the edited sample:

1.

2.

Open a console window to the ChatFT directory.

Enter . .\..\..\sonicMQ to run the script file that sets up the SonicMQ variables and
environment.

Locate or install a Java SDK and the compiler, javac.exe.

Enter the path to the Java compiler, the SonicMQ classpath and the file name, in a
form similar to the following:

c:\jdk\bin\javac -classpath "$SONICMQ CLASSPATH%" Chat.java

Resolve any compile time errors.

Aurea Software, Inc. Confidential 198 Copyright © 2013 Aurea, Inc.

Fault-Tolerant Connections

Running the Modified Chat Example

Now that you have modified, saved, and compiled the Chat example, you can run through
a scenario that demonstrates some of the key differences between fault-tolerant
connections and standard connections.

To run the modified Chat example, do the following:

1. Make sure the broker is running. If the broker is not running, start it. Select:
Start > Programs > Aurea > Sonic 2013 > Start DomainManager

2. Inaconsole window at the ChatFT directory, enter:

..\..\..\SonicMQ Chat -b localhost:2506 -u SALES
This step starts a JMS client that uses a fault-tolerant connection.

3. Open another console window to the Chat directory and enter:

..\..\SonicMQ Chat -b localhost:2506 -u MARKETING

This step starts a JMS client that uses a standard connection.
Both JMS clients will receive messages posted to the jms.samples.chat topic.

1. Inthe ChatFT console window, type some text and press ENTER.

The ChatFT console window and the Chat console window both display the text you
entered, preceded by:
SALES:

2. Inthe ChatFT console window, type some text and press ENTER.

The Chat console window and the ChatFT console window both display the text you
entered, preceded by:
MARKETING:

3. Inthe SonicMQ Containerl console window (in which the broker is running), enter
CTRL-C.

This causes the broker to shut down and close all active connections. You are
prompted whether you want to terminate the batch job.

4. Inthe SonicMQ Containerl console window, enter Y to terminate the batch job.
The following output is displayed in the ChatFT console window:

B o o O S SR SR

SYSTEM: Connection is inactive. Trying to reconnect. Please
wait.

SYSTEM: The broker reconnect URLs are as follows:
Reconnect URL[0] is tcp://localhost:2506

SYSTEM: No standby broker URLs provided.

Aurea Software, Inc. Confidential 199 Copyright © 2013 Aurea, Inc.

Chapter 4: SonicMQ Connections

This output is displayed because the client runtime calls the
connectionStateChanged(int state) method when it detects a change in the state
of the connection. Because this example sets the fault tolerant reconnect timeout to
try indefinitely, this client will continue to try and reconnect until you explicitly shutdown
the client or until the connection is resumed. Because the default broker is not
configured with a backup broker, no standby broker URLs are listed.

5. Inthe Chat console window, type some text and press ENTER.
The following exception is displayed:
javax.jms.IllegalStateException: The session is closed.
at progress.message.jimpl.Session.GsB_(Unknown Source)

at
progress.message.jimpl.Session.createTextMessage (Unknown
Source)

at Chat.chatter (Chat.java:94)
at Chat.main (Chat.java:225)

This occurs because the session was closed when the standard connection to the
broker was closed.

6. Inthe ChatFT console window, type some text and press ENTER.

Notice that the client application appears to block. This behavior occurs because all
client operations are suspended when the connection is unavailable. Also notice that
no exception is displayed.

7. Restart the broker by selecting:
Start > Programs > Aurea > Sonic 2013 > Start DomainManager

When the broker is restarted, the fault-tolerant connection is resumed. This causes the
client runtime to call the connectionStateChanged(int state) method again,
resulting in the following output:

e

SYSTEM: Connection is active and operating normally.
SYSTEM: The broker reconnect URLs are as follows:
Reconnect URL[0] is tcp://localhost:2506

SYSTEM: No standby broker URLs provided.

The ChatFT console window also displays the text you entered while the connection

was unavailable, preceded by:
SALES:

You have completed this example. You can experiment further, or you can close the ChatFT
and Chat console windows.

Aurea Software, Inc. Confidential 200 Copyright © 2013 Aurea, Inc.

Starting, Stopping, and Closing Connections

Starting, Stopping, and Closing Connections

Connections require an explicit start command to begin the delivery of messages. All
sessions within a connection respond concurrently to the connection start, stop, and
close events. You do not need to stop or start connections in order to publish or send
messages.

Starting a Connection

To start delivery of incoming messages through a connection, use the connect.start()
method. If you stop delivery, messages are still saved for the connection. Under a restart,
delivery begins with the oldest unacknowledged message. Starting an already started
session is ignored. Use the following syntax to start delivery through a connection:

connect.start()

Stopping a Connection

To stop delivery of incoming messages through a connection, use the connect.stop()
method. After stopping, no messages are delivered to any message consumers under that
connection. If synchronous receivers are used, they will block. A stopped connection can
still send or publish messages. Stopping an already stopped session is ignored. Use the
following syntax to stop delivery through a connection:

connect.stop()

When a connection is stopped, that connection is in effect paused. The message producers
continue to perform their functions. The consumers, however, are not active until the
connection restarts. When the stop() method is called, the stop will wait until all the
message listeners have returned before it returns. MessageConsumers that are active can
receive null messages if they are using receive(timeout) or receiveNoWait().

Closing a Connection

To close a connection, use the connect.close() method.

When a connection is closed, all message processing within the connection’s one or more
sessions is terminated. If a message is available at the time of the close, the message (or
a NULL) can be returned, but the message consumer might get exceptions by trying to use
facilities within the closed connection.

When a transacted session is closed, the transaction in aurea is marked for rollback. This
is true whether the shutdown was orderly or unplanned, such as a broker or network failure.

The message objects can be used in a closed connection with the exception of the
message’s acknowledge methods.

See Chapter 5, SonicMQ Client Sessions on page 205 for information about coding
connections and sessions and handling exceptions on connections.

Aurea Software, Inc. Confidential 201 Copyright © 2013 Aurea, Inc.

Chapter 4: SonicMQ Connections

Using Multiple Connections

Sometimes it may be advantageous to use multiple connections in an application, even
though the ordering of messages is only assured within a session (a single thread of
execution). The sheer volume of information flowing through the connection might warrant
multiple connections rather than multiple sessions. Figure 44 shows two connections to a
SonicMQ broker, each with two sessions.

Figure 44 Multiple Connections in a Client Application

Client Application

Z0—-0n0umn

Z0——40mzZ2Z200

SonicMQ
Broker

ZO0—-—0umn

ZO—-—0wumn
ZO0—-——-0mzZzzZ200

ZO0—-—0n0umn

Communication Layer

The SonicMQ broker works in concert with the network layer to provide asynchronous
message communications between client applications. As shown in Figure 45, a client can
send and receive messages through the SonicMQ API and interfaces to communicate on
network connection to a broker. Messages might be stored in a message store as an
optional service specified by the message producer.

Aurea Software, Inc. Confidential 202 Copyright © 2013 Aurea, Inc.

Communication Layer

Figure 45: Client-Broker-Client Communications
Client Client ?
? SEE
]]
: API API]
|
! '
)
: Network |
!
' v Broker *_

The connection layer, as shown in Figure 46, involves getting a ConnectionFactory, then
creating a Connection, and finally creating a Sess+ion. A Session holds MessageProducer
and MessageConsumer objects.

Figure 46: Sessions in Connections from Connection Factories

ConnectionFactory

I—» Connection
I—» Session

MessageProducer |

MessageConsumer |

Each instance of a MessageConsumer is dedicated to only one of the messaging models:

e Point-to-point (PTP) — Messaging is one-to-one because only one consumer will get
the message. Messages are placed on queues where they endure until a consumer
takes delivery and acknowledges receipt.

e Publish and Subscribe (Pub/Sub) — Messaging is one-to-many or broadcast
because there could be any number (between zero and many) of consumers for a
given topic who will each receive the one message that was sent. In addition, a
consumer can be a durable subscriber, and SonicMQ will save messages until the
subscriber reconnects. If no consumers express an interest in a message topic, the
message is discarded.

Aurea Software, Inc. Confidential 203 Copyright © 2013 Aurea, Inc.

Chapter 4: SonicMQ Connections

Aurea Software, Inc. Confidential 204 Copyright © 2013 Aurea, Inc.

SonicMQ Client Sessions

This chapter explains the programming concepts and actions required to establish and
maintain SonicMQ client sessions. This chapter contains the following sections:

e Overview of Client Sessions on page 205

e Session Objects on page 212

e Flow Control on page 220

e Flow to Disk on page 223

e Using Sessions and Consumers on page 225
e JMS Messaging Domains on page 226

. Integration with Application Servers on page 227

Overview of Client Sessions

The SonicMQ Java client provides a lightweight platform that can access the messaging
features provided by the SonicMQ brokers. In the JIMS programming model, a programmer
creates JMS connections that establish the application’s identity and specify how the
connection with the broker will be maintained. Within each connection, one or more
sessions are established. Each session is used for a unique delivery thread for messages
that are delivered to and sent from the client application. This chapter explains the
programming required to establish and maintain client connections to brokers through
sessions.

A JMS Sess1ion object represents a single thread of activity. All actual messaging is done
through a Sess+ion object. A Session is a factory for MessageConsumer and
MessageProducer objects, each of which remains associated with the Session throughout
its lifespan. A Sess1ion is associated with the Connection object that creates it.

Aurea Software, Inc. Confidential 205 Copyright © 2013 Aurea, Inc.

Chapter 5: SonicMQ Client Sessions

A Connection provides a createSession() method for creating a Session. This method
can be called multiple times to create multiple Session objects, each of which remains
associated with the Connection throughout its lifespan. The signature of the
createSession() method is as follows:

javax.jms.Session createSession(boolean transacted, int acknowledgeMode)
where:

e transacted — [true | false]
If true, the session will be transacted.

[acknowledgeMode — [AUTO_ACKNOWLEDGE | CLIENT_ACKNOWLEDGE |
SINGLE_MESSAGE_ACKNOWLEDGE | DUPS_OK_ACKNOWLEDGE]

Indicates whether the client will acknowledge any messages it receives.
AUTO_ACKNOWLEDGE, CLIENT_ACKNOWLEDGE, and DUPS_OK_ACKNOWLEDGE are defined in
javax.jms.Session. SINGLE_MESSAGE_ACKNOWLEDGE is defined in
progress.message.jclient.Session.

The parameters of a Session are qualified so that when the Sess1ion is transacted, the
acknowl edgementMode setting has no effect, because the transaction implicitly handles
acknowledgement. Similarly, acknowledgementMode has no effect when a Sess-ion is only
producing messages.

Naming Sessions

A named session can help an administrator identify sessions. Session names do not need
to be unique—they are only information labels. The name is set when the session is
created, and cannot be changed.

The additional createSession() methods enable you to associate a name with a session
that will be exposed in session information, as in the Manage > Broker > Connections panel
in the Sonic Management Console.

The signature of this createSession() method is as follows:

progress.message.jclient.Connection.createSession
(boolean transacted, int acknowledgeMode, String sessionName)

where:

e transacted — [true | false]
If true, the session will be transacted.

[acknowledgeMode — [AUTO_ACKNOWLEDGE | CLIENT_ACKNOWLEDGE |
SINGLE_MESSAGE_ACKNOWLEDGE | DUPS_OK_ACKNOWLEDGE]

e sessionName — A String that contains characters that are valid for ClientID. See
Table 4.

The value can be null or an empty String—in which case, the behavior is the same as
the standard API without sessionName.

Aurea Software, Inc. Confidential 206 Copyright © 2013 Aurea, Inc.

Overview of Client Sessions

To retrieve a session’s hame, use:
String progress.message.jclient.Session.getSessionName ()

The following code excerpt creates a session named SendUpdates, and then displays the
name of the resulting session:

javax.jms.Connection conn;
javax.jms.Session sess;
conn = ..obtain connection from connection factory..

sess = ((progress.message.jclient.Connection)conn).createSession(false,
javax.jms.Session.AUTO ACKNOWLEDGE, "SendUpdates") ;

System.out.println("Session name: " +
((progress.message.jclient.Session) sess) .getSessionName ()) ;

Note: Corresponding TopicSession, QueueSession, and XA methods that enable named
sessions are defined in the API.

Acknowledgement Mode

Communication between the broker and the message consumer involves an indication of
receipt of the message. One of the following acknowledgement modes is enforced for all
messages in a session:

e AUTO_ACKNOWLEDGE — The session automatically acknowledges the client’s receipt of
a message bhefore the next call to receive (synchronous mode) or when the session
MessageListener successfully returns (asynchronous mode). In the event of a
failure, the last message might be redelivered.

e CLIENT_ACKNOWLEDGE — An explicit acknowledge() on a message acknowledges the
receipt of all messages that have been produced and consumed by the session that
gives the acknowledgement. In the event of a failure, all unacknowledged messages
might be redelivered.

e SINGLE_MESSAGE_ACKNOWLEDGE — An explicit acknowledge() on a message
acknowledges only the current message and no preceding messages. In the event of
a failure, all unacknowledged messages might be redelivered. This mode is a
SonicMQ extension to the JMS standard.

e DUPS_OK_ACKNOWLEDGE — The session “lazily” acknowledges the delivery of messages
to consumers, possibly allowing multiple deliveries of messages after a system
outage.

Warning: While acknowledgement sets standards for delivery from the client to the
broker, there is no reply to the sending application. If an application requires a
reply to the sender, use the JMSRep1yTo header field to indicate the request and
program your application to respond to this header field. The requestor can also
append a correlation identifier that will ensure that the reply matches its request.

Aurea Software, Inc. Confidential 207 Copyright © 2013 Aurea, Inc.

Chapter 5: SonicMQ Client Sessions

Recover

A client might build up a large number of unacknowledged messages while attempting to
process them. A session’s recover () method is used to stop a session and restart it with
its first unacknowledged message.

A recover() action notification tells SonicMQ to stop message delivery in the session, set
the redelivered flag on unacknowledged messages it will redeliver under the recovery,
and then resume delivery of messages, possibly in a different order than originally
delivered.

The need for the recover() method is most apparent when the acknowledgement mode
iS CLIENT_ACKNOWLEDGE or SINGLE_MESSAGE_ACKNOWLEDGE.

Limiting Redelivery from Queues

An application could get into a loop where it repeatedly receives a message that causes
the application to fail and rollback the transaction, and then the same message is
redelivered. An infinite redelivery loop is sometimes referred to as a “poison message
scenario.”

Point-to-point consumer clients that want to constrain redelivery attempts can limit the
number of deliveries of a message to the consumer by specifying a parameter on the
ConnectionFactory. Messages that have exceeded the redelivery limit and have not been
acknowledged will be processed according to properties specified in the message or will be
discarded. If the message property JMS_SonicMQ_preserveUndelivered is set to true, the
message will be placed on the SonicMQ.DeadMessage queue (or an alternate destination
specified by the JMS_SonicMQ_destinationUndelivered property), and the message
property JMS_SonicMQ_undeliveredReasonCode will be set to the error code
progress.message.jclient.Constants.UNDELIVERED_DELIVERY_LIMIT_EXCEEDED. If the
property JMS_SonicMQ_notifyUndelivered is set to true, a notification will be sent. If the
'‘preserveUndelivered' property is not set, the message will be discarded.

See Handling Undelivered Messages on page 353 and Specifying a Destination for
Undelivered Messages on page 356 for more information.

Note: Alternatively, JIMS applications can perform detection on their own by getting and
acting on the value of the JMSXDel1iveryCount property on each message.

Aurea Software, Inc. Confidential 208 Copyright © 2013 Aurea, Inc.

Overview of Client Sessions

The circumstances under which a message can be redelivered to the consumer depend on
the session’s acknowledgement mode:

e AUTO_ACKNOWLEDGE or DUPS_OK_ACKNOWLEDGE — Nontransacted sessions
that choose AUTO_ACKNOWLEDGE or DUPS_OK_ACKNOWLEDGE acknowledgement have
messages redelivered to a consumer when the application's onMessage() method
throws an exception. The client runtime catches the exception, and then calls
onMessage () again. Exceptions are caught and reported to the Connection's
ExceptionListener. Setting a limit to redelivery attempts limits the redelivery count.

. SINGLE_MESSAGE_ACKNOWLEDGE or CLIENT_ACKNOWLEDGE — For
nontransacted sessions that choose SINGLE_MESSAGE_ACKNOWLEDGE or
CLIENT_ACKNOWLEDGE acknowledgement, messages are redelivered when the
application calls Session.recover().

e TRANSACTED — Messages are redelivered when an application rolls back the
transaction.

The JMS defined property JMSXDel1iveryCount uses an int to specify the number of
delivery attempts for a message. The value of this property is incremented every time a
message is given to a consumer.

Delivery counters are maintained in the client runtime for messages waiting to be delivered
to a consumer object. Applications for which redelivery limit detection is effective are those
that create long-lived Consumers: in other words., ConnectionConsumers, or
MessageConsumers that are created once and reused. If a consumer is closed and
recreated, the counter for each message sent to the consumer is reset to 0.

Setting Maximum Delivery Count
By setting the value of the maximum delivery count, you can specify:

e 0, the default value, which means that there is no redelivery limit

e 1 or more, which means to deliver and then redeliver the specified number of times

For more information about setting and getting the maximum delivery count for a PTP
receiver:

e As set programmatically for a Point-to-point receiver on a ConnectionFactory,
see This option cannot be set on Connection Factories that are defined as
Administered Objects. on page 149.

e As set administratively in a JMS Administered Object, see the “JMS Administered
Objects Tool” chapter in the Aurea SonicMQ Configuration and Management Guide.

Aurea Software, Inc. Confidential 209 Copyright © 2013 Aurea, Inc.

Chapter 5: SonicMQ Client Sessions

Explicit Acknowledgement

The Message interface provides an acknowledge() method, which explicitly acknowledges
a message. However, the behavior of this method depends on how the Sess+ion was
created.

When the Sess+ion acknowledgement mode is:

e AUTO_ACKNOWLEDGE, the method is ignored.

e CLIENT_ACKNOWLEDGE, the method explicitly acknowledges all unacknowledged
messages received so far by the session.

e DUPS_OK_ACKNOWLEDGE, the method is ignored.

e SINGLE_MESSAGE_ACKNOWLEDGE, the method explicitly acknowledges the current
message.

When the Session is transacted, the method is ignored.

Transacted Sessions

When a Session is transacted, that Session will combine a group of one or more
messages with client-to-broker ACID properties: Atomic, Consistent, Isolated, and
Durable.

When a Sess+ion is transacted, message input and message output are staged on the
broker system but not completed until you call the method to complete the transaction.
Completion of a transaction, determined by your code, does one of the following:

e Commit — The series of messages is sent to consumers.
e RollIBack — The series of messages (if any) is destroyed.
The completion of a Sess+ion’s current transaction automatically begins the next

transaction. A transacted Session impacts producers and consumers in the ways
described in Table 10.

Table 10: Transacted Session Events by Message Role
Role commit() rollback()

Producer Delivers the series of messages Disposes of the series of produced

staged since the last call. messages staged since the last
call.

Consumer Acknowledges the series of Redelivers the series of received
messages received since the last | messages retained since the last
call. call.

When a rollback is done in a session that is both sending and receiving, its produced
messages are destroyed and its consumed messages are automatically recovered.

Aurea Software, Inc. Confidential 210 Copyright © 2013 Aurea, Inc.

Overview of Client Sessions

Rollbacks can be either explicit or implicit. Explicit rollbacks occur when the client calls the
rollback() method. Implicit rollbacks occur when either:

e The session or connection are closed without finishing the transaction

e The application, connection, or broker experience failure

To check whether a session is transacted, use the getTransacted() method. The return
value is true if the session is in transacted mode.

A transacted session only completes successfully when an explicit conmit() is invoked.

Broker-managed Timeouts on Transacted Sessions

In an implementation, an undetected hang occurring in a session thread can lead to
unexpected behavior. A message that is staged as part of a transaction is indefinitely
invisible. For message consumers reading from a queue, the message is neither committed
so that it can be further processed or released so that it can be put back on its queue. For
message producers, the message is not accessible to a receiver so that it might be further
processed.

A SonicMQ broker can use a broker configuration property to indicate that it will not tolerate
transacted messages that have been in process more than the specified number of
minutes. If the time is exceeded, the transaction is forced to roll back and the transacted
session is then closed. This property is the transaction Idle Timeout property. You can
configure this property from the Sonic Management Console by selecting Broker
Properties and then selecting the Tuning tab. The Idle Timeout property is in the
Transaction section.

The timeout interval can be 0 (an indicator to never idle-out a transaction in process) or any
positive integer value that represents the number of minutes of inactivity before the broker
managed timeout is enforced. As you have no way of knowing the broker’s rules, you
should take best efforts to complete transactions as soon as possible.

Without broker-managed timeouts, the transaction will still rollback when the application
disconnects or shuts down.

Distributed Transactions

When transactions are contained within a session, the transaction is on a single
communication with a broker. The control of the transaction is entirely local.

More sophisticated transactions arise where two sessions enclose the complete
transaction. In such cases, applications can implement X/Open’s XA protocol to enable
transaction identification and transaction demarcation. These global transactions can be
further abstracted by interfacing with a transaction manager.

Distributed transactions are discussed in Chapter 14, Distributed Transactions Using
XA ResourcSes on page 423.

Aurea Software, Inc. Confidential 211 Copyright © 2013 Aurea, Inc.

Chapter 5: SonicMQ Client Sessions

Duplicate Message Detection

The broker can be set up to commit transactions such that they index a universally unique,
32-character identifier (UUID) supplied by the sender. You should make this UUID a
meaningful name within your application, for example, order number, customer number,
authorization number, etc. The sender then uses a commit method to commit the
transacted messages (unless a transaction identifier previously sent is still unexpired).
Otherwise a rollback of the transaction is forced and
javax.jms.TransactionalRolledBackException is thrown by the commit method. The
signature of this type of commit is:

Session.commit(String transactionID, long timeToLive)

where transactionID is a UUID and timeToLive is the intended lifespan of the indexed
identifier in milliseconds. If you omit the timeToL1ive, the target broker’s advanced property
DUPLICATE_DETECTION_PARAMETERS.INDEXED_TXN_DEFAULT_LIFESPAN sets the lifespan of
the indexed identifier. You can configure advanced properties on a broker from the Sonic
Management Console by selecting the Broker Properties and, under the Advanced tab,
clicking Edit in the PROPERTIES section.

You can alternatively use a hashcode calculated over the message payload instead of a
UUID for the transactionID. You must ensure that the hashcode is unique for each unique
transaction being tracked within the transaction age limit you have set.

See Duplicate Message Detection Overview on page 346 for more information about
detecting duplicate messages.

Session Objects

The primary session objects allow creation of the destinations, producers, consumers, and
messages that are used in the session, as shown in Figure 47.

Figure 47: Primary Session Objects

ConnectionFactory

Connection

Session

A 4

MessageProducer }-D--b

Destination

MessageConsumer |<F-D--

i
|

T—{ MessagelListener

Figure 48 shows the types of message objects that are created from session methods. The
message types are common and extended into both JMS domains.

The XMLMessage type is unique to SonicMQ and is an extension of the TextMessage type.
The MultipartMessage type is unique to SonicMQ and is an extension of the Message type.

Aurea Software, Inc. Confidential 212 Copyright © 2013 Aurea, Inc.

Session Objects

Figure 48: Types of SonicMQ Message Objects

| Message |

BytesMessage

MapMessage

ObjectMessage

StreamMessage

L

TextMessage |—| XMLMessage

MultiPartMessage

e
I

MessagePart

Creating a Destination

Destinations are administered objects that can be controlled by an administrator and can
be retrieved through JNDI or other object storage mechanisms.

See “JMS Administered Objects Tool” in the Aurea SonicMQ Configuration and
Management Guide to learn how the JMS Administered Obiject tool in the Sonic
Management Console allows you to create destinations in both JNDI and file stores.

Important: Security enabled brokers can deny access to destinations. See the chapter
“Security Considerations in System Design:” in the SonicMQ V6.1
Deployment Guide for information about access control.

The destination object created can be a queue or a topic.

Destination Objects

There are two destination creation methods:

Point-to-point: createQueue

javax.jms.Queue queue = session.createQueue (queueName)
where:

queueName is a String name. Its meaning is evaluated from the destination name
syntax you use. When the queueName is JMS destination, a queue by that name must
exist on the broker. If security is enabled on the broker, access control might deny the
user from reading or writing to a queue.

Aurea Software, Inc. Confidential 213 Copyright © 2013 Aurea, Inc.

Chapter 5: SonicMQ Client Sessions

Publish and Subscribe: createTopic

javax.jms.Topic topic = session.createTopic (topicName)

where:

topicName is a String name. Its meaning is evaluated from the destination name
syntax you use. If security is defined for topics, the user might be constrained from
reading or writing at a topic content node. See Chapter 13, Hierarchical Name Spaces
on page 411 for topic name patterns for subscriptions.

Destination Name Syntax

The syntax of a destination name allows for patterns of JMS destination names and for
patterns for routings to remote nodes and URLSs:

e Hierarchical structure that enables the use of template characters, as described in
Chapter 13, Hierarchical Name Spaces on page 411.

e Node-qualified names that enable the use of template characters. These names
define access to routing definitions and that set permissions to route to specified IMS
destinations or URLs.

Table 11 shows the general syntax for queues (Q), topics (T), routing nodes (N), and HTTP

URLSs (U).

The name you use in the createQueue or createTopic method is evaluated from its syntax
to have one of several meanings.

Table 11: Patterns in Destination Names

Name Description

create Queue

create Topic

Either createQueue
or createTopic

Destination name Q T http://U
Destination name with hierarchical | Q1.2.3.4 T1.2.34 http://a.b.c
structures
Destination name with hierarchical | - T1.2.%.# -
structures and template characters (valid for

subscribers

only)
Node-qualified destination name N:Q N:T N:U
Node-qualified destination name - N:c# -
with template characters (valid for

subscribers
only)

Aurea Software, Inc. Confidential

214

Copyright © 2013 Aurea, Inc.

Session Objects

Table 11: Patterns in Destination Names
Either createQueue
Name Description create Queue create Topic or createTopic
Node-qualified destination name N:Q.Q.Q N:T.T.T N::http://a.b.c
with hierarchical structures
Node-qualified destination name - N::T. % # -
with hierarchical structures and (valid for
template characters subscribers
only)

If you previously used the X-HTTP-DestinationURL technique, you made a construct similar
to the following:

msg.setStringProperty (“X-HTTP-DestinationURL”,”http://destinationURL") ;
sender.send (session.createQueue (“sonic.http: :foo”) ,msqg) ;

Where foo is a placeholder that never gets evaluated. When the default routing sonic.http
is called for routing, the destination URL was overwritten in the routing definition.

This technique is made obsolete by the ability to supply the URL in the createQueue queue
name or createTopic topic name (which you use for sending to a URL is not important):

sender.send(session.createQueue (“sonic.http::http://destinationURL”) ,msg) ;

Effects of Access Control

User names in clients that initiate producer or consumer actions are subject to the broker’s
authorization policy when the broker has enabled security.

Propagation of ACL Changes in the Broker’s Authorization Policy

When administrators adjust Access Control Lists (ACLSs), the revised ACLs generally
propagate to the broker but do not always propagate to a user’s client sessions.

Producer actions reconfirm their access permission at each send/publish:

e Clients denied publish/send actions discover when they are granted permission.

e Clients granted publish/send actions discover when they are denied permission.
Consumer actions have different behavior dependent on the direction of the change:

e Clients denied subscribe/receive actions discover when they are granted permission.

e However, clients that were granted subscribe/receive actions will not dynamically
discover when they are subsequently denied permission in the active session. The
client must reconnect (stop and restart) to become aware of this change in permission.

Aurea Software, Inc. Confidential 215 Copyright © 2013 Aurea, Inc.

Chapter 5: SonicMQ Client Sessions

Rechecking ACLs on Messages held for Durable Subscribers

When a a message is delivered to a disconnected durable subscription, the ACL is checked
at the time the message is held for the subscription. When the durable subscriber
reconnects, the authorization is not rechecked at the message restoration. If the
subscriber’s authorization had changed during the disconnected period, the message
would still be delivered.

Because some deployments might not want that behavior, you can set the broker advanced
property BROKER_SECURITY_PARAMETERS . ENABLE_ACL_CHECK_AT_RESTORE t0 true, to require
that access control is rechecked upon restoration.

Temporary Queues

A TemporaryQueue object is a unique Queue object created for the duration of a Connection.
It is a system-defined queue that can be consumed only by the Connection that created it.
A TemporaryQueue object can be created at either the Session or QueueSession level:

Session.createTemporaryQueue ()
QueueSession.createTemporaryQueue ()

Creating it at the Sessiion level allows to the TemporaryQueue to participate in transactions
with objects from the Pub/Sub domain. If it is created at the QueueSess-ion, it will only be
able participate in transactions with objects from the PTP domain.

Unique temporary queue names are generated internally by SonicMQ with values that do
not define a use or a queue. A typical temporary queue name is shown below (as one line):

SISYS.USERS.TemporaryQueues.Administrator.STMPAPPIDS7SSCONNECTIONS . * . * .11
332587362311944962118NodeA

Temporary Queues Can Have An Embedded Name Tag

SonicMQ provides metrics on temporary queues. In order to filter relevant temporary
queues, an overload of the Session.createTemporaryQueue() method lets you supply a
customID String.

Session.createTemporaryQueue (String customID) ;

This method embeds the user-supplied customID at some position in the temporary queue
name—there is no guarantee exactly where in the name. For example the following code:

mySession.createTemporaryQueue ("CreditCheckReplyQueue") ;
creates a temporary queue with a name similar to the following (as one line):

SISYS.USERS.TemporaryQueues.Administrator.STMPAPPIDS3SSCONNECTIONS . * . * .49
1974464CreditCheckReplyQueue2307944962118NodeA

Notice that the customID is embedded in the middle of the temporary queue name.

Important: Limited Length of Temporary Queue Name — Temporary queue names are
restricted to 256 characters. As temporary queue names without a CustomID
are rather long, keep your assigned custom identifier brief.

Aurea Software, Inc. Confidential 216 Copyright © 2013 Aurea, Inc.

Session Objects

See the “Instance Metrics” section of the “Monitoring the Sonic Management Environment”
chapter of the Aurea SonicMQ Configuration and Management Guide to see how metrics
are set on temporary queues.

Temporary destinations (TemporaryTopic or TemporaryQueue) can be created for
request-and-reply mechanisms. See Reply-to Mechanisms on page 279 for more
information.

Using a Lookup for Destinations

While topics and queues are administered objects, there are advantages to programmatic
lookup of defined destinations.

SonicMQ lets you store administered objects in some object store—JNDI or a simple file
store—and then reference the object indirectly (by name) in some context.

See “Lookup Using the Sonic JNDI SPI” on page 154 for more information.

Creating a MessageProducer

A MessageProducer sends messages to one or more destinations.

You create a MessageProducer object by calling a Session object’s createProducer()
method. The signature for this method is:

public java.jms.MessageProducer createProducer (java.jms.Destination
destination)
throws JMSException

Queue and Topic both inherit from Destination, so they are valid parameters. If you provide
a Destination, the returned MessageProducer uses the Destination as its default. If you
use null as the Destination, the returned MessageProducer is not tied to any particular
Destination.

Creating a MessageConsumer

A MessageConsumer receives messages from a single destination.

You create a MessageConsumer object by calling one of the Session object’s
createConsumer() methods:

o public javax.jms.MessageConsumer
createConsumer (javax.jms.Destination destination)
throws JMSException

° public MessageConsumer
createConsumer (javax.jms.Destination destination,
java.lang.String messageSelector)
throws JMSException

Aurea Software, Inc. Confidential 217 Copyright © 2013 Aurea, Inc.

Chapter 5: SonicMQ Client Sessions

° public MessageConsumer
createConsumer (javax.jms.Destination destination,
java.lang.String messageSelector,
boolean NoLocal)
throws JMSException

Since both Queue and Topic inherit from Destination, either is a valid Destination.

The MessageConsumer object returned by these methods is dedicated to the Destination
you provide. If the MessageConsumer is created with a Queue, it honor the JIMS semantics for
the P2P messaging model; if a Topic, the Pub/Sub messaging model.

If you want to create a MessageConsumer that is durable subscriber to a Topic, you call one
of the Sess+ion object’s createDurableSubscriber() methods:

o public javax.jms.TopicSubscriber
createDurableSubscriber (javax.jms.Topic,
java.lang.String name)
throws JMSException

o public javax.jms.TopicSubscriber
createDurableSubscriber (javax.jms.Topic,
java.lang.String name)
java.lang.String messageSelector,
boolean NoLocal)
throws JMSException

Since TopicSubscriber inherits from MessageConsumer, you can assign the returned
TopicSubscriber to a MessageConsumer reference; this allows you to use the
MessageConsumer interface to manipulate the object, rather than using the
TopicSubscriber interface, which might be deprecated in future JMS versions.

Creating a Message

The message type is created from a Session method in the general form:
javax.jms. [type]l Message msg = sendSession.create[type]lMessage()

where type is the JIMS message type:

° javax.jms.TextMessage msg = sendSession.createTextMessage()

° javax.jms.BytesMessage msg = sendSession.createBytesMessage()
o javax.jms.MapMessage msg = sendSession.createMapMessage()

° javax.jms.Message msg = sendSession.createMessage()

° javax.jms.ObjectMessage msg = sendSession.createObjectMessage (

)

o javax.jms.StreamMessage msg = sendSession.createStreamMessage (

)

Aurea Software, Inc. Confidential 218 Copyright © 2013 Aurea, Inc.

Session Objects

The XMLMessage and MultipartMessage types are SonicMQ extensions to the JMS
standard. You cannot create them from a javax.jms.Session, because the required
methods are not defined for that interface. However, you can cast the javax. jms.Session
to a progress.message.jclient.Session first, as shown:

progress.message.jclient.Session pSendSession;
progress.message.jclient.XMLMessage xMsg;
progress.message.jclient.MultipartMessage multipartMsg;

pSendSession = (progress.message.jclient.Session)sendSession;
XMsg = xSendSession.createXMLMessage():;
mutipartMsg = xSendSession.createMultipartMessage();

See Chapter 6, Messages on page 231 for information about message interfaces, structure,
and fields.

Closing a Session

Each session should only have a single thread of execution. The close() method is the
only Sess+ion method that can be called while some other session method is being
executed in another thread.

Closing a CLIENT_ACKNOWLEDGE session does not force an acknowledge() to occur.
Attempts to use a closed connection’s session objects throws an I11egalStateException.
Starting a started connection or closing a closed connection has no effect and does not
throw an exception.

The Message objects can be used in a closed session (with the exception of the message’s
acknowledge() method).

When the connection closes, its sessions are implicitly closed.

Note: Close Timeout under Asynchronous Message Delivery — Asynchronous
message delivery can be set in the connection factory to provide performance
improvements, particularly for replicating brokers. When asynchronous delivery
mode is enabled, some messages in client buffers might not have been delivered
to (or acknowledged by) the broker. When messages are pending delivery and
close is called, producers that are flow controlled or clients with a backlog of
messages, close could take a while. Applications unwilling to wait can configure a
close timeout. See Asynchronous Message Delivery on page 167 and Close
Behavior on page 170 for more information.

Aurea Software, Inc. Confidential 219 Copyright © 2013 Aurea, Inc.

Chapter 5: SonicMQ Client Sessions

Flow Control

The asynchronous benefits of SonicMQ are not limited to simply receiving without blocking.
They also include:

e Send and receive buffers that stage messages in transit between a client application
and a broker

e Anoptimized persistence mechanism to maximize broker performance for guaranteed
message delivery

e Concurrent Transacted Cache technology that uses in-memory cache and
high-speed log files to increase throughput for short-duration persistent messages

e Queues defined with specified amounts of memory and disk space reserved for the
gueue content

Any of these resources might be offered more data than can be managed. If flow control is
active, SonicMQ will throttle back the message flow from the producer, allowing the next
message to flow into the buffers only when space is available.

In Pub/Sub and PTP you can disable flow control so that when resources are nearly
exhausted, SonicMQ can, under programmatic control, throw exceptions until flow control
conditions are cleared.

When flow control is active, the messages might be sent to consumers at a rate that is
faster than that at which the messages are actually consumed. When the buffers that store
unprocessed messages approach the flow control threshold, flow control can stop new
additions until the buffers fall below a threshold level.

The back pressure from slower consumption might start to impact the buffers for queues or
durable subscriptions. When system or queue capacities are filled with messages in
process, flow control is activated against producers. The message acceptance rate drops,
which eventually results in back pressure at the producers, causing them to either tolerate
the slowdowns or, with flow control disabled, to throw an exception so that you can handle
the situation. For example, you can catch the exception and have the application wait some
period of time before resending.

To avoid the invocation of flow control you can:

e Optimize application processing on incoming messages.
e Adjust the consumer buffer (on the broker side).

e Increase the size of queues.

Aurea Software, Inc. Confidential 220 Copyright © 2013 Aurea, Inc.

Flow Control

e Decrease the message expiration time of messages.

e Set the DeliveryMode on messages to DISCARDABLE.

Note: Messages sent to a queue will only expire after they have been placed on the
queue, so expiration detection can only result from:

Dequeue operations by receivers.
Processing by the queue cleanup thread.

Browsing the queue does not detect expiration.

Using Client Persistence and Wait Time When Flow
Controlled

Clients using persistent client functionality can configure the persistent client to write
messages to the local store when a message producer is flow-controlled. Then, when
producer flow control is no longer in effect, persisted messages flow to the broker in order
while the message producer continues to add messages to the local store. When the local
store is cleared, messages flow directly from the producer to the broker. The application
sender can set the wait time before messages paused by flow control are written to the local
store.

The persistent client controls the rate of accepting messages into the store relative to the
rate of sending stored messages out of the local store to the broker in an effort to drain the
backlog of messages. The sender experiences a slower producer rate while messages are
being restored. However, it is possible for messages to accumulate in the store faster than
they can be sent to the broker. If this occurs, the local store size might be exceeded in
which case the sender gets an exception.

Flow Control Management Notifications

SonicMQ can provide administrative notification when flow control is preventing a
MessageProducer from producing messages over a significant period of time. These
notifications contain information that identifies problems—such as a very slow subscriber
or a queue that is not being serviced by receivers—and corrective action taken.

Flow control is triggered on a regular basis when a broker is under load, perhaps several
times every second. These intermittent conditions are usually transient and unremarkable.
However, when flow control blocking is sustained, an application producer session can be
prevented from producing messages for a significant period of time.

Monitoring Intervals

The monitoring interval is a property of the ConnectionFactory that is set before
connections are created. You set the monitoring level by calling
ConnectionFactory.setMonitorInterval(java.lang.Integer interval), where
interval takes a value as follows:

Aurea Software, Inc. Confidential 221 Copyright © 2013 Aurea, Inc.

Chapter 5: SonicMQ Client Sessions

e progress.message.jclient.Constants.MONITOR INTERVAL USE BROKER SE
TTING (-1) -the Client Default Monitor Interval defined on broker or cluster is used.
Supported only for clients and brokers using SonicMQ 2013 or later, where this is the
default.

e 0 - Flow control natifications are disabled. The default for clients prior to SonicMQ
2013.

e >=1 - Flow control monitoring interval in seconds.

The monitoring interval is determined when a connection is established and applies to all
sessions created by that connection. It cannot be modified during the lifetime of the
connection.

The value found in the factory when a connection is created applies to any sessions created
by that connection, and cannot be subsequently modified. The property defines the
duration of the monitoring interval in seconds, where 0 indicates that flow control monitoring
is disabled for all sessions on the connection.

Since flow control pause notifications are generated after the session has been blocked for
one full monitoring interval, it might take as long as another monitoring interval from the
time the session became blocked before a natification is generated.

The block-detection logic monitors whether one or more produced messages remain
blocked in the client buffers due to flow control. The logic does not monitor conditions where
the client is unable to send a message due to network congestion or other load-related
factors.

If a producer session remains blocked over multiple monitoring intervals, a flow control
pause notification is generated at the end of each monitoring interval as long as the
producer session remains blocked. When the session becomes unblocked, a flow control
resume notification is generated.

Pub/Sub

In Pub/Sub messaging, when a block is sustained throughout a monitoring interval, an
administrative notification is generated that identifies:

e Username and ConnectID of the blocked producer session

e Username, ConnectID, and Topic of any non-durable subscriber that is blocking the
producer session

e Username, JMS ClientID, and JMS subscriber name of any durable subscriber that is
blocking the producer session

When the block is relieved, another administrative notification is generated identifying the
Username and ConnectID of the now-unblocked producer session.

PTP

In PTP messaging, when a block is sustained throughout a monitoring interval, an
administrative notification is generated that identifies:

e Username and ConnectID of the blocked producer session

Aurea Software, Inc. Confidential 222 Copyright © 2013 Aurea, Inc.

Flow to Disk

e Name of queue that is blocking the producer session or routing queue

When the block is relieved, another administrative notification is generated identifying the
Username and ConnectID of the now-unblocked producer session.

Notification Interface

Notifications are collected and displayed in the Sonic Management Console and delivered
to any management client that has registered an appropriate notification listener (see the
Aurea SonicMQ Administrative Programming Guide for more information). This interface
has a callback that handles all notification types.

To view flow control naotifications in the Sonic Management Console, select the Containers
node in the Manage view. Under the container instance node, right-click the broker instance
where you want to view the notifications. In the window that opens, select the flow control
events under the Applications node. See the Aurea SonicMQ Configuration and
Management Guide for more information about viewing flow control notifications in the
Sonic Management Console.

Disabling Flow Control

You can disable flow control so that applications can catch the exceptions thrown when
messages sent cause flow problems on the broker. To disable flow control, call the
Session.setFlowControlDisabled(boolean disabled) method where TRUE indicates that
flow control will not be active in the session.

Flow to Disk

If flow control is active, MessageProducers may block, waiting for MessageConsumers to
process messages that have accumulated in in-memory buffers. The flow-to-disk feature
relieves this problem by temporarily writing messages to disk, allowing message production
to continue despite slow message consumption. This feature is designed for Pub/Sub
messaging, in which one slow consumer might hold up message production for other
consumers.

For a detailed description of flow-to-disk functionality, see the Aurea SonicMQ
Performance Tuning Guide.

An administrator can enable this feature for all clients connected to a broker by setting a
broker configuration parameter (FLOW_TO_DISK). As an application programmer, you can
explicitly override the broker setting.

To override this setting for all Sessions, call the following method:
ConnectionFactory.setFlowToDisk (Integer flowSetting)

where flowSetting is an Integer set to one of the following values:

Aurea Software, Inc. Confidential 223 Copyright © 2013 Aurea, Inc.

Chapter 5: SonicMQ Client Sessions

o progress.message.jclient.Constants.FLOW_TO_DISK_USE_BROKER_SETTING (the
default) — Specifies that the broker setting of FLOW_TO_DISK will be used for the
consumer.

e progress.message.jclient.Constants.FLOW_TO_DISK_ON — Specifies that
FLOW_TO_DISK is on for the consumer regardless of the broker setting.

. progress.message.jclient.Constants.FLOW_TO_DISK_OFF — Specifies that
FLOW_TO_DISK is off for the consumer regardless of the broker setting.

Aurea Software, Inc. Confidential 224 Copyright © 2013 Aurea, Inc.

Using Sessions and Consumers

To override this setting for a single Session, call the following method:
Session.setFlowToDisk (int flowSetting)

where the allowable values for flowSetting are the same as for the
ConnectionFactory.setFlowToDisk() method, except that parameters are passed as
ints, not Integers.

Only a subscriber can meaningfully set the FLOW_TO_DISK setting. If a session exclusively
produces messages, calling the Session.setFlowToDisk() method will have no effect.

Using Sessions and Consumers

There are many advantages to using multiple connections and multiple sessions in an
application even though the ordering of messages is only assured within a session (a single
thread of execution).

Multiple Sessions on a Connection

Using multiple sessions gives up the benefits of serialized operations on a single thread of
execution. Multiple sessions are best suited for alternate or supporting functions within an
application. Figure 49 shows multiple sessions using two sessions and only one
connection. As the connection is associated with a messaging domain—PTP or
Pub/Sub—multiple sessions are constrained to the connection’s domain.

Figure 49: Multiple Sessions on a Connection

Client Application

SonicMQ
Broker

ZO—0wunmn
Z0——0mzZ2z2Z200

Z0—-—ununmwun

Creating Session Objects and the Listeners

The sections Creating and Monitoring a Connection on page 161 and Handling Exceptions
on the Connection on page 162 provide information and examples of setting up
connections. Once you have a connection, you can create session objects and listeners.

Aurea Software, Inc. Confidential 225 Copyright © 2013 Aurea, Inc.

Chapter 5: SonicMQ Client Sessions

In ReliableChat: Create Session Objects and Listeners on page 226, a continuation of the
ReliableChat sample shown in the section Creating and Monitoring a Connection on
page 161, two sessions are created: one session to work with the standard input and send
functions, and the other to work with the message listener and the messages it delivers for
consumption. Each session declares its acknowledgement mode then sets up the
destination and the publisher or subscriber. The message listener is activated against the
consumer destination.

ReliableChat: Create Session Objects and Listeners

pubSession =

connect.createSession (false, javax.jms.Session.CLIENT ACKNOWLEDGE) ;
subSession =

connect.createSession(false, javax.jms.Session.CLIENT ACKNOWLEDGE) ;
javax.jms.Topic topic = pubSession.createTopic (APP_TOPIC);
javax.jms.MessageConsumer subscriber =
subSession.createDurableSubscriber (topic,

"SampleSubscription") ;

subscriber.setMessagelistener (this) ;

publisher = pubSession.createProducer (topic) ;

// Register this class as the exception listener for any problems.
connect .setExceptionListener((javax.jms.ExceptionlListener) this);

Starting the Connection

When all the session objects and settings are established, the ReliableChat connection is
started:

connect.start();

Messages are composed and sent by the publisher session. Messages are delivered and
consumed by the subscriber session. See Connections on page 160 for information about
setting up and working with connections.

JMS Messaging Domains

The JMS messaging domains are primarily differentiated by messaging behaviors. The
programming functionality for the domains is similar, as shown in the interfaces and
methods in Table 12.

Aurea Software, Inc. Confidential 226 Copyright © 2013 Aurea, Inc.

Integration with Application Servers

Table 12: Connected Session Functionality Common to PTP and Pub/Sub
javax.jms Interface Functionality in Either Domain
ConnectionFactory e Allows administrative control of communication resources

o Creates one or more Connections

Connection . Creates one or more Sessions

e Supports concurrent use

e Lets applications specify name-password for client authentication
e Allows unique client identifiers

. Provides ConnectionMetaData

. Supports an ExceptionListener

. Provides start() and stop() methods

° Provides a close() method for connections

Session e Serves as a factory for MessageProducers and MessageConsumers

e Sessions and Destinations are used to create multiple
MessageProducers and MessageConsumers

. Serves as a factory for TemporaryDestinations

e Creates Destination objects with dynamic names

e Serves as a factory for Messages

e Supports serial order of messages consumed and produced
e Retains consumed messages until acknowledged

e Serializes execution of registered MessageListeners

° Provides a close() method for sessions

Integration with Application Servers

Application servers are capable of handling multiple sessions concurrently, offering high
availability of the application. By creating and maintaining a server session pool, the
session thread wrapped in each server session can be started, used, then stopped and
returned to the pool when it has completed its work.

Connection Consumer

An application server creates a ConnectionConsumer to asynchronously receive messages
and pass them to a ServerSessionPool where the messages are assigned to server
sessions.

Aurea Software, Inc. Confidential 227 Copyright © 2013 Aurea, Inc.

Chapter 5: SonicMQ C

lient Sessions

The ConnectionConsumer receives messages through the connection for the destination it

spec

ified, filtering the preferred messages through its message selector, then distributes

the message to sessions, as shown in Figure 50. This behavior enables the consumer’s
messages to be processed concurrently by several sessions.

Figure 50: Serv

erSession Pool and Connection Consumer

Application

Application Server

JMS Runtime

Server Session Pool

Ltq:::::ij Connection

SonicMQ

Consumer

\
\
- \ .
g‘ Sso o getServerSession
<

Broker

messageSelector

e [0 —

P getsession

C
o
N
I\
=
C
T
|
o
N

The create method for the ConnectionConsumer indicates the ServerSessionPool thatis an
object implemented by an application server to provide a pool of ServerSess-ions for
processing the messages of the ConnectionConsumer.

You create a ConnectionConsumer object by calling the Connection object’s
createConnectionConsumer() or createDurableConnectionConsumer() methods:

public javax.jms.ConnectionConsumer
createConnectionConsumer (javax.jms.Destination

destination,

java.lang.String
messageSelector,

javax.jms.ServerSessionPool
sessionPool,

int maxMessages)

throws JMSException

public javax.jms.ConnectionConsumer
createDurableConnectionConsumer (javax.jms.Topic topic,

java.lang.String
subscriptionName,

java.lang.String
messageSelector,

javax.jms.ServerSessionPool
sessionPool,

int maxMessages)

throws JMSException

Aurea Software, Inc. Confidential 228 Copyright © 2013 Aurea, Inc.

Integration with Application Servers

where:

) destination is the Queue or Topic to access

. topic is the Topic to access

e messageSelector is the String with the message selector definition

e sessionPool is the ServerSessionPool to associate with this connection consumer
. subscriptionName is the name of the durable subscription

e maxMessages is the maximum number of messages that can be assigned to a server
session at one time

Server Session

A connection consumer executes a getServerSession() method to return a
ServerSession from the pool. A ServerSess+ion is an application server object that
associates a thread with a JMS session. It offers two methods, getSession() to return the
ServerSession's JMS session, and start() to start the execution of the ServerSession
thread that results in the execution of the JMS Session's run() method.

Figure 51: Server Session for a Connection Consumer to a Queue

ServerSession

L Message Listener T ressage

onMessage

A ServerSession wraps a Session and associates a MessageListener As shown in
Figure 51, the ServerSessionis sent a message obtained by the ConnectionConsumer. The
Session wrapped by the ServerSess-ion is then started so that it can perform its
onMessage() work.

The ServerSess+ion will register some object it provides as the ServerSession's thread run
object. The ServerSess-ion's start method will call the thread's start() method, which will
start the new thread, and from it, call the run method of the ServerSess-ion's run object.
This object will do some housekeeping and then call the Session's run method. When
run() returns, the ServerSession's run object can return the ServerSession to the
ServerSessionPool, and the cycle starts again.

Message Driven Beans

Connection consumers and server session pools are expert facilities that provide a way to
send nonblocking and asynchronous messages to application servers. This functionality is
facilitated in Enterprise JavaBeans (EJB) through Message Driven Beans (MDB) of J2EE
derived from the interface javax.ejb.MessageDrivenBean, whichis in turn derived from the
javax.jms.MessagelListener. The onMessage() method inherited from the
javax.jms.MessagelListener interface has the sole parameter javax. jms.Message.

Aurea Software, Inc. Confidential 229 Copyright © 2013 Aurea, Inc.

Chapter 5: SonicMQ Client Sessions

After the container accesses a bean from a pool of available instances, the received
message is passed to the onMessage() method of the MDB instance. When the
onMessage() method completes, the bean is returned to the pool of available instances.

Shared Subscriptions

SonicMQ allows shared subscriptions for topics across multiple application servers. Server
session pools can be used in combination with shared subscriptions to allow round-robin

delivery between application servers, which, in turn, allows round-robin between members
of the server session pool.

XA Resources

Distributed transactions, discussed in Chapter 14, Distributed Transactions Using
XA ResourcSes on page 423, require XAResources S0 that they can integrate with a
Transaction Manager and application servers.

Figure 52 describes SonicMQ XA interface objects.

Figure 52: SonicMQ Implementation of the XA Interfaces
Connecti onFactory Connecti on
Sessi on XAResour ce
XAConnecti onFactory [» XAConnection
7777777777 ﬁ XASessi on

The connections and sessions for XA interfaces are similar relationships to those in the
standard interface. Some examples of object relationships are:

e The XASession is created by the XAConnectiion.

° The XASessiion inherits from the Session.

Aurea Software, Inc. Confidential 230 Copyright © 2013 Aurea, Inc.

Messages

This chapter provides information about creating and handling messages in SonicMQ, and
contains the following sections:

e About Messages on page 231

e Message Type on page 232

e Working With Messages That Have Multiple Parts on page 238
e Message Structure on page 248

e Message Header Fields on page 249

. Message Properties on page 253

e Message Body on page 260

About Messages

A SonicMQ message is a package of bytes that encapsulates the message body as a
payload and then exposes metadata that identify, at a minimum, the message and its
timestamp, destination, and priority. The instanceof the object identifies the type of IMS
message.

When a text message is published, it might be coded as shown:

private void jmsPublish (String aMessage)
javax.jms.TextMessage msg = session.createTextMessage() ;
msg.setText (user + ": " + aMessage);
publisher.publish(msg);

Aurea Software, Inc. Confidential 231 Copyright © 2013 Aurea, Inc.

Chapter 6: Messages

When a message is received it might be through an asynchronous listener, coded as
shown:

// Handle an asynchronously received message
public void onMessage(javax.jms.Message aMessage)

{

// Cast the message as a text message.

javax.jms.TextMessage textMessage = (javax.jms.TextMessage) aMessage;
// Read a single String from the text message, print to stdout.
String string = textMessage.getText () ;

Message Type

The JMS specification defines five types of messages, all derived from the Message
interface, which also defines message headers and the acknowledge() method used by
all IMS messages. SonicMQ provides an XMLMessage type as an extension of the JMS
TextMessage. Figure 53 lists the SonicMQ message types.

Figure 53: SonicMQ Message Types

Message

— BytesMessage

— MapMessage

—— ObjectMessage

— StreamMessage

— TextMessage +— XMLMessage

— MultiPartMessage

Part

L MessagePart

The message types are defined as follows:

e Message — The root interface of all IMS messages can be used for a bodyless
message. All the standard message metadata is available—the header fields and the
properties.

e BytesMessage — The body is a stream of uninterpreted bytes. This message type
exists to support cases where the contents of the message will be shared with
applications that cannot read Java types or 16-bit Unicode encodings. It is also useful
when the information to send already exists in binary form.

Aurea Software, Inc. Confidential 232 Copyright © 2013 Aurea, Inc.

Message Type

e MapMessage — The body is a set of name-value pairs where names are strings and
values are Java primitive types. The entries can be accessed sequentially or randomly
by name. An example of MapMessage usage is a message describing a new product,
which includes the price, weight, and description; the names in the MapMessage
correlate to columns in a database table in which the consumer stores the information.

e ObjectMessage — The body contains a serializable Java object. An ObjectMessage
is useful when both JMS clients are Java applications or applets with access to the
same class definition.

e StreamMessage — The body is a stream of Java unkeyed primitive values that is
filled and accessed sequentially. Since a StreamMessage contains only raw data and
no keys, it takes up less space than an equivalent MapMessage.

e TextMessage — The body is a java.lang.String or String. Use a TextMessage
when the message content does not require any particular structure, for example,
when the message body is simply printed or copied by the consumer.

e XMLMessage — The body is a TextMessage with XML tags that can be parsed as a
valid XML DOM tree or evaluated through SAX.

e MultipartMessage — The body is composed of one or more parts. There are methods
to add, delete, and get the constituent parts. The parts might be MessageParts,
javax.jms.Message implementations in addition to primitive types such as XML,
HTML, or any type in MIME format such as text/xm1.

Note: Large message support through recoverable file channels can use any type of
message as the header message. The file transfer is performed through the
untyped file channel. See Chapter 11, Recoverable File Channels on page 369

Creating a Message

Create a message type from a session method in the form:
javax.jms. [type] Message msg = session.create[type]lMessage()
Use the following session methods to create the different message types:

e javax.jms.Message msg = session.createMessage()

° javax.jms.BytesMessage msg = session.createBytesMessage()

o javax.jms.MapMessage msg = session.createMapMessage()

o javax.jms.ObjectMessage msg = session.createObjectMessage()
° javax.jms.StreamMessage msg = session.createStreamMessage()
. javax.jms.TextMessage msg = session.createTextMessage()

The MultipartMessage type, described on page Composition of a MultipartMessage on

page 238, extends the Message type. The XMLMessage type, described in the following
section, extends the TextMessage type.

Aurea Software, Inc. Confidential 233 Copyright © 2013 Aurea, Inc.

Chapter 6: Messages

Working with XML Messages

TextMessage inherits methods from Message and adds a text message body. XMLMessage
then parses XML text through an implementation of JAXP classes.

The Apache Xerces parser is loaded by default but any XML conformant parser can be set
as the preferred parser. The Apache Xerces parser supports the XML 1.0 recommendation
and contains advanced parser functionality such as XML Schema, DOM Level 2 version
1.0 and SAX Version 2 in addition to supporting DOM Level 1 and SAX version 1 APIs.

JAXP Support

The Java API for XML Parsing (JAXP) is the JavaSoft standard for a Java application to
access an XML-conformant parser. An application can swap XML parsers to move
between high performance and memory conservation without changing application code.

To use a different compliant SAX or DOM parser, pass the system property in a command
line as shown in these command line examples:

e java —Djavax.xml.parsers.SAXParserFactory=
org.apache.crimson.jaxp.SAXParserFactorylmpl myApp

e java —Djavax.xml.parsers.DocumentBuilderFactory=
org.apache.crimson.jaxp.DocmentBuilderFactorylmpl myApp

JAXP Interfaces

JAXP provides the following interfaces:

e DocumentBuilder — The Document Builder defines the API to obtain DOM
Document instances from an XML document. Using this class, you can get a
org.w3c.dom.Document from XML tagged text. An instance of this class is obtained
from the DocumentBuilderFactory.newDocumentBuilder method. Then XML can be
DOM parsed from a variety of input sources including InputStreams, files, URLs, and
SAX InputSources.

. DocumentBuilderFactory — The Document Builder Factory defines a factory API
that lets applications get a parser that produces DOM object trees from XML
documents. The system property that controls the Factory implementation to create is
javax.xml.parsers.DocumentBuilderFactory. The property names a class that is a
concrete subclass of this abstract class. If none is defined, the default is used. When
an application has a reference to a DocumentBuilderFactory it can use the factory to
configure and obtain parser instances.

e SAXParser — The SAXParser defines the API that wraps an org.xml.sax.Parser
implementation class. Using this class allows an application to parse content using the
SAX API. An instance of this class can be obtained from the
SAXParserFactory.newSAXParser method. When an instance of this class is obtained,
XML can be parsed from a variety of input sources. Then XML can be SAX parsed
from input sources including InputStreams, files, URLs, and SAX InputSources.

Aurea Software, Inc. Confidential 234 Copyright © 2013 Aurea, Inc.

Message Type

e SAXParserFactory — The SAX Parser Factory defines a factory API that lets
applications configure and obtain a SAX-based parser to parse XML documents. The
system property that controls which Factory implementation to create is
javax.xml.parsers.SAXParserFactory. The property names a class that is a
concrete subclass of this abstract class. If none is defined, the default is used. When
an application has a reference to a SAXParserFactory, it can use the factory to
configure and obtain parser instances.

Table 13 describes the methods you can use to parse XML messages.

Table 13: Methods for XML Parsing
Method Description
void Takes the org.w3c.dom.Document aDoc and
setDocument(org.w3c.dom.Document aDoc) stores it as the internal document for this
message.
void Set whether or not the underlying
setNamespaceAware(boolean aware) javax.xml.parsers.DocumentBuilderFactory
used to generate org.w3c.dom.Document
returned by XMLMessage.getDocument() is
namespace aware.
boolean Tests whether the underlying
isNamespaceAware() javax.xml.parsers.DocumentBuilderFactory
used when getDocument() is called is
namespace aware.
org.w3c.dom.Document Returns an org.w3c.dom.Document object
getDocument() created from the XMLMessage content that can
be accessed by DOM-tree functionality.
void Sets the class name for the implementation of
setDocumentBuilderFactory(java.lang.String JAXP1.1 DocumentBuilderFactory interface to
classname) override the default Apache Xerces parser.
void Sets the class name for the implementation of
setSAXParserFactory(java.lang.String classname) | JAXP1.1 SAXParserFactory interface to
override the default Apache Xerces parser.
java.lang.String Gets the class name for the implementation of
getDocumentBuilderFactory() JAXP1.1 DocumentBuilderFactory interface.
java.lang.String Gets the class name for the implementation of
getSAXParserFactory() JAXP1.1 SAXParserFactory interface.
org.xml.sax.InputSource Returns an org.xml.sax.InputSource object
getSAXInputSource() created from the XMLMessage contents.

Aurea Software, Inc. Confidential 235 Copyright © 2013 Aurea, Inc.

Chapter 6: Messages

DOM Support

The Document Object Model (DOM) provides a tree of objects with interfaces for traversing
the tree and writing and XML version of it. XMLDOMChat: DOM Support on page 236,
excerpted from the XMLDOMChat sample application, provides an example of DOM support.

XMLDOMChat: DOM Support

public void onMessage (javax.jms.Message aMessage)

try

// Test the message type.

if (aMessage instanceof progress.message.jclient.XMLMessage)
// Cast the message as a XML message.
progress.message.jclient.XMLMessage xmlMessage =
(progress.message.jclient .XMLMessage) aMessage;

// Get the XML document associated with this message.
org.w3c.dom.Document doc = xmlMessage.getDocument () ;
// Get the sender and content from the message.
org.w3c.dom.NodeList nodes = null;

nodes = doc.getElementsByTagName ("sender") ;

String sender = (nodes.getLength() > 0) ?

nodes.item(0) .getFirstChild () .getNodeValue () : "unknown";
nodes = doc.getElementsByTagName ("content") ;

String content = (nodes.getLength() > 0) ?

nodes.item(0) .getFirstChild () .getNodeValue () : null;

// Show the message

System.out.println (" [XML from '" + sender + "'l " + content);

// Show the message as a tree
printDocNodes (doc.getDocumentElement (), 0) ;
System.out.println() ;

}

else

{

// Cast the message as a text message and display it.

javax.jms.TextMessage textMessage = (javax.jms.TextMessage) aMessage;
System.out.println (" [TextMessage] " + textMessage.getText());
catch. ..

SAX Support

SAX (Simple API for XML) provides an event-driven mechanism for parsing XML which is
optimized for parsing large XML documents. This is the protocol that most servlets and
network-oriented programs use to transmit and receive XML documents because of its
speed in a modest memory footprint.

However, the SAX protocol requires more program logic than the Document Object Model
(DOM). As an event-driven model, SAX is more obscure—you provide the callback
methods and the parser invokes them as it reads the XML data. Also, you cannot reposition
in or rearrange the document as it is interpreted in a serial data stream.

Aurea Software, Inc. Confidential 236 Copyright © 2013 Aurea, Inc.

Message Type

If your application calls for modifying and displaying an XML document, the DOM is better
suited to that task.

The XMLSAXChat sample excerptin XMLSAXChat: SAX Support on page 237 shows how a
publisher sends an XML message and the subscriber calls getSAXInputSource() on the
message. That method returns an org.xm1.sax.InputSource (rather than the
org.w3c.dom.Document returned in the XMLDOMChat sample). Event parsing is done on the
XML message and the message is printed out to the screen.

XMLSAXChat: SAX Support

public void onMessage (javax.jms.Message aMessage)

try

// Test the message type.

if (aMessage instanceof progress.message.jclient.XMLMessage)
// Cast the message as a XML message.
progress.message.jclient .XMLMessage xmlMessage =
(progress.message.jclient .XMLMessage) aMessage;

// Get the XML SAXInputSource associated with this message.
org.xml.sax.InputSource is = xmlMessage.getSAXInputSource() ;

if (System.getProperty("javax.xml.parsers.SAXParserFactory") == null) ({
//make the default be xerces by setting the System property to point to
xerces.

java.util.Properties props = System.getProperties();

props.put ("javax.xml.parsers.SAXParserFactory",
"org.apache.xerces.jaxp.SAXParserFactoryImpl") ;
System.setProperties (props) ;

}

javax.xml.parsers.SAXParserFactory plugfactory =
javax.xml.parsers.SAXParserFactory.newInstance () ;

// Load the parser specified in system property.
javax.xml.parsers.SAXParser saxParser = plugfactory.newSAXParser () ;
org.xml.sax.Parser sp = saxParser.getParser() ;
sp.setDocumentHandler (this) ;

sp.setErrorHandler (this) ;

sp.parse(is) ;

}

else

{

// Cast the message as a text message and display it.
javax.jms.TextMessage textMessage = (javax.jms.TextMessage) aMessage;
System.out.println (" [TextMessage] " + textMessage.getText()) ;

}
}

catch

Aurea Software, Inc. Confidential 237 Copyright © 2013 Aurea, Inc.

Chapter 6: Messages

Working With Messages That Have Multiple Parts

Many applications—especially those dealing with document-centric business messaging
like SOAP 1.1 with Attachments—focus on documents that have multiple parts, each of
which might be differentiated by standard MIME content typing. The JMS specification does
not consider messages that contain other messages. SonicMQ uses the DataHandlers in
the Java Activation Framework to provide an interface that allows an application to get and
set the parts of the message as different types. SonicMQ lets you treat existing JIMS
messages as parts of a multipart message and even to include one multipart message
inside another.

Composition of a MultipartMessage

The structure of a MultipartMessage is a wrapper surrounding a series of Parts, as shown
in Figure 54.

Figure 54: MultipartMessage Wraps Parts That Have Header and Content

MultipartMessage

Part

Header

Content

Each MultipartMessage can have JMS properties and zero or more parts. Each part has
content and a header that declares at least the part’s content type.

MultipartMessages, their headers, and their parts are interfaces:

° progress.message.jclient.MultipartMessage
o progress.message.jclient.Part

e progress.message.jclient.Header

MultipartMessage Type

The MultipartMessage type is a subclass JMS Message and follows the JMS semantics for
interactions with sessions, producers and consumers. A Mul tipartMessage is limited to 10
megabytes, must be completely created on the producer, and must be sent to the broker
as a single logical transfer.

Aurea Software, Inc. Confidential 238 Copyright © 2013 Aurea, Inc.

Working With Messages That Have Multiple Parts

Producing a MultipartMessage

To produce a MultipartMessage, create the parts and add them to an instance of a
MultipartMessage.The following example describes sending objects as message parts.

When wrapping a message in a MultipartMessage the entire message is wrapped,
including the message header and properties. This process provides a technique for
handling undeliverable or indoubt messages. If a message needs to be re-routed, it can
packaged in a MultipartMessage with the problem message as a Part and routed to a
special destination for analysis and processing. The following code excerpts are from the
MultipartMessage sample application, describing the assembly of a multipart message
from five distinct parts:

. partl is a TEXTMESSAGE:

javax.jms.TextMessage msgl = session.createTextMessage () ;
msgl.setText (" this is a JMS TextMessage ");

Part partl = mm.createMessagePart(msgl) ;

partl.getHeader () .setContentId ("CONTENTID1") ;

. part2 is a byte[]:

String str2 = "This string is sending as a byte array";
DataHandler dh = new DataHandler (str2.getBytes(), "myBytes");
Part part2 = mm.createPart(dh) ;

part2.getHeader () . setContentId ("CONTENTID2") ;

. part3 contains simple text:

String strl = "a simple text string to put in part 3";
dh = new DataHandler (stril, "text/plain");

Part part3 = mm.createPart(dh) ;

part3.getHeader () . setContentId ("CONTENTID3") ;

° part4 accesses a file:

FileDataSource fds = new FileDataSource ("Readme.txt") ;
dh = new DataHandler (fds) ;

Part part4 = mm.createPart(dh) ;

part4.getHeader () .setContentId ("CONTENTID4") ;
System.out.println("sending part4..a Readme file");

. part5 is a Web site address:

java.net.URL url = new java.net.URL("http://www.cnn.com") ;
dh = new DataHandler (url) ;
Part part5 = mm.createPart(dh) ;

e The parts are added to the MULTIPARTMESSAGE and then sent:

mm. addPart (partl) ;
mm. addPart (part2) ;
mm. addPart (part3) ;
mm.addPart (part4) ;
mm.addPart (part5s)
sender.send (mm) ;

7

Aurea Software, Inc. Confidential 239 Copyright © 2013 Aurea, Inc.

Chapter 6: Messages

The producer methods in the MultipartMessage interface are listed in Table 14.

Table 14: Producer Methods in the MultipartMessage Interface
Method Description
Part Creates an empty part.
createPart()
Part Creates a Part from a

createPart(javax.activation.DataHandler handler)

DataHandler where handler is
the data

Part
createPart(java.lang.Object object,
java.lang.String type)

Creates a part where type is the
ContentType associated with the
content.

Part
createMessagePart(Message message)

Creates a part whose contentis a
Message where message is the
content of the part.

addPartAt(Part part, int index)

void Adds part to the multipart at the
addPart(Part part) end of the message.
void Adds part to the multipart at

position index.

void
removePart(java.lang.String cid)

Removes part with content-ID cid
from the MultipartMessage.

void
removePart(int index)

Removes part index from the
MultipartMessage.

Consuming a Multipart Message

A MultipartMessage is held by brokers and routed over routing nodes with the same
integrity as any other javax.jms.Message. A client receiving the MultipartMessage can
recover the original message from the Part. An original message that is copied into a part

has its own, original header fields and properties.

Note:

When a message is in read-only mode—after it has arrived at a

MessagelListener—the set methods on the Part and Header return errors.

Receiving a MultipartMessage is the same as any other IMS message. Consuming the
message is done with standard MessageListeners or calls to receive().

Aurea Software, Inc. Confidential 240

Copyright © 2013 Aurea, Inc.

Working With Messages That Have Multiple Parts

In the MultipartMessage sample where onMessage delivers an instanceof
MultipartMessage, it then passes it through its unpackMM pattern to determine how many
parts the message contains. The sample application then iterates through the handling of

each part, as shown:

private void unpackMM(javax.jms.Message aMessage, int depth)

{

int n = depth;

try

{

indent (n) ; System.out.println ("Extend type property = " +

aMessage.getStringProperty (Constants.EXTENDED TYPE)) ;

MultipartMessage mm

(MultipartMessage) aMessage;

int partCount = mm.getPartCount() ;

indent (n) ;
for (int i = 0; 1 < partCount; i++)

Part part = mm.getPart(i);

Each part is evaluated to see if it should be treated as a IMS message part or evaluated

as a MIME content type:

if (mm.isMessagePart(i))

{

javax.jms.Message msg

mm. getMessageFromPart (i) ;

if (msg instanceof MultipartMessage)

unpackMM (msg, ++depth) ;

else

unpackJMSMessage (msg,

}

else

{

unpackPart (part, n);

}
}

The methods for the MultipartMessage consumer are listed in Table 15.

Table 15:

Consumer Methods in MultipartMessage Interface

Method

Description

java.lang.String
getProfileName()

Return the extended type or profile that was used to
create this message

boolean
doesPartExist(java.lang.String cid)

Tests whether a part with the content-id cid exists

boolean
isMessagePart(int index)

Tests whether part with index is a MessagePart

boolean
isMessagePart(java.lang.String cid)

Tests whether if the part with content ID cid is a
MessagePart

Aurea Software, Inc. Confidential

241 Copyright © 2013 Aurea, Inc.

Chapter 6: Messages

Table 15: Consumer Methods in MultipartMessage Interface
Method Description
int Returns the number of parts in the
getPartCount() MultipartMessage
Part Gets part index of the message

getPart(int index)

Part
getPart(java.lang.String cid)

Gets the part of the message identified as content
ID cid

Message
getMessageFromPart(int index)

Gets a JMS message from part index of the
message

Message
getMessageFromPart(java.lang.String cid)

Gets a JMS message from the part of the message
with the content ID cid

boolean Tests whether a message is read only
isReadOnly()

void Makes the message writable
clearReadOnly()

JMS_SonicMQ_ExtendedType Property

A MultipartMessage is not only identified as an instance of MultipartMessage. For the
convenience of older SonicMQ versions or other JMS providers, a String property,
JMS_SonicMQ_ExtendedType, is also set when a MultipartMessage type is sent to carry the

profile of the message. The name is also accessible in
progress.message.jclient.Constants as:

public String EXTENDED TYPE =

“JMS_ SonicMQ ExtendedType”

Aurea Software, Inc. Confidential

242

Copyright © 2013 Aurea, Inc.

Working With Messages That Have Multiple Parts

Parts of a MultipartMessage

A part of a MultipartMessage follows the design pattern for Java handling of MIME used in
JAXM and JavaMail™ through the JavaBeans Activation Framework. Each part has an
associated Header and content, as described:

e The Header contains name/value pair to represent header objects such as
ContentType and ContentId. The Header can be implemented separately from a
MessagePart, or as methods on the Part itself.

e The content of a Part is accessed through a javax.activation.DataHandler in the

following formats:

e DataHandler by using the getDataHandler() method or through a
javax.activation.DataHandler object. The DataHandler object lets you
discover the operations available on the content and then instantiate the
appropriate component to perform those operations. A DataContentHandler
class for the specified type must be available to ensure the expected result. For

example,

setContent (mycontents,

"application/x-mytype")

expects a DataContentHandler for application/x-mytype.

e Input stream by using the getInputStream() method.

e Javaobject by using the getContent() method. This method returns the content

as a Java object.

The methods in the Parts interface are listed in Table 16.

Table 16:

Methods in the Parts Interface

Method

Description

setContent(java.lang.Object object,
java.lang.String type)

Sets the part's content as a Java Object of
content type type

setContent(byte[] content)

Sets the part's content as a byte array of
content

setDataHandler(javax.activation.
DataHandler dataHandler)

Specifies the DataHandler to set the part's
content by wrapping the actual content

java.lang.Object
getContent()

Gets the content of the part as an Object

byte[]
getContentBytes()

Gets the content of the part as a byte array

javax.activation.DataHandler
getDataHandler()

Provides the mechanism to get this part's
content. Returns the DataHandler for the Part

Header Gets the Header for the Part
getHeader()
Aurea Software, Inc. Confidential 243 Copyright © 2013 Aurea, Inc.

Chapter 6: Messages

Table 16: Methods in the Parts Interface
Method Description
java.io.InputStream Invokes the DataHandler's getinputStream()
getlnputStream() method and returns an input stream for this

part's content

java.io.OutputStream Invokes the DataHandler's getOuputStream()
getOutputStream() method and returns an output stream for
writing this part's content

MessagePart Subclass

A subclass of the Part is the MessagePart, used by an application to wrap one or more JMS
messages into a MultipartMessage. The ContentType of SonicMQ MessageParts is set
implicitly, as shown in Table 17:

Table 17: Implicit Content-Type for JMS Message Types
JMS/SonicMQ Type Content-Type
Message application/x-sonicmg-message
BytesMessage application/x-sonicmqg-bytesmessage
MapMessage application/x-sonicmg-mapmessage
ObjectMessage application/x-sonicmq-objectmessage
StreamMessage application/x-sonicmqg-streammessage
TextMessage application/x-sonicmg-textmessage
XMLMessage (SonicMQ) application/x-sonicmg-xmimessage
MultipartMessage (SonicMQ) application/x-sonicmg-multipartmessage

The MessagePart interface inherits all its methods from the Part interface.

Header of the MultipartMessage or a Part

The MultipartMessage itself and each Part have Header objects associated with them that
hold the ContentId, ContentType, and other fields (typically MIME). Table 18 lists the
methods in the Header interface.

Aurea Software, Inc. Confidential 244 Copyright © 2013 Aurea, Inc.

Working With Messages That Have Multiple Parts

Table 18:

Methods in the Header Interface

Method

Description

void
setContentld(java.lang.String cid)

Sets the Contentld header of the message
or attachment part to the value cid.

setContentType(java.lang.String type)

Sets the ContentType header of the
message or attachment part to the value

type

void
setHeaderField(java.lang.String name,
java.lang.String value)

Sets the value of a header field name to the
String value

java.lang.String
getContentld()

Gets the content ID of the message or
attachment part

java.lang.String
getContentType()

Gets the ContentType of the message or
attachment part. Returns the ContentType
of the part or null

java.util. Enumeration
getHeaderFieldNames()

Gets the list of all header fields

java.lang.String
getHeaderField(java.lang.String name)

Gets the value of header field name or null
if it does not exist

java.lang.String
getHeaderField(java.lang.String name,
java.lang.String value)

Gets the value of a header field name. If it
does not exist default to value

void
removeHeaderField(java.lang.String
name)

Removes header name from the part

void
removeAllHeaders()

Removes all headers

Using Multipart Messages to Wrap Problem

Messages

A MultipartMessage is an efficient to handle undeliverable and indoubt messages even
after they have been relegated to a Dead Message Queue (DMQ). You can create

applications that screen DMQs to package lost messages and send them to a queue where

they can be unpacked and analyzed.

Aurea Software, Inc. Confidential

245

Copyright © 2013 Aurea, Inc.

Chapter 6: Messages

Wrapping a Problem SonicMQ Message Within a
Message

In this example, a MessageListener has received a message that it cannot handle and
sends the message to an special-case application listening on SpecialQ.

To wrap a problem message and provide areason code:

1. Wrap the entire original message as the payload for a MultipartMessage without
changing the message body, headers, or properties.

2. Add an application reason code to the properties of the MultipartMessage.

3. Send the MultipartMessage to, in this example, SpecialqQ.

Wrapping a Problem Message on page 246 shows an example of how to wrap a problem
message.

Wrapping a Problem Message

void onMessage (Message m)

{

// We only handle MapMessages

if (m instanceOf MapMessage)

doNormalProcessing (m) ;

else

{

// Send the message to the SpecialQ for processing
MultipartMessage mm = session.createMultipartMessage() ;

// Use JMS Properties on the mm to indicate an issue. DMQ these
mm. setStringProperty (*‘myError”, “Can’t handle this message”) ;
mm. setBooleanProperty (Constants.PRESERVE_UNDELIVERED, true) ;
mm. setBooleanProperty (Constants.NOTIFY_UNDELIVERED, true) ;

// Add the original message as the “Part”

Part att = mm.createMessagePart (m) ;

mm.addPart (att) ;

specialSender.send (mm, PERSISTENT)

}

}

Receiving a Wrapped Problem Message

In the preceding example, one SonicMQ message was wrapped inside another to
encapsulate a problem. Receiving a Wrapped Problem Message on page 246 shows how
that message is read and examined.

Receiving a Wrapped Problem Message

// This is the MessageListener on the SpecialQ (for wrapped errors) .
void onMessage (Message m)

{

// Was it a normal error?

if (m instanceof MultipartMessage && m.getStringProperty (“myError”) != null)

{

// This was a user error.

Aurea Software, Inc. Confidential 246 Copyright © 2013 Aurea, Inc.

Working With Messages That Have Multiple Parts

log.out (“Error: “ + m.getStringProperty(“myError”)) ;
// Put out properties of the multipart message
log.out (“MessageID: “ + m.getJMSMessageld()) ;
log.out (“Destination: “ + m.getJMSDestination()) ;
log.out (*Mode: “ + m.getJMSDeliveryMode()) ;

// Retrieve the original message (s)

for (int i=0; i<m.getPartCount(); i++)

{

if (m.isMessagePart(i))

{

javax.jms.Message att = m.getPartAsMessage (i) ;
log.out (“"\nPart # “+ 1i);

log.out (“Original MessageID: “ + att.getIMSMessageld()) ;
log.out (“Original Dest: “ + att.getIMSDestination());
log.out (“Original Mode: “ + att.getIMSDeliveryMode()) ;

1

!

!

!

Interacting with Business-to-Business
Multipart Types

The SonicMQ MultipartMessage type supports B2B messaging in general and SOAP v.1.1.
with Attachments in particular. SOAP message types are not expected to be handled at the
JMS level. Instead, the application programmer wraps the underlying JMS Mul tipartMessage
in a wrapper that implements the appropriate message, as shown in Figure 55.

Figure 55: SOAP with Attachments as a MultipartMessage

SOAP with Attachments

SOAP Part
SOAP Header

SOAP Body

Attachment 1

Attachment 2

Aurea Software, Inc. Confidential 247 Copyright © 2013 Aurea, Inc.

Chapter 6: Messages

This description shows how SonicMQ MultipartMessages coexist with business
frameworks. Typically, the application looks at a JMS property and, based on the property
value, creates an application object that uses or wraps the MultipartMessage. In the
following example, the JMS header field JMSType holds the type of application object where
it is intended to be used:

void onMessage (Message m)

{
// Handle Multiparts by wrapping them
if (m instanceof MultipartMessage)

{

MultipartMessage mm = (MultipartMessage) m;
if (mm.getJMSType () .equals (“SOAP”")

{

// Use the SonicSW MessageFactory to expose this

// as a SOAP Message.

MessageFactory mf = new com.sonicsw.xc.MessageFactory () ;
javax.xml.soap.Message soapm = mf.createSoapMessage(mm) ;

// Now we can do SOAP stuff on “soapm”;
soapm.getSOAPPart () ;

Message Structure

JMS Messages are composed of the following parts:

. Header Fields (JMS) — All messages support the same set of header fields. Header
fields contain values used by clients and brokers to identify and route messages.

e User-defined Properties — User-defined name-value pairs that can be used for
filtering and application requirements.

e Provider-defined Properties — Properties defined and typed by SonicMQ for
carrying information used by SonicMQ features.

e Supported IMS-defined Properties (JMSX) — Predefined name-value pairs that
are an efficient mechanism for supporting message filtering.

e Body — JMS defines several types of message bodies, which cover the majority of
messaging styles currently in use.

Note: While the JMS message system provides programmatic access to all components
of a message, message selectors and routing data are constrained to the header
fields and properties—not the message body.

Aurea Software, Inc. Confidential 248 Copyright © 2013 Aurea, Inc.

Message Header Fields

Message Header Fields

The message header fields are defined and used by the sender and the broker to convey
basic routing and delivery information. The message header fields are described in detail

in Table 19.

Table 19: Message Header Fields

JMS Header Field Type Description Usage Comments
JMSDestination String The destination While a message is When a message is

. where the being sent this value is | received, its
Required. . . . L
message is being | ignored. destination value

Set by the producer sent. must be equivalent

. After completion of the .
send/publish
P publish|send method, to the value assigned

method. | ethe : !
it holds the destination | """ it Was sent

specified by the send.

JMSDeliveryMode String Specifies whether | Required. Default value is
. the message isto | Must be NON_PERSISTENT
Required. . .
be retained inthe | PERSISTENT,
Set in a producer broker's persistent | NON_PERSISTENT,
send/publish storage NON_PERSISTENT
parameter. mechanism. _REPLICATED,
NON_PERSISTENT _
SYNC,
NON_PERSISTENT _
ASYNC, or
DISCARDABLE.
JMSMessagelD String SonicMQ field for | A message ID value While required, the
. a unique identifier. | must start with “ID:". algorithm that
Required.
calculates the ID on
Set by the producer the client can be
send/publish bypassed, which
method. sets the
JMSMessagelD to
null.
JMSTimestamp long GMT time on the Set method exists
. producer system but is always
Required. clock when the overridden by the
Set by the producer message was send method
send/publish sent. valuation.
method.

Aurea Software, Inc. Confidential 249 Copyright © 2013 Aurea, Inc.

Chapter 6: Messages

Table 19: Message Header Fields
JMS Header Field Type Description Usage Comments
JMSCorrelationID String Broker-specified Required when other | An application made
. message ID or an | JMS providers support | up of several clients
Optional. o o . .
application-specifi | the native concept of a | might want an
Set by producer c String. correlation ID. application-specific
method. value for linking
JMSCorrelationlD bytes A native byte][] MESSages.
AsBytes value.
Optional.
Set by producer
method.
JMSReplyto String The destination If null, no reply is Message replies
Optional. where a reply to expected. often use the
Setb q the current If not null. expects a CorrelationID to
et by producer message should » €XP assure that replies
method. response, but the . .
be sent. . synchronize with the
actual response is requests
optional and the q '
mechanism must be
coded by the
developer.
JMSRedelivered boolea | Iftrue itis likely Set by the broker atthe | When
Set by broker. n that this message |time the message is acknowledgement is
was delivered to delivered. expected and not
the cllent.earlle_r Note that, while recel_v_ed m a
but the client did : specified time, the
setJMSRedelivered :
not acknowledge . . broker can decide to
: : (boolean) exists, this .
its receipt at that . set this and resend.
. header field has no
time. .
meaning on send and
is left unassigned by
the sending method.
JMSType String Contains the Recommended for This is not, by
Optional. name of a systems where the default, the message
b q message's repository needs the type.
i&tth)o/dpro ucer definition as found | message type sent to
' in an external the application.
message type
repository.

Aurea Software, Inc. Confidential

250

Copyright © 2013 Aurea, Inc.

Message Header Fields

Table 19: Message Header Fields
JMS Header Field Type Description Usage Comments
JMSEXxpiration long When a The sum of the When a message is
Required. message's time-to-live value sent, expiration is left
by th q expiration time is | specified by the client | unassigned. After
Setbyt € progucer reached, the and the GMT at the completion of the
send/publish . . .
method by broker candiscard | time of the send. If the | send method, it
incrementing the it. Clients should time-to-live is specified | holds the expiration
current GMT time not receive as zero, the message | time of the message.
on the producer message§ that does not expire. Default value is O.
system by the have expired; :
ducer Default value is 0. _
producer however, the JMS The expiration of a
send/ putbhsh specification does message can be
parameter, not guarantee that managed by setting
timeTolLive. L
this will not the message
happen. property
JMS_SonicMQ _
preserveUndelivered
which will transfer an
expired (or
undeliverable)
message to the
broker's DMQ.
JMSPriority int Sets a value that | A ten-level priority The JMS
Required. will allow a value with O as the specification does

Set in a producer
send/publish
parameter.

message to move
ahead of other
undelivered
messages in a
topic or queue.
Also allows
message
selectors to pick
messages at a
given priority.

lowest priority and 9 as
the highest.

0 to 4 are normal.
5to 9 are expedited.

Default value is 4.

not require that
SonicMQ strictly
implement priority
ordering of
messages; however,
the broker will do its
best to deliver
expedited messages
ahead of normal
messages.

Aurea Software, Inc. Confidential

251

Copyright © 2013 Aurea, Inc.

Chapter 6: Messages

Setting Header Values When
Sending/Publishing

The basic method for producing a message allows essential delivery information to accept
the JMS default values. For example:

publisher.publish (Message message)
Three of the message header fields have default values as static final variables:
. DEFAULT_DELIVERY_MODE = NON_PERSISTENT

e DEFAULT_PRIORITY =4
e DEFAULT_TIME_TO_LIVE =0

The delivery mode default value of NON_PERSISTENT is interpreted as NON_PERSISTENT_SYNC
when security is enabled and NON_PERSISTENT_ASYNC when security is not enabled.

The default header field values can be changed in the signature of the send or publish
method to override the defaults:

e Point-to-point:
sender.send(Message message,

int deliveryMode,
int priority,
long timeToLive)

) Publish and Subscribe:

publisher.publish (Message message,
int deliveryMode,

int priority,

long timeToLive)

If you use this format of the method but do not intend to override some of the default values,
you can substitute the values back into the parameter list. For example:

private static final int MESSAGE LIFESPAN = 1800000;
// milliseconds (30 minutes)

sender.send(msg,
javax.jms.DeliveryMode.PERSISTENT,
javax.jms.Message.DEFAULT PRIORITY,
MESSAGE LT FESPAN) ;

Aurea Software, Inc. Confidential 252 Copyright © 2013 Aurea, Inc.

Message Properties

Message Properties

Properties are optional fields that are associated with a message. No message properties
are required for any message producer. The property values are used for message
selection criteria and data required by applications and other messaging infrastructures.
The order of property values is not defined.

Although the JMS specification does not define a policy for what should or should not be
made a property, application developers should note that data is handled in a message's
body more efficiently than data in a message's properties. For best performance,
applications should only use message properties when they need to customize a
message's header. The primary reason for doing this is to support customized message
selection.

Property names must obey the rules for a message-selector identifier. Property values can
be boolean, byte, short, int, Tong, float, double, and String. A String property is limited
to 65,535 characters.

Property values are set prior to sending a message. When a client receives a message, its
properties are in read-only mode. If clearProperties is called, the properties are erased
and then can be set.

Provider-defined Properties (JMS_SonicMQ)

SonicMQ reserves some property names and declares each property’s type. The following
properties are prescribed in SonicMQ for use in expressing intended handling of
undelivered messages, setting preferred message encryption, and indicating message
types.

Table 20 lists SonicMQ-defined properties.

Table 20: SonicMQ Provider-defined Properties
Function JMS Provider-defined Property Type Set by
QoP setting JMS_SonicMQ_perMessageEncryption boolean Producer
Message type | JMS_SonicMQ_Extended_Type String Producer

Aurea Software, Inc. Confidential 253 Copyright © 2013 Aurea, Inc.

Chapter 6: Messages

Table 20: SonicMQ Provider-defined Properties
Function JMS Provider-defined Property Type Set by
Handling of JMS_SonicMQ_preserveUndelivered boolean Producer
undeliverable
JMS_SonicMQ_notifyUndelivered boolean Producer
messages
JMS_SonicMQ_undeliveredReasonCode int Broker
JMS_SonicMQ_undeliveredTimestamp long Broker
JMS_SonicMQ_destinationUndelivered String Broker
JMS_SonicMQ_undeliveredBrokerName String Broker
JMS_SonicMQ_undeliveredNodeName String Broker
JMS_SonicMQ_undeliveredReasonAddedToDMQ | int Broker
JMS_SonicMQ_undeliveredOriginalJMSDestinatio | String Broker
n
JMS_SonicMQ_undeliveredOriginalJMSTimestam | long Broker
p
JMS_SonicMQ_undeliveredOriginal IMSExpiration | long Broker

Review the sample Persistent Storage Application (PTP) on page 99 to see how the first
properties are used. See Chapter 10, Guaranteeing Messages on page 345 for detailed
information about how these properties contribute to handling undeliverable messages in
local brokers and dynamic routing nodes.

Per Message Encryption

SonicMQ brokers can establish Quality of Protection (QoP) settings on a security-enabled
broker so that a client application that intends to produce to a destination must make the
effort to send the message after the encryption and integrity requested has been
performed. The client application is not aware of the QoP enforced on it by the destination.
Similarly, per-message encryption does not force the broker to encrypt a message to a
message consumer when the destination’s QoP settings do not require it.

When an application wants to be sure that it sends messages to a security-enabled broker
after encrypting them and establishing integrity tests, the application can set the property
JMS_SonicMQ_perMessageEncryption. On a broker that is not security-enabled, this setting
is a no-op.

The property that selects per message encryption is a boolean property:
JMS_SonicMQ_perMessageEncryption=true
This setting can also be set by using a constant:

aMessage.setBooleanProperty
(progress.message.jclient.Constants.ENCRYPT MESSAGE, true);

Aurea Software, Inc. Confidential 254 Copyright © 2013 Aurea, Inc.

Message Properties

You can determine whether a broker is security enabled by calling the
progress.message.jclient.Connection.isSecure() method:

if (connect.isSecure())

{

aMessage.setBooleanProperty
(progress.message.jclient.Constants.ENCRYPT_MESSAGE, true) ;

}

else

{

//Handle condition where broker is insecure...

}

JMS-defined Properties (JMSX)

The JMS specification reserves the JMSX property name prefix for optional JMS-defined
properties. Properties that are set on send are available to the producer and the consumers
of the message.

Properties can be referenced in message selectors whether or not they are supported by a
connection. They are treated like any other absent property. Table 21 lists and describes
the IMSX Message Properties used in SonicMQ.

Table 21: JMSX Properties Used in SonicMQ

JMSX Property Type Set by
JMSXGrouplD String Producer on send
JMSXGroupSeq int Producer on send
JMSXUserID String Broker
JMSXDeliveryCount int Producer on receive

For more information about queue message grouping where the default grouping property
is JMSXGroupID, and the JMSXGroupSeq is used to close a group assignment, see:

e Theproducer and consumer information in the Using Message Grouping on page 288.

e The broker settings on queues that handle message grouping, see the “Configuring
Queues” chapter of the Aurea SonicMQ Configuration and Management Guide.

For more information about setting the sending user name of the message in JMSXUserID:

e Asused in basic authentication with HTTP Direct, see the “HTTP(S) Direct Acceptors
and Routings” chapter of the Aurea SonicMQ Deployment Guide.

e Asabrokerwide setting for TCP and SSL connections, see advanced broker property
settings in the “Configuring SonicMQ Brokers” chapter of the Aurea SonicMQ
Configuration and Management Guide.

Aurea Software, Inc. Confidential 255 Copyright © 2013 Aurea, Inc.

Chapter 6: Messages

For more information about JMSXDeliveryCount:

As used to programmatically handle excessive redeliveries, see Setting Maximum
Delivery Count on page 209.

As used to automatically handle excessive redeliveries, see Setting Maximum
Delivery Count on page 209, and the “JIMS Administered Objects Tool” chapter in the
Aurea SonicMQ Configuration and Management Guide.

User-defined Properties

A message supports application-defined property values, providing a mechanism for
adding application-specific header fields to a message. For examples:

Identifiers for audits or reconcilement of undeliverable messages. These might be
properties you define such as OriginatorHostID, AuditID, RealTimeDeviceID, RFID,
or similar.

Hints for rerouting undeliverables such as ReturnURL, AlternateURL,
ReturnDestination, ReturnEmail, or similar.

Settings that are used by SonicMQ’s outbound routing to provide the security and
attributes for routing pure HTTP messages to HTTP Web servers. These are
described in the “Using HTTP(S) Direct” part of the Aurea SonicMQ Deployment
Guide. Examples of such properties are:

° X-HTTP-AuthUser and X-HTTP-AuthPassword for Web server authentication.

. X-HTTP-Rep1yAsSOAP, X-HTTP-RequestTimeout, X-HTTP-Retries, and
X-HTTP-RetryInterval These are not attached to the HTTP message as header
propertiers. They define the HTTP Direct outbound routing connection attempts
and, in the case of X-HTTP-Rep1yAsSOAP, the reply format of internally generated
error replies.

e X-HTTP-GroupID to define message grouping for ordered delivery.
e SSl-related properties for HTTPS Web server authentication:
X-HTTPS-CipherSuites, X-HTTPS-CACertificatePath,

X-HTTPS-ClientAuthCertificate, X-HTTPS-PrivateKey,
X-HTTPS-PrivateKeyPassword, X-HTTPS-ClientAuthCertificateForm.

Aurea Software, Inc. Confidential 256 Copyright © 2013 Aurea, Inc.

Message Properties

Determining the Pending Queue for Messages

SonicMQ brokers maintain thread pools for outbound HTTP Direct messages so that
messages can be grouped by URL. Each thread uses a reserved pending queue. Two
techniques enable multiple pending queues to operate concurrently:

e When a client application sends JMS messages to a node with the property
X-HTTP-GroupID set to a String so that many applications using that GroupID have
their messages dispatched in the order they were submitted by the applications.

e When a routing definition has the option Group Messages by URL selected and
GrouplDs are not in use, messages routing through an HTTP Direct routing node use
the destination that was created as a node-qualified HTTP destination URL to group
messages for the same destination, sending them through the same pending queue
after normalizing the URL into patterns.

For more information, see the “Grouping Messages by Destination URL” section of the
“HTTP(S) Direct Acceptors and Routings” chapter in the Aurea SonicMQ Deployment
Guide.

The active pending queues can be monitored through the Sonic Management Console’s
Manage tab where a broker's Routing Statistics can be viewed. For more information, see
the “Routing Statistics” section of the “Managing SonicMQ Broker Activities” chapter in the
Aurea SonicMQ Configuration and Management Guide.

Setting Message Properties

Message properties are in no specified order. They might or might not contain values or
data extracted from the message body. There are no default properties.

An example of some custom properties for HTTP outbound and attached custom
information is shown in the following figure captured in a JMS Test Client session.

2 IMS Test Client [—(O] |

File Wiew Help

|| Message Brokers Header Properties | Bod\;’l

EF_] top focalhost: 25183 Properties1

E‘—J TopicSession: User Defined | Property Mame: PC-HTTP-GrouplD B | Set |
] Publishers Praperty Value: [ME-2004-44031
Subscribers Property Type: |String
Mame Walue
¥-HTTP-DestinationlJRL hittp: £i11.22.33.44:80
H-HTTP-Authllser allser
X-HTTP-AuthPassword bosco
K-HTTP-ReguestTimeout |45
K-HTTP-Retries =
}-HTTP-Retrylrterval 30
X-HTTP-GrouplD
RealtimeDevicelD Buoy_C0201_CascoBay_Station44031
DisplayPage kit Sy midbic noga govstation_page phtml?§station=44031 |String
terOfDisplayPa; L ter nobo@noss gov String

Sutntnar
Message Type: Text Message |
Delivery Mode: MON_PERSISTEMT |
Priority: 4 I
Titne To Live (ms): J0

‘ I _'I Send | Clear |

Aurea Software, Inc. Confidential 257 Copyright © 2013 Aurea, Inc.

Chapter 6: Messages

Property Methods

JMSX properties can be referenced in message selectors whether or not they are
supported by a connection. If values for these properties are not included, they are treated
like any other absent property. The setting and getting of message properties allows a full
range of data types when the property is established. The properties can be retrieved as a
list. A property value can be retrieved by using a get() method for the property name.

While JMS-defined properties are typed, user-defined properties are not. Data typing is
defined by the set method used, such as setIntProperty().

When data is retrieved, the get() method for user-defined properties can attempt to
coerce the data into that data type when the value is retrieved.

Checking Whether a Property Exists

Use the propertyExists() method to check whether a property value exists:

public boolean propertyExists (String name)

where name is the name of the property to test. Returns TRUE if it exists.

Clearing Message Properties

Use the clearProperties method to delete a message's properties. This method leaves
the message with an empty set of properties. Clearing properties affects only those
properties that have been defined and has no impact on the header fields or the message
body:

public void clearProperties ()

Setting the Property Type

Message properties are set as name-value pairs where the value is of the declared data
type. Setting a property type that does not exist causes that property type to exist as a
property in that message:

set [type] Property (String name, [type] value)

where type is one of the following:
{ Boolean | Byte | Short | Int | Long | Float | Double | String }
For example:

setBooleanProperty (“reconciled”, true) .

Aurea Software, Inc. Confidential 258 Copyright © 2013 Aurea, Inc.

Message Properties

Getting Property Names

Use getPropertyNames () to retrieve a property name enumeration. Use this enumeration
to iterate through a message's property values. Then use the various property get()
methods to retrieve their respective values.

Getting Property Values

Use the get[type]Property() method to get the value of a property. If the property does
not exist, a null is returned:

public [type] get[typel Property (String name) ;

where type is one of the following:
{ Boolean | Byte | Short | Int | Long | Float | Double | String }
For example, boolean getBooleanProperty(“reconciled”) returns true.

Property values can be coerced. The accepted conversions are listed in Table 22 where a
value written as the row type can be read as the column type. For example, a short
property can be read as a short or coerced into an int, Tong or String. An attempt to
coerce a short into another data type is an error.

Table 22: Permitted Type Conversions for Message Properties
boolean byte short int long float double String
boolean |Yes No No No No No No Yes
byte No Yes Yes Yes Yes No No Yes
short No No Yes Yes Yes No No Yes
int No No No Yes Yes No No Yes
long No No No No Yes No No Yes
float No No No No No Yes Yes Yes
double No No No No No No Yes Yes
String Yes Yes Yes Yes Yes Yes Yes Yes

Valid coercions are indicated with Yes; those intersections marked with No throw a
JMSException. A string-to-primitive conversion might throw a run-time exception if the
primitives value0f () method does not accept it as a valid string representation of the
primitive.

Aurea Software, Inc. Confidential 259 Copyright © 2013 Aurea, Inc.

Chapter 6: Messages

Message Body

The message body has no default value and is not required to have any content. The
message body is populated by the message set() method for the message type. The
following sections explain how to use the set() and get() methods for the message
body.

Setting the Message Body

Use the set() methods specified by JMS for all types except XML unless the message is
read-only (in which case you will need to copy or reset the received message). For
example, for a TextMessage:

msg.setText(aMessage);

Important: If you use setText(String string) where string is the string containing the
message’s data, you set the string containing this message’s data, overriding
setText in class TextMessage.

For information about setting XMLMessage body, see Working with XML Messages on
page 234 and the samples XML Messages on page 79.

For information about setting the Parts into a MultipartMessage, see Composition of a
MultipartMessage on page 238.

Getting the Message Body

Use the get() methods required by the JMS specification for all types except XML. For
example:

msg.getText (aMessage) ;

For information about getting XMLMessage body and interpreting it with DOM or SAX
parsers, see Working with XML Messages on page 234 and the samples XML Messages
on page 79.

For information about getting Parts of a MultipartMessage and distinguishing JMS
message types from other MIME types, see MultipartMessage Type on page 238 and the
sample Decomposing Multipart Messages on page 83.

Aurea Software, Inc. Confidential 260 Copyright © 2013 Aurea, Inc.

Message Producers and
Consumers

This chapter describes the generic programming model for messaging that is common to
both messaging models, Publish and Subscribe (Pub/Sub) and Point-to-point (PTP). These
two messaging models are described in Chapter 8, Point-to-point Messaging on page 283
and Chapter 9, on page 307 This chapter covers the following topics:

About Message Producers and Message Consumers on page 262
Message Ordering and Reliability on page 262

Destinations on page 263

Steps in Message Production on page 264

Message Management by the Broker on page 267

Message Receivers, Listeners, and Selectors on page 269

Steps in Listening, Receiving, and Consuming Messages on page 276
Reply-to Mechanisms on page 279

Producers and Consumers in JMS Messaging Domains on page 281

Aurea Software, Inc. Confidential 261 Copyright © 2013 Aurea, Inc.

Chapter 7: Message Producers and Consumers

About Message Producers and Message
Consumers

To establish message producers and message consumers in one of the messaging
models, you create an appropriate ConnectionFactory, then create connections. You
create sessions on each connection and then create the session objects, as shown in
Figure 56.

Figure 56: Generic Messaging Model

ConnectionFactory

l—» Connection
l—» Session

MessageProducer f-! '}-

A4

Destination

MessageConsumer 4;-@-

T~ MessageL.istener

Figure 57:

The message producers send messages to a destination on a broker. Message consumers
get messages from a destination by implementing asynchronous MessageListeners or by
doing synchronous receives.

Message Ordering and Reliability

Various factors in a loosely coupled messaging structure can impact the sequence of
messages delivered to consumers. Message ordering and redelivery both contribute to
reliable message delivery.

Messaging services are impacted by many uncontrollable environmental factors ranging
from latency and machine outages to internal factors such as related applications that do
not accept data types, values, poorly formed XML data, and data payloads. Message
delivery is distinctly nonlinear.

Message ordering and reliability common to all messaging domains are described in this
chapter. See also Message Ordering and Reliability in PTP on page 285 and Message
Ordering and Reliability in Pub/Sub on page 309 for details about message ordering and
reliability within those domains.

Aurea Software, Inc. Confidential 262 Copyright © 2013 Aurea, Inc.

Destinations

Messages can be delivered with a range of options to modify message ordering and invoke
features that improve reliability:

e The producer can set the time-to-live of the message so that obsolete messages can
expire. If message A is set at one minute, message B at five seconds, and message
C at one hour, then after three minutes with no deliveries, only message C will still
exist. Ordering is maintained while expiration is a user-defined value.

e The producer can set the delivery mode of messages so that the broker confirms
persistent storage of the message before acknowledgement is sent. In the event of a
broker failure, a message that the broker acknowledged before it was persisted might
be lost. The delivery mode of a message characterizes the message for its entire life.
If a non-persistent message is waiting in a durable subscription or a queue when the
broker restarts, the message does not exist when the broker comes back up.

e The producer can set the priority of a message so that the broker can take efforts to
position a more recent message before an older one.

e The producer uses a synchronous process to put the message on the broker’s
message store; when it is released, the message is acknowledged as delivered to its
interim destination.

e The consumer can use listeners to get messages as they are made available.

e Messages sentinthe NON_PERSISTENT delivery mode can arrive prior to messages that
are PERSISTENT.

e The consumer starts a session by expressing its preferred acknowledgement
technique—transactional or not, explicit or implicit.

e Connections can be monitored and, when broken, techniques can automatically
attempt to reconnect. (This might not be necessary if you are using fault-tolerant
connections. See Fault-Tolerant Connections on page 172.)

e Message senders in the Internet environment are not guaranteed consistent
communication times. Transmission latencies can cause messages to be produced
before other messages. As a result, two messages from two sessions are not
required—and cannot be reliably expected—to be in any specific sequence.

Destinations

Destinations are objects that provide the producer, broker, and consumer with a context for
delivery of messages. Destinations can be JMS Administered Objects (static objects under
administrative control), dynamic objects created as needed (topics only), or temporary
objects created for very limited use. The destination name length limit is 256 characters.

For topics, SonicMQ provides extended management and security with hierarchical name
spaces; for example, jms.samples.chat. See Chapter 13, Hierarchical Name Spaces on
page 411 for more information.

Important: Table 4 lists characters that are not allowed in SonicMQ names. Refer to this
list for restricted characters must not use in your topic or queue names.

Aurea Software, Inc. Confidential 263 Copyright © 2013 Aurea, Inc.

Chapter 7: Message Producers and Consumers

The following restrictions apply to queue and topic names:

e The strings $SYS and $ISYS are reserved for administrative queues. See the Aurea
SonicMQ Configuration and Management Guide for more information.

e A gueue nhame cannot begin with the string “SonicMQ.” This prefix is reserved for
system queues. Queues whose names begin with “SonicMQ” cannot be added or
deleted using the Administration Shell.

You can programmatically store and retrieve defined destinations. SonicMQ lets you store
topic or queue names in JNDI or a simple file store and then reference the object indirectly (by
name) in some context. See Lookup and Use of Administered Objects on page 154 for
more information.

Steps in Message Production

Every time a Sess+ion wants to send a message to a Destination, it must create a
MessageProducer. The following sections explain the steps required to produce a message
within a connected Session. These sections follow the approach used in the Chat sample:

1. Create a Session on page 264

2. Create the Producer on the Session on page 265
Create the Message Type and Set Its Body on page 265
Set Message Header Fields on page 265

Set the Message Properties on page 266

Elect Per Message Encryption on page 266 (optional)

N o o &~ w

Produce the Message on page 266

Create a Session

After establishing a connection, the Chat sample creates a Session:
javax.jms.Session pubSession;

pubSession =
connect.createSession(false,javax.jms.Session .AUTO_ACKNOWLEDGE) ;

You can use a Session for P2P messaging, Pub/Sub messaging, or both. The Chat sample
names the Session pubSession, because it is intended for Pub/Sub messaging.

Aurea Software, Inc. Confidential 264 Copyright © 2013 Aurea, Inc.

Steps in Message Production

Create the Producer on the Session

The Chat example sets up the static variable APP_TOPIC (assigned the value
“jms.samples.chat") as the working Topic and creates a MessageProducer associated
with that Topic:

private static final String APP TOPIC = "jms.samples.chat";
private javax.jms.MessageProducer publisher = null;
javax.jms.Topic topic = pubSession.createTopic (APP_TOPIC) ;

publisher = pubSession.createProducer (topic) ;

MessageProducer objects can send messages to any Destination, both Queues and
Topics. Here, a Topicis the Destination passed to the createProducer () method. When
a valid Destination is passed to the createProducer() method, the returned
MessageProducer object uses that Destination as its default.

The MessageProducer object’'s send() method (the form that specifies no target
Destination) uses the default Destination as its target Destination. You can explicitly
specify a different target Destinatiion if you use a different form of the send() method.

Create the Message Type and Set Its Body

The Chat example constructs a text message from the standard input (the keyboard) and
reads the message in with the readLine() method. It creates a new SonicMQ
TextMessage and sets the text into the message, prepended in the sample by the
username, a colon, and a space:

String s = stdin.readlLine() ;

javax.jms.TextMessage msg = pubSession.createTextMessage() ;
msg.setText(username + ": " + s);

When the sample is run, if the user Sales enters “Hello.”, the message content would
be “Sales: Hello.”

Set Message Header Fields

The Chat example does not set any message header fields. If you want to change header
fields, use the set() methods for message header fields that are available for change:

setIJMSType ("CentralFiles")

For some header field set() methods (such as setIJMSMessageID() and
setIMSTimestamp()), the value you assign is overwritten at the time the message is
produced.

Aurea Software, Inc. Confidential 265 Copyright © 2013 Aurea, Inc.

Chapter 7: Message Producers and Consumers

The header fields that are named and typed and also available for assignment are:

e JMSCorrelationID, reserved for message matching functions
e JIMSReplyto, reserved for request reply information

. JMSType, available for general use

Set the Message Properties

The Chat example does not set any message properties. If you want to set message
properties, use the set() methods for the data type of a property and then supply the
property name and its value of the declared type:

set[typel Property (String name, String value)

For example:

setLongProperty (“*OurInfo AuditTrail”, “6789”)

Elect Per Message Encryption

Destinations can be configured on a broker to encrypt messages. When a producer binds
to a destination, the producer is instructed to encrypt or not encrypt by the broker. But this
decision for encryption is not revealed to the application. A client application can ensure
that a message is sent encrypted to a security-enabled broker by electing to do per
message encryption, as follows:

setBooleanProperty (progress.message.jclient.Constants.ENCRYPT MESSAGE,
true) ;

Produce the Message

When the message is assigned its attributes (header fields and properties) and its payload,
the message is ready to be sent to its destination. The Chat example uses the simplest form
of the send() method to send the message to its Destination, as follows:

publisher.send(msg);

The form of send() used in the DurableChat sample application sets three important
message parameters at the moment the send() method is executed, as follows:

private static final long MESSAGE_LIFESPAN = 1800000;
publisher.send (msg,

javax.jms.DeliveryMode.PERSISTENT,
javax.jms.Message.DEFAULT_PRIORITY,

MESSAGE_LIFESPAN) ;

Aurea Software, Inc. Confidential 266 Copyright © 2013 Aurea, Inc.

Message Management by the Broker

This form of the send() method passes along either the default values or the entered
values for:

J JMSDeliveryMode iS [NON_PERSISTENT | PERSISTENT |NON_PERSISTENT_SYNC|
NON_PERSISTENT_ASYNC |[NON_PERSISTENT_REPLICATED |DISCARDABLE]

e JMSPriorityis [0...9] where 0 is lowest, 9 is highest, 4 is the default

e timeToLive, the message lifespan that will calculate the JMSExpiration, is [0...n]
where 0 is “forever” and any other positive value n is in milliseconds

The send() method assigns—and overwrites, if previously assigned—data to the
following header fields:

e JMSDestination, the producer’s current destination
e JIMSTimestamp, based on the producer’s system clock
e JIMSMessagelD, based on the algorithm run on the producer’s system

e JMSExpiration, based on the producer’s system clock plus the timeToLive

The release of the synchronous block by the broker returns only a boolean indicating
whether the message production completed successfully.

Important: While the JMSExpiiration is calculated from the client system clock at the time
of the send, it is enforced on the broker’s clock. To accommodate variances
between client and broker clocks, the broker adjusts the message expiration
to its clock. When the message is forwarded to another broker, the remaining
timeToLive value (expiration minus current broker GMT time) is forwarded.
The time that elapses until the first packet of the message in transit is received
is effectively ignored.

Message Management by the Broker

A message at a destination behaves according to the parameters of the message send
(PTP) or publish (Pub/Sub) event. Table 23 lists those parameters and how they direct the
broker to handle the message.

Note: Asynchronous message delivery — Sonic’s asynchronous message delivery is
set on a connection factory to give a non-transacted session increased
performance for delivery modes that are not explicitly
asynchronous—NON_PERSISTENT on a security-disabled broker and
NON_PERSISTENT_ASYNC delivery mode. This feature adds asynchronous operation
to the NON_PERSISTENT_REPLICATED delivery mode, a delivery mode used by
fault-tolerant brokers replicating nonpersistent messages from the active peerto its
standby.

See the section “Asynchronous Message Delivery” in the “SonicMQ Connections”
chapter of the Aurea SonicMQ Application Programming Guide for detailed
information about this connection factory setting and its associated behaviors.

Aurea Software, Inc. Confidential 267 Copyright © 2013 Aurea, Inc.

Chapter 7: Message Producers and Consumers

Table 23: How Message Producer Parameters Influence the Broker
Producer
Parameter How the parameter is treated by the broker

deliveryMode | deliveryMode = PERSISTENT — Stores the message in the broker’s message log in
case of impending failure. Acknowledges the producer only after logging the
message.

deliveryMode = NON_PERSISTENT — If the message is enqueued or stored for a
durable subscriber on a broker that shuts down, the message is volatile. This
parameter is interpreted as NON_PERSISTENT_ASYNC or
NON_PERSISTENT_SYNC based on whether security is enabled.

deliveryMode = NON_PERSISTENT_ASYNC — Message publisher methods do not
expect any acknowledgement whatsoever. This is the default nonpersistent delivery
mode when security is not enabled. Messages can be lost if client fails. Also, some
exceptions that might otherwise be thrown back to the client when it sends a
message are not communicated; for example, a message that is larger than the
gueue size could seem to be a lost as the client did not get the exception and then
fail or crash.

deliveryMode = NON_PERSISTENT_SYNC — This is the default nonpersistent
delivery mode when security is enabled. Message publisher methods block to await
acknowledgement.

deliveryMode = NON_PERSISTENT_REPLICATED — Used with fault-tolerant
connections. In this mode, non-persistent messages are protected from broker
failures by being replicated to a standby broker. This delivery mode also ensures
once-and-only-once delivery to fault-tolerant subscribers (both durable and
non-durable) provided that after a failure the subscriber either successfully resumes
its connection at the same broker or fails over to the standby broker when that broker
takes the active role.

deliveryMode = DISCARDABLE — For nontransacted Pub/Sub only. Delivers all
messages to subscribers that are keeping up with the flow of messages, but drops
the oldest messages waiting for lagging subscribers when new messages arrive,
under any of the following conditions:

When the message server’s internal buffers for that subscriber session are full

When a neighbor cluster member containing a Topic subscription is unavailable and
a subscriber is located on the other cluster member

When an intended durable subscriber is unavailable

Note: A message’s deliveryMode is effective throughout its lifespan. If a
NON_PERSISTENT message is enqueued (PTP) or stored for a durable subscriber
(Pub/Sub) on a broker that shuts down, the message is volatile. This behavior stays
with a message throughout its travels in a dynamic queue routing deployment, and
even applies in the dead message queue.

priority priority = 0...9

When there are several messages for a receiver that are awaiting delivery, higher
priority messages (5 through 9) can move toward the front of the FIFO list. While
there are circumstances where this is desirable, more often keeping a smooth FIFO
flow is preferable.

Aurea Software, Inc. Confidential 268 Copyright © 2013 Aurea, Inc.

Message Receivers, Listeners, and Selectors

Table 23: How Message Producer Parameters Influence the Broker
Producer
Parameter How the parameter is treated by the broker
timeToLive timeToLive = <non-negative long integer value>

Number of milliseconds added to the GMT time of the client when the message is
produced to determine the JMSExpiration date-time of the message. If the
timeToLive is 0, the expiration date-time is also 0, the indication that the message is
intended never to expire.

The timeToLive feature ensures eventual delivery but can result in out-of-date
deliverables when queues are not purged and when durable subscriptions are not
formally unsubscribed.

Message Receivers, Listeners, and Selectors

MessageConsumer Objects that are associated with a Topic do not automatically get
messages. Having an active session where an application subscribes to a topic does not
result in the message getting delivered to the application. You must use an asynchronous
listener or a synchronous message receiver to ensure the message is delivered to an
application.

Message Receiver

The receiver methods are synchronous calls to fetch messages. The different methods
manage the potential block by either not waiting if there are no messages or timing out after
a specified period.

Receive
To receive the next message produced for the consumer, use the receive() method:
Message receive()

This call blocks indefinitely until a message is produced. When a receive() method is
called in a transacted session, the message remains with the consumer until the
transaction commits. The return value is the next message produced for this consumer. If
a session is closed while blocking, the return is null.

Receive with Timeout

To receive the next message within a specified time interval and cause a timeout when the
interval has elapsed, use the receive() method with a timeout:

Message receive(long timeout)

where timeout is the timeout value [in milliseconds].

Aurea Software, Inc. Confidential 269 Copyright © 2013 Aurea, Inc.

Chapter 7: Message Producers and Consumers

This call blocks until either a message arrives or the timeout expires. The return value is
the next message produced for this consumer, or null if one is not available.

Receive No Wait

To receive the next available message immediately or instantly timeout, use te
receiveNoWait() method:

Message receiveNoWait ()

The receiveNoWait() method receives the next message if one is available. The return
value is the next message produced for this consumer, or null if one is not available.

Note: The ReceiveNoWait() method is unlikely to provide effective message
consumption in the Pub/Sub paradigm.The no-wait concept is useful for durable
subscriptions, but is unlikely to produce results for normal subscriptions.

The method is very useful in the PTP paradigm where messages wait on a static
queue.

Message Listeners

Invoke a message listener to initiate asynchronous monitoring of the session thread for
consumer messages by using the following method:

setMessagelListener (MessageListener listener)

where Tistener is the message listener to associate with this session.

The listener is often assigned just after creating the destination consumer from the session,
so that the listener is bound to the destination to which a consumer was just created. For
example, in PTP:

javax.jms.MessageConsumer receiver =

session.createConsumer (queue, java.lang.String messageSelector) ;
receiver.setMessageListener (this);

Another example, this time in Pub/Sub:
javax.jms.MessageConsumer subscriber =

session.createConsumer (topic, java.lang.String messageSelector) ;
subscriber.setMessageListener (this) ;

As a result, asynchronous message receipt becomes exclusive for the session.

Note: Message sending is not limited when message listeners are in use. Sending is
always synchronous.

Aurea Software, Inc. Confidential 270 Copyright © 2013 Aurea, Inc.

Message Receivers, Listeners, and Selectors

Message Selection

While some messaging applications expect to get every message produced to a
destination, other applications might want to receive only certain messages produced to a
destination. The following techniques that can reduce the flow of irrelevant messages to a
message consumer:

e Subscription to hierarchical name spaces (Pub/Sub) — SonicMQ’s hierarchical
name spaces let subscribers point to content nodes (and, optionally, to sets of relevant
subordinate nodes) to focus publishers into meaningful spaces. For more information,
see Chapter 13, Hierarchical Name Spaces on page 411.

e Applying a message selector — As shown in the preceding code examples, IMS
can create consumers with a String parameter that holds a syntax that is a subset of
SQL-92 conditional expressions. This SQL allows a consumer on a destination to filter
and categorize messages in the message header and properties based on specified
criteria.

Server-based or Client-based Topic Message
Selectors

The default behavior of message selector filtering operations is defined by its messaging
model:

e A queue receiver does its evaluation on the server as only one of the queue receivers
will take the message instance.

e Atopic subscriber is not receiving anything unigue so it can take its subscribed
messages to the client system and then select the messages that are acceptable.

However, there are cases where topic subscribers are particularly selective and the
resources on the server far exceed the resources of the network and the clients. SonicMQ
provides the option to perform subscription message selection on the server. A
setSelectorAtBroker(true) method call on the connection factory before the topic
connection is created enables this feature. See Setting Server-based Message Selection
on page 147 for more information.

Scope of Message Selectors

Message selectors evaluate message header fields and properties. They do not access the
message body. Although SQL supports arithmetic operations, JMS message selectors do
not. SQL comments are not supported.

A selector String greater than 1024 characters will throw an exception.

Aurea Software, Inc. Confidential 271 Copyright © 2013 Aurea, Inc.

Chapter 7: Message Producers and Consumers

Message Selector Syntax

A message selector is a java.lang.String that is evaluated left to right within precedence
level. You can use parentheses to change this order. A message selector string can contain
combinations of the following elements to comprise an expression:

e Literals and Indefinites (See Table 24)

e Operators and Expressions (See Table 25)

e Comparison tests (See Table 26)

e Parentheses control the evaluation of an expression

e Whitespace (spaces, horizontal tabs, form feeds, and line terminators) are evaluated
in the same way as in Java

For example, the following message selector might be set up on a Bidders topic to retrieve
only high-priority quotes that are requesting a reply:

“Priority > 7 AND Form = ’Bid’ AND Amount 1is NOT NULL”

Table 24: Literal and Identifier Syntax in Message Selectors
Selector Element Format and Requirements Constraints Example
Literals String literals | Zero or more characters enclosed in None ‘sales’
single quotes
Exact Numeric long integer values, signed or | None 57
numeric unsigned -957
literals +62
Approximate | Numeric double values in None 7E3
numeric scientific notation -57.9E2
literals . . .
Numeric double values with a decimal, | None 7.
signed or unsigned -95.7
+6.2
Boolean true or false None true
literals

Aurea Software, Inc. Confidential 272 Copyright © 2013 Aurea, Inc.

Message Receivers, Listeners, and Selectors

Table 24: Literal and Identifier Syntax in Message Selectors
Selector Element Format and Requirements Constraints Example
Identifiers | All A case-sensitive character sequence | Cannot be JMSType,
that must begin with a Java-identifier | null, true, JMSXState,
start character. All following characters | false, NOT, JMS_Links,
must be Java-identifier part characters. | AND, OR, PSC_Link
A Java-identifier is an unlimited-length BETWEEN,
. LIKE, IN, or IS.
sequence of Java letters, Java digits,
and, “for historical reasons,” the
underscore (_) and dollar sign ($)
characters. The first character of a
Java-identifier must be a Java letter.
For more about Java-identifiers, see
the Java Language Specification’s
Lexical Structure chapter at
java.sun.com/docs/books/jls/third e
dition/html/lexical.html#3.8
Message JMSDeliveryMode, JMSPriority, JMSDelivery JMSType
header field JMSMessagelD, JMSTimestamp, Mode, and
references JMSCaorrelationID, or IMSType JMSPriority
cannot be null.
JMSX-define | null when a referenced property does | None JMSXState
d property not exist
references
SonicMQ- JMS_Sonic
defined MQ_preser
properties ve
Undelivered
Application-s Audit_Team
pecific
property
names
(do not start
with ‘JIMS’)

Aurea Software, Inc. Confidential

273

Copyright © 2013 Aurea, Inc.

Chapter 7: Message Producers and Consumers

Table 25: Operator and Expression Syntax in Message Selectors
Selector Element Format and Requirements Example
Operators Logical In precedence order: a NOT IN (‘al',)a2)
NOT, AND, OR a>70R b=true
a>7AND b = true
Comparison =, >, >=, <, <=, <> a>7
(for booleans and Strings: =, <>) b ='Quote’
Arithmetic In precedence order;
Unary + or - a>+7
Multiply * or divide / a*3
Add + or subtract - a-3

Arithmetic range
between two
expressions

id BETWEEN e2 AND e3
id NOT BETWEEN e2 AND e3

a BETWEEN 3 AND 5
a NOT BETWEEN 3 AND 5

Expressions

Selector Conditional expression that matches | ((4*3)=(2*6))= true
when it evaluates to true
Arithmetic Include:
Pure arithmetic expressions
Arithmetic operations
p 7*5
Identifiers with numeric values
a/b
Numeric literals 7
Conditional Include:
Pure conditional expressions
7>6

Comparison operations
Logical operations
Identifiers with Boolean values

Boolean literals (true, false)

a>7OR b=true

a = true

true

Aurea Software, Inc. Confidential

274

Copyright © 2013 Aurea, Inc.

Message Receivers, Listeners, and Selectors

Table 26: Comparison Test Syntax in Message Selectors
Selector Element Format and Requirements Example
Comparison IN Identifier IN (strl, str2, ...) alIN (‘AR'AP’, ‘GL")
tests Identifier NOT IN (str1, str2, ...) aNOT IN (PR’,'IN’, ‘FA)
LIKE Identifier LIKE (strl, str2,...) a LIKE ‘Fr%d’

Identifier NOT LIKE (strl, str2,...) s true for "Fred” ‘Frond’ and
false for ‘Fern’
can be enhanced with pattern values:

Und tands f h t
nderscore () stands for any character a LIKE *_ %' ESCAPE

Percent (%) stands for any sequence of true for *_foo’ and
characters false for ‘bar’

To explicitly defer the special characters _
and %, precede their entry with the Esc

character.

null Identifier IS NULL ais NULL
Identifier IS NOT NULL ais NOT NULL
for:

Header field value
Property value
Existence of a property

Refer to SQL-92 semantics or the IMS
specification for more about comparisons
that involve null values.

Comparing Exact and Inexact Values

Comparing an int value (an exact numeric literal that uses the Java integer literal syntax)
and a float value (an approximate literal that uses the Java floating point literal syntax) is
allowed.

Type conversion is defined by the rules of Java numeric promotion as described in the Java
Language Specification, which, in part, declares that:

e Unary conversions are from byte, short, or char to a value of type int by a widening
conversion; otherwise, a unary numeric operand remains as is and is not converted.

e Binary conversions called for by operands on data of numeric types. If either operand
is of type double, the other is converted to double. If either operand is of type float,
the other is converted to float. If either operand is of type 1ong, the other is converted
to Tong. Otherwise, both operands are converted to type int.

Aurea Software, Inc. Confidential 275 Copyright © 2013 Aurea, Inc.

Chapter 7: Message Producers and Consumers

Steps in Listening, Receiving, and Consuming
Messages

The following sections explain the steps required to receive and consume a Pub/Sub
message within a connected session:

1. Implement the Message Listener on page 276
2. Create the Destination and Consumer, Then Listen on page 276
3. Handle a Received Message on page 277

a. Get Message Properties on page 278

b. Consume the Message on page 278

c. Acknowledge the Message on page 278

Implement the Message Listener

Implement the standard JMS message listener:

public class Chat
implements javax.jms.MessagelListener

Create the Destination and Consumer, Then
Listen

Once you obtain a ConnectionFactory object, use it to create a Connection. From the
Connection, create a Session, and, from the Session,create a MessageConsumer.

To create a MessageConsumer, you call the Sess+ion object’s createConsumer() method.
When you call this method, you pass in a Destination (either a Queue or Topic, both of
which extend the Destination interface). If you pass in a Queue, the returned
MessageConsumer acts in accordance with the P2P messaging model; if a Topic, the
Pub/Sub messaging model.

After you create the MessageConsumer, you call its setMessageListener() method,
passing in the appropriate MessageListener. In the Chat sample, the MessageListener is
the Chat object itself (this):

javax.jms.Topic topic = subSession.createTopic("jms.samples.chat") ;
javax.jms.MessageConsumer subscriber = subSession.createConsumer (topic) ;
subscriber.setMessagelListener (this) ;

Aurea Software, Inc. Confidential 276 Copyright © 2013 Aurea, Inc.

Steps in Listening, Receiving, and Consuming Messages

Handle a Received Message

In the following Chat sample code, the received message is assumed to be text and is
output to the standard output stream:

public void onMessage(javax.jms.Message aMessage)

{

javax.jms.TextMessage textMessage = (javax.jms.TextMessage) aMessage;
String string = textMessage.getText() ;
System.out.println(string);

}

When the received message type is uncertain, special message handling is required. In the
following XMLDOMChat sample, the message is tested to determine whether or not it is an
instance of XMLMessage and then handled appropriately:

public void onMessage(javax.jms.Message aMessage)

{
if (aMessage instanceof progress.message.jclient.XMLMessage)
{
see Parsing an XML Message
}elsef
// Cast the message as a text message and display it.
javax.jms.TextMessage textMessage = (javax.jms.TextMessage) aMessage;
System.out .println(" [TextMessage] " + textMessage.getText()) ;
}

When the received message is an XML message, your application can parse the message
to extract data from the message fields. The following code sample shows how to parse an
XML message and extract data:

// Cast the message as an XML message.
progress.message.jclient.XMLMessage xmlMessage =
(progress.message.jclient.XMLMessage) aMessage;

// Get the XML document associated with this message.
org.w3c.dom.Document doc = xmlMessage.getDocument () ;

// Get the sender and content from the message.
org.w3c.dom.NodeList nodes = null;

nodes = doc.getElementsByTagName ("sender") ;

String sender = (nodes.getLength() > 0) ?

nodes.item(0) .getFirstChild () .getNodevValue() : "unknown";
nodes = doc.getElementsByTagName ("content") ;

String content = (nodes.getLength() > 0) ?

nodes.item(0) .getFirstChild () .getNodeValue() : null;

// Show the message.

System.out.println(" [XML from '" + sender + "'] " + content);
// Show the message as a tree.

printDocNodes (doc.getDocumentElement () ,0) ;
System.out.println() ;

Aurea Software, Inc. Confidential 277 Copyright © 2013 Aurea, Inc.

Chapter 7: Message Producers and Consumers

Get Message Properties

Use the get () methods for the data type of a property and then supply the property name
and its value of the declared type. When a property requested does not exist in a message,
the return value is null. Generically:

get [type] Property (String)

For example:

getIntProperty (“OurInfo AuditTrail”)

Warning: This example gets an int property that was set with (and stored as) a 1ong.
Attempting to get a property type that is not the type with which the property
was set will force coercion of the value to the declared type. If the conversion is
not valid, an exception is thrown. See Table 22.

Consume the Message

The application can pass the data in an accepted message to the business application for
which it performs its services. Explicit acknowledgement of the IMS message to the broker
could be postponed until the business application acknowledges processing with a
transaction or audit trail identifier. This value could be passed back to the producer if a reply
was requested.

Acknowledge the Message

The acknowledgement mode is established when the session is created. Two of the
acknowledgement modes are automatic: AUTO_ACKNOWLEDGE and DUPS_OK_ACKNOWLEDGE.
Other acknowledgement modes require explicit invocation of the acknowledge() method:

e If the mode for the session is SINGLE_MESSAGE_ACKNOWLEDGE, explicit
acknowledgement acknowledges only the current message. Any messages not
acknowledged are not released—thereby becoming available for redelivery—on the
broker until the session ends.

. If the mode for the session is CLIENT_ACKNOWLEDGE, explicit ack acknowledges all
messages previously received by the session.

Note: The acknowledge method has no effect when the session is transacted or when the
session ack mode is AUTO_ACKNOWLEDGE or DUPS_OK_ACKNOWLEDGE. See Explicit
Acknowledgement on page 210 for more information.

Aurea Software, Inc. Confidential 278 Copyright © 2013 Aurea, Inc.

Reply-to Mechanisms

Reply-to Mechanisms

The typical design pattern for request/reply is:

e Create a message you want to send

e Make a temporary destination

. Set the JMSRep1yTo header to this destination
. Create a MessageConsumer 0n the destination
e Send the message

e Call MessageConsumer.receive(timeout) on the message

The JMSRep1yTo message header field contains the destination where a reply to the current
message should be sent. Messages with a JMSRep1yTo value are typically expecting a
response. If the JMSRep1yTo value is null, no reply is expected. A response can be optional,
and client code must handle the action. These messages are called requests.

A message sent in response to a request is called a reply. Message replies often use the
JMSCorrelationID to ensure that replies synchronize with their requests. A
JMSCorrelationID would typically contain the JMSMessageID of the request.

Temporary Destinations Managed by a
Requestor Helper Class

Under Pub/Sub, the TopicRequestor uses the session and topic that were instantiated from
the session methods. Notice that the code never actually manipulates the TemporaryTop-ic
object; instead it uses the helper class TopicRequestor.

Requestor Application

The following code excerpt from the TopicPubSub Requestor sample application uses the
helper class TopicRequestor:

javax.jms.TopicRequestor requestor = new javax.jms.TopicRequestor (session,

topic) ;
javax.jms.Message response = requestor.request (msg) ;
javax.jms.TextMessage textMessage = (javax.jms.TextMessage) response;

Aurea Software, Inc. Confidential 279 Copyright © 2013 Aurea, Inc.

Chapter 7: Message Producers and Consumers

Replier Application

Synchronous requests leave the originator of a request waiting for a reply. To prevent a
requestor from waiting, a well-designed application uses code similar to the following
excerpts from the TopicPubSub Replier sample application:

//get the mesage
public void onMessage(javax.jms.Message aMessage)

{

javax.jms.TextMessage textMessage = (javax.jms.TextMessage) aMessage;
String string = textMessage.getText() ;

}

//Look for the header specifying JMSReplyTo:
javax.jms.Topic replyTopic = (javax.jms.Topic) aMessage.getIMSReplyTo() ;
if (replyTopic != null)

//Send a reply to the topic specified in IMSReplyTo:
javax.jms.TextMessage reply = session.createTextMessage() ;

Design for Handling Requests

The final steps taken by the message handler represent good programming sty